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Abstract—High-resolution remote sensing images (HRRSIs)
contain substantial ground object information, such as texture,
shape, and spatial location. Semantic segmentation, which is an
important task for element extraction, has been widely used in
processing mass HRRSIs. However, HRRSIs often exhibit large
intraclass variance and small interclass variance due to the di-
versity and complexity of ground objects, thereby bringing great
challenges to a semantic segmentation task. In this paper, we
propose a new end-to-end semantic segmentation network, which
integrates lightweight spatial and channel attention modules that
can refine features adaptively. We compare our method with
several classic methods on the ISPRS Vaihingen and Potsdam
datasets. Experimental results show that our method can achieve
better semantic segmentation results. The source codes are
available at https://github.com/lehaifeng/SCAttNet.

Index Terms—Remote Sensing; Semantic Segmentation; Con-
volutional Neural Network; Attention Module

I. INTRODUCTION

EMANTIC segmentation of remote sensing images is a

fundamental task that classifies each pixel in an image into
a specified category. It plays an important role in many fields
such as change detection, element extraction, and military
target recognition.

Image semantic segmentation methods can be divided into
two categories: traditional methods and deep learning based
ones. Traditional methods use the color, texture, shape, and
spatial position relationships of an object to extract features
and then use clustering, classification, and threshold algo-
rithms to segment an image [1][2]. However, these methods
depend heavily on artificial design features and show some
bottlenecks. Recently, deep learning based methods have been
regarded as a promising approach to solve image semantic
segmentation problems [3][4][S]. For example, methods based
on fully convolutional network (FCN) [4] have achieved state-
of-the-art segmentation results on many natural image datasets,
such as PASCAL VOC [6] and Cityscapes [7].

However, remote sensing images are different from natural
images and often viewed from a high-altitude angle. Thus, the
range of imaging is wide, and the background is complex and
diverse. Especially in HRRSIs, the difference of ground ob-
jects becomes further notable. To segment HRRSIs effectively,
many advanced methods have been proposed. For example,
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weighted focal loss [8] and multi-class loss combined by Dice
loss and Binary Cross Entropy loss [9] have been proposed to
solve the class imbalance problem in remote sensing images.
Multi-modal datas such as digital surface models (DSMs)
[LO][11] have been used to improve semantic segmentation
performance. In addition, spatial relation module [12] and
spatial information inference structure [13]] have been designed
to model more effective contextual spatial relations. These
methods have achieved satisfactory results for remote sensing
images segmentation.

Recently, attention mechanisms have been successfully ap-
plied to semantic segmentation. These methods can be di-
vided into two categories. One uses attention mechanism to
select meaningful features at channel dimension. For example,
PANJ14] uses a global attention module as a context prior
to select precise features channel-wisely. Attention U-net
[15] uses a channel attention module to control the fusion
of high-level and low-level features at channel dimension.
However, these method do not consider to enhance the feature
representation at spatial dimension. Another one is called
the self attention mechanism, which calculates the feature
representation in each position by weighted sum the features
of all other positions [16][17]. Thus, it can model the long-
range context information of semantic segmentation task. For
example, DANet [[16] uses two self-attention modules to model
long-range context information at spatial and channel dimen-
sion respectively. However, these methods are complexity in
the size of model, thus yield inefficient computation which will
be great challenge to process massive remote sensing images.
In our work, two lightweight attention modules [18] which
contains spatial attention and channel attention are adopted
for the semantic segmentation of HRRSIs. The spatial attention
module models the spatial features of HRRSIs, and the channel
attention module captures what to enhance. Integrating these
two attention modules can effectively improve the accuracy
of semantic segmentation. The contributions of this study
primarily include the following three points:

(1) We propose a new semantic segmentation Network with
Spatial and Channel Attention (SCAttNet) to improve the
semantic segmentation accuracy of HRRSIs.

(2) We visualize the representations learned by spatial and
channel attention modules to explain why does our method
work.

(3) Experiments on Vaihingen and Potsdam datasets demon-
strate competitive results by learning representations for
HRRSIs via spatial and channel attention modules, and show
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Fig. 1. Overview of our proposed SCAttNet network

remarkable performance improvements on small objects.

II. METHOD
A. Overview of SCAttNet

The proposed semantic segmentation network is shown
in Fig. [} It consists of two parts: a backbone for feature
extraction and an attention module. The attention module is
composed of a channel attention and a spatial attention in
cascade. For an input remote sensing image, we first use the
backbone network for feature extraction. Then we feed the
extracted feature map into the channel attention module to
refine the features in channels. Afterward, we feed the refined
channel feature map into the spatial attention module for
refinement at spatial axis. Lastly, we can obtain the semantic
segmentation results via convolution and SoftMax operations.
Specific network details and design ideas are shown in the
following sections.

B. Backbone for feature extraction

In this study, we use two representative backbones for
feature extraction: SegNet and ResNet50 [19]. On this basis,
we proposed two networks: SCAttNet V1 with SegNet as
backbone and SCAttNet V2 with ResNet50 as backbone. For
SegNet network, it has been widely used as the baseline model
of remote sensing images semantic segmentation and achieved
sound semantic segmentation results. For example, Audebert
et al. [11] based on SegNet network, combined with multi-
modal data, achieved state-of-the-art semantic segmentation
results on the ISPRS Vaihingen dataset. And ResNet50 is
also a common backbone for semantic segmentation tasks
because it can build a deep-layer model with a wide receptive
field. We use eight times downsampling for ResNet50 in our
work. Unlike the SegNet and ResNet50 networks, we do
not directly use the features of the last layer for semantic
inference, instead, we feed the feature map of the last layer
into the attention module for feature refinement and then
make semantic inference, which is conducive to learning better
feature expression.

C. Attention Module

Channel Attention: Given a high-resolution remote sensing
image, it will produce a multichannel feature map F €
REXHXW (where C, H, and W denote the number of channels,

the height, the width of the feature map, respectively) after
passing through several convolutional layers. The information
expressed in the feature map of each channel is different.
Channel attention aims to use the relationships between each
channel of the feature map to learn a 1D weight W, €
RE*1X1 and then multiply it to the corresponding channel.
In this manner, it can pay more attention to the meaningful
semantic information for the current task. To learn effective
weight representation, we first aggregate spatial dimension
information through global average pooling and global max
pooling to generate two feature descriptors for each channel.
Then we feed the two feature descriptors into a shared multi-
layer perceptron with one hidden layer (where the number of
the hidden layer units is C/8) to generate more representative
feature vectors. Afterward, we merge the output feature vectors
through an element-wise summation operation. Finally, using
a sigmoid function, we can obtain the final channel attention
map. The flow chart is illustrated in the channel attention
module of Fig. 1. The formula for calculating channel attention
is shown in Formula 1:

We(F) = sigmoid(M LP(AvgPool(F)) + M LP(Maxpool(F))) (1)

Spatial Attention: For the spatial attention, it focuses on
where are valuable for current tasks. In HRRSIs, the ground
objects are exhibited in various sizes and the distribution is
complicated. Therefore, using spatial attention is useful for
aggregating spatial information, especially for small ground
objects. Spatial attention utilizes the relationships between
different spatial positions to learn a 2D spatial weight map W
and then multiplies it to the corresponding spatial position to
learn more representative features. To learn the spatial weight
relationships effectively, we first generate two feature descrip-
tors for each spatial position through global average pