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Abstract—Exploiting multitemporal Sentinel-2 images for
urban land cover classification has become an important research
topic, since these images have become globally available at rela-
tively fine temporal resolution, thus offering great potential for
large-scale land cover mapping. However, appropriate exploita-
tion of the images needs to address problems such as cloud cover
inherent to optical satellite imagery. To this end, we propose a
simple yet effective decision-level fusion approach for urban land
cover prediction from multiseasonal Sentinel-2 images, using the
state-of-the-art residual convolutional neural networks (ResNet).
We extensively tested the approach in a cross-validation manner
over a seven-city study area in central Europe. Both quantitative
and qualitative results demonstrated the superior performance of
the proposed fusion approach over several baseline approaches,
including observation- and feature-level fusion.

Index Terms— Classification, fusion, long short-term mem-
ory (LSTM), multitemporal, nonlocal, residual convolutional
neural network (ResNet), Sentinel-2, urban land cover.

I. INTRODUCTION

LOBAL urban land cover information is a crucial ele-

ment in various applications, such as efficient infrastruc-
ture planning and environmental sanitation improvements,
especially in today’s rapidly urbanized world, where “55% of
the world’s population lives in urban areas, a proportion that
is expected to increase to 68% by 2050 [1].” Accurate and
up-to-date urban information can provide support to decision
makers when responding to issues and challenges hampering
effective urban governance. In this regard, exemplary existing
products include the global urban footprint processed from
the TerraSAR-X and TanDEM-X synthetic aperture radar
images [2] and the global human settlement built-up grid
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processed from the Landsat and Sentinel-1 image collec-
tions [3]. These remote sensing-based global products give
us motivation to explore the potential of satellite images for
large-scale land cover mapping. In particular, deep learning
has become a powerful technique for such tasks [4].

We have investigated Sentinel-2 images for urban land
cover classification in previous studies that were practi-
cally aimed at large-scale mapping with openly available
data. In addition, the five-day revisit time (at the equator)
of Sentinel-2 makes it unprecedentedly feasible for further
change detection and long-term monitoring of the urban extent
worldwide [S]-[7]. Specifically, we have investigated multi-
seasonal Sentinel-2 images and demonstrated better results
over the single-seasonal input when a residual convolutional
neural network (ResNet) architecture was used as the baseline
network [8]. Herein, we are motivated to exploit further the
potential of fusing the multiseasonal Sentinel-2 imagery for
urban land cover classification by proposing a decision-level
fusion approach. To provide more methodological insights into
this topic, we extensively test the performance of this approach
against various baseline fusion approaches.

II. FUSING MULTISEASONAL SENTINEL-2 IMAGES USING
RESNET-BASED NEURAL NETWORKS

A. Multibranch ResNet Architecture for Decision-Level
Fusion

In this letter, we propose a novel and simple framework
to fuse multiseasonal Sentinel-2 images on decision level for
urban land cover prediction. The architecture is illustrated
in Fig. 1. The architecture mainly consists of a four-stream
ResNet to learn the spectral-spatial features from the four
seasonal Sentinel-2 images. From the global average pooling
of the learned feature maps, urban land cover labels can be
predicted independently. Those predictions, i.e., the softmax
indicating the class probability, are then averaged and serve as
the final prediction. The four-stream ResNet and the averaging
part are seamlessly integrated into one architecture without
additional inference. Likewise, softmax probability can be
predicted from the global average pooling of the feature maps
learned by the first three (instead of four) residual blocks of
each of the four streams. In this case, all eight predictions
can be considered as voters for the final output. Depending
on the number of predictions to be averaged (eight or four),
the framework is referred accordingly to as Res_ensemble_8 or
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Fig. 1.
Here, Ty, T2, T3, and Ty indicate four seasons. Weights of different streams
are not shared and dropout is not shown. The network is referred to
as Res_ensemble_8 and Res_ensemble_4, when predictions from low-level
features (the dotted lines) are considered and not considered, respectively.
Input is the multiseasonal images and the output is a fused prediction.

Fusing network architecture for urban land cover classification.
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Fig. 2. Various approaches to fuse multiseasonal Sentinel-2 images for land
cover prediction. The backbone is used to extract features, while modules
before and after the backbone are designed to exploit the multiseasonal
images.

Res_ensemble_4 in this letter. This way, the different decisions
made independently of different seasons can be harnessed for
urban land cover classification.

B. Baseline Approaches for Fusing Multiseasonal
Sentinel-2 Images

can be fused on
addition to the

Multiseasonal Sentinel-2 images
observation- and feature-levels, in
decision-level approach [9].

1) Observation-Level Fusion: To be used as the input to
a conventional ResNet, the multiseasonal images (along
the spectral band dimension) are stacked (i.e., multisea-
sonal images together are treated simply as one image
that contains the ground status of different seasons). This
is referred to as st-ResNet in Fig. 2.

2) Feature-Level Fusion: Multibranch ResNet is followed
by a long short-term memory (LSTM) network, with
multiseasonal images as inputs to the independent
branches (Re-ResNet in Fig. 2). This way, multitem-
poral information can be exploited through the extrac-
tion of temporal features, which can be the comple-
mentary information to the spatial-spectral information
learned by the multibranch ResNet. Our previous work
has shown that Re-ResNet (feature-level fusion) pro-
vides higher accuracy than st-ResNet (observation-level
fusion) for mapping urban land cover [8].

Under the above-mentioned multibranch framework, instead
of LSTM, the multitemporal information can be alternatively
exploited by nonlocal neural networks that have been shown
effective for video classification by capturing long-range
dependences instead of processing one local neighborhood at
a time [10]. We were inspired by its ability to directly capture
the spatiotemporal dependences, which might be beneficial
to the successful fusion of multiseasonal Sentinel-2 images.
Depending on where the nonlocal block was plugged into the
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network architectures, before or after the ResNet backbone,
two types of nonlocal-based architectures, namely, NL-ResNet
and ResNet-NL, were explored in this letter.

The overall structures of different fusion approaches,
i.e., st-ResNet, NL-ResNet, Re-ResNet, ResNet-NL, and
Res_ensemble, are presented in Fig. 2. These approaches were
compared and analyzed in detail herein. Note that for each
of these approaches, different subnetworks were seamlessly
integrated into one architecture so that no postprocessing was
needed. Among these approaches, st-ResNet and NL-ResNet
are similar in that they both directly model multitemporal
dependences using the input multiseasonal Sentinel-2 images,
instead of using the learned feature maps. Re-ResNet, ResNet-
NL, and Res_ensemble are similar in that they all model
multitemporal dependences from the learned features by a
multibranch structure (multiple ResNets in parallel).

To draw a valid conclusion, we further investigated the
effect of the network depth on the classification accuracy.
A shallow version and a deep version of ResNet, with a depth
of 14 and 56, respectively, were chosen as the backbones.
Their detailed architectures can be found in [8] and [11],
respectively.

III. EXPERIMENTAL RESULTS
A. Study Areas and Data Sets

We followed the same experimental setup as in our previous
work [8], so as to ensure that our comparison of the different
fusion approaches was done in a meaningful manner. Study
areas, data sets, and experimental setups were briefly described
below, to facilitate complete understanding. The study area
comprises seven cities across Europe, namely, Amsterdam,
Berlin, Cologne, London, Milan, Munich, and Paris. For each
approach, seven experiments were carried out, in each of
which one hold-out city is used for test and the other six
cities were used for training. This is to test the generaliza-
tion ability of the models of different approaches. In each
city, we processed mostly cloud-free multiseasonal Sentinel-
2 images for each of the four seasons from winter 2016/2017 to
autumn 2017 using the Google Earth Engine (GEE) [12].
We used the 10-m bands consisting of B2 (blue), B3 (green),
B4 (red), and B8 (near-infrared) and the 20-m bands consisting
of B5 (red edge 1), B6 (red edge 2), B7 (red edge 3), B8a
(red edge 4), B11 (short-wavelength infrared 1), and B12
(short-wavelength infrared 2), upsampled to 10 m. Reference
class samples used as ground truth were from the LCZ42 data
set [13] and were further prepared by class combination and
data augmentation as in [8], to overcome the class-imbalance
problem. In addition, accuracy assessment was carried out on
absolutely balanced samples. Therefore, only two measures,
overall accuracy (OA) and Kappa coefficient, were used for
accuracy comparison and analysis.

B. Comparison of Accuracy Resulting From Different Fusion
Approaches

Table I provides a list of classification accuracies achieved
by each of the different approaches. A comparative evaluation
of these accuracies showed these general findings.



QIU et al.: FUSING MULTISEASONAL SENTINEL-2 IMAGERY

OA

1789

cococo
[ )

Kappa
coococo
Qo N O

Amsterdam Berlin Cologne London Milan Munich Paris Mean
I I I
Amsterdam Berlin Cologne London Milan Munich Paris Mean

M st-ResNet_s M Re-ResNet_s M NL-ResNet_s W ResNet-NL_s

Fig. 3.

Res_ensemble_S W st-ResNet_d W Re-ResNet_d W NL-ResNet_d W ResNet-NL_d

OA and Kappa coefficient values of seven test cases resulting from nine different fusion approaches. All samples of the test areas are unseen by the

respective trained networks and the last column (mean) is the averaged results over all seven test cases corresponding to values in Table I.

1) Decision-level fusion provides the most and second-most
accurate classification results with the highest OA and
Kappa. Under the decision-level fusion category, a fur-
ther improvement can be achieved by jointly considering
the predictions from both low- and high-level features,
i.e., using eight voters instead of four.

2) Re-ResNet_d achieves the most accurate classification
results under the feature-level fusion category. In addi-
tion, it provides a slight improvement over its shallow
version, Re-ResNet.

3) NL-ResNet provides more accurate results than the
ResNet-NL, which is true for both their shallow and
deep versions.

4) For all three feature-level and one observation-level
fusion approaches, deeper networks with more trainable
parameters do not necessarily provide considerable ben-
efits. For NL-ResNet, the deeper version provides even
worse results.

5) Observation-level fusion provides no benefits with
slightly lower OA and Kappa compared with av-ResNet,
which does not exploit multitemporal information.

Fig. 3 further provides a detailed comparison of these fusion

approaches for all seven test cases. Note the consistency of the
above findings in most test cases.

C. Visual Comparison of Classification Maps Resulting From
Different Fusion Approaches

We also carried out qualitative comparisons to complement
the quantitative results in providing more insights into the
characteristics of the different fusion approaches. In particular,
we chose two subsets from the Munich, Germany, area as
samples, for which urban land cover maps resulting from
five representative approaches are presented and compared
in Fig. 4. With the manually labeled polygons as reference,
Res_ensemble apparently provided more accurate classifica-
tion results than either NL-ResNet_d or Re-ResNet_d, which
classified some open built-up areas as compact built-up areas,
as indicated by the noticeable larger red areas. This finding
was consistent with that from Fig. 5.

IV. DISCUSSION

In general, the experimental results summarized in Sec-
tion III already provided a clear answer to the question
that motivates this investigation and it gets apparent that
decision-level fusion is better for our task given the input
data sets and experimental setups. In addition, we achieved

TABLE I

COMPARISON OF CLASSIFICATION ACCURACY ACHIEVED BY DIFFERENT
FUSION APPROACHES. (MEASURES ARE AVERAGED OVER ALL SEVEN
TEST CASES. BOLD VALUES INDICATE THE BEST ACCURACY
ACHIEVED FOR THE RESPECTIVE FUSION LEVELS. THE
SYMBOL “_D” DENOTES THE DEEP VERSIONS
OF RESPECTIVE NETWORKS)

Fusion Approach OA Kappa  Param.(M)
Spring 82.7% 0.79
Summer 81.2% 0.77
Not considered Autumn 82.7% 0.79 0.282
Winter 77.9% 0.74
av-ResNet 81.1% 0.77
Observation-level st-ResNet 79.7% 0.76 0.286
st-ResNet_d 79.8% 0.76 1.668
Re-ResNet 84.1% 0.81 0.844
NL-ResNet 83.9% 0.81 0.308
ResNet-NL 78.5% 0.74 1.369
Feature-level
Re-ResNet_d 84.6 % 0.82 7.175
NL-ResNet_d 81.8% 0.78 1.690
ResNet-NL_d 79.6% 0.76 7.179
Decison-level Res_ensemble_4 85.3% 0.82 1.127
Res_ensemble_8 86.7 % 0.84 1.163

promising classification results for seven distinct unseen test
areas, which indicate a strong generalization ability of the
trained networks. Beyond that, the following major insights
can be gained based on the interpretation of the presented
experimental results, which can be beneficial to similar tasks
at a similar scale.

A. Decision-Level Fusion as the Better Approach

Both the quantitative comparisons measure and the resulting
land cover maps in Section III demonstrated the superior
performance of decision level over both the observation- and
feature-level fusion approaches. With all test cases considered,
OA and Kappa can be improved from 84.6% to 86.7% and
0.82 to 0.84, respectively, as compared with the sophisticated
Re-ResNet that integrates a four-stream ResNet and an LSTM
and that has much more trainable parameters, as shown
in Table I. We therefore suggest that decision-level fusion
should be considered with high priority over sophisticatedly
designed architectures when fusing multiseasonal Sentinel-
2 images when the study is application-oriented. A similar
finding, i.e., decision-level fusion provides the best result in
the context of deep learning, was recently documented in [14]
for the fusion of heterogeneous input data (exemplified by the
aerial and street-view images) for building-type classification.
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Fig. 4. Comparison of land cover classification maps overlaid on Google Earth images resulting from different approaches, with the city center and suburban
area of Munich, Germany, as examples. The polygons are manually labeled for reference with the same legend as the land cover classes. The satellite image

data are from Google, Image Landsat/Copernicus.

What has to be mentioned, however, is that in order to
address the cloud problem, we have aggregated all images
available for each meteorological season into a single, mostly
cloud-free image. The preprocessing is already equivalent
to an observation-level fusion of all the available Sentinel-
2 images within that season. Consequently, the temporal
resolution was not fully preserved in the processed Sentinel-
2 images. Furthermore, the aimed land cover classes over
urban areas herein did not clearly exhibit different phenolog-
ical stages as crops in the task of crop identification [15].
On the contrary, a fusion on the decision level was able to
exploit the joint power of the multiseasonal images robustly.

B. Influence of Network Depth

Our experimental results did not confirm the generally cor-
rect and well-known rule of “deeper is better” in deep learning.
With the same type of architecture, a deeper Re-ResNet with
six times more trainable parameters would only result in a
slightly higher accuracy, as shown in Table I. In the case of
NL-ResNet, a deeper version even would lead to even worse
results. The possible explanation for this is that the shallow
versions of the used networks are already deep enough to
capture the characteristics of our training data, i.e., the size of
the training data is not big enough, or the spatial resolution is
not high enough to exploit the power of deeper networks fully.
Since the achieved test accuracy calculated on completely
unseen data is, however, already quite promising, we assume
the generalization capability of the trained model to be good
enough for large-scale production purposes.

C. Effect of the Nonlocal Block

The nonlocal block-based NL-ResNet was able to provide
encouraging classification results that were close to the best
achievable results on a feature-level fusion, as shown in
both Table I and Fig. 4. In particular, NL-ResNet brought a
distinct advantage over st-ResNet without necessarily intro-
ducing more parameters, thanks to its inherent ability to
capture long-range dependences over both spatial and temporal
dimensions. Moreover, note that the nonlocal block was the
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Fig. 5. Combined confusion matrices of the seven test cases resulting from
Res_ensemble_8. Confusion matrix was created considering all test samples
from all seven test cases together. Classes 1-5 are compact built-up area, open
built-up area, sparsely built, large low-rise and heavy industry, vegetation, and
water, respectively.

only difference between the architectures of st-ResNet and
NL-ResNet, thus confirming our hypotheses that the nonlocal
block is suitable for exploiting the multitemporal information
within the Sentinel-2 images for land cover classification.
Furthermore, NL-ResNet provided more accurate results than
ResNet-NL, which means that its advantages can be gained
when using a nonlocal block directly on the original input
images than on the learned feature maps in which temporal
information might be destroyed.

D. Confusions

In spite of the overall good results, there are still some
confusions among the classes remaining, as shown in Fig. 5.
Specifically, sparsely built was classified as open built-up
area and vegetation. This is understandable, because these
classes appear similarly in the Sentinel-2 images. Intuitively,
both open built-up and sparsely built area include buildings
and vegetation. In addition, the used patchwise classification
approaches tended to be affected by the contextual features
learned from the neighboring areas. To improve the classifi-
cation accuracy over Res_ensemble further, we recommend
the following directions: class-specific features can be learned
by attention-based neural networks to better distinguish the
classes. In addition, differentiation of the different classes and
detection of small built-up areas can be enhanced by jointly
considering the related tasks in a multitask manner.
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V. CONCLUSION AND OUTLOOK

Urban land cover maps can be used as a first step for
hierarchical LCZ classification or human settlement extent
mapping. Based on our previous studies, we proposed in this
letter a new decision-level approach that is capable of fusing
multiseasonal Sentinel-2 images, as demonstrated through a
set of cross-validations over a seven-city study area in central
Europe. Based on a comprehensive comparison with several
baseline approaches, we conclude that decision-level fusion is
superior over feature-level fusion for similar tasks at a similar
scale, when multiseasonal Sentinel-2 images are exploited.
We expect the findings of this letter to provide additional
insights and pave the way for the realization of large-scale
applications, such as land cover and land use classification.

APPENDIX
NONLOCAL NEURAL NETWORKS

The nonlocal block used in this letter is illustrated in Fig. 6.
Given the input feature maps (or image patches) /, the output
of a nonlocal block is a sum of the nonlocal-based estimations
and the original feature maps to keep the initial behavior of
the employed networks

0O=WY~+1I (1)

in which W is a learnable weight matrix implemented as a
1 x 1 x 1 convolution to compute a positionwise embedding
on Y, which is a neural network-based nonlocal operation

Y=o (I"W] Wyl)g(I) 2)

where Wy, Wy, and g are all the weight matrices that are to be
learned through the implementation of 1 x 1 x 1 convolutions.
Wyl and Wyl transferred the original feature maps into an
embedding space, in which patch similarity is modeled for
all positions. Such manner of computing similarity is called
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embedded Gaussian, which is chosen for this letter. Other
options include Gaussian, Dot product, and concatenation. The
symbol ¢ in ¢ (IT WQT W 1) results from a combination of the
normalization factor and computed similarities. In summary,
the nonlocal block used in this letter corresponds to a generic
nonlocal operation in the following way: o (IT W] Wy1) is
the weights representing the similarity between each two of
all positions along both the spatial and time-step dimensions,
and g(I) = W, is a linear embedding of the original feature
maps.
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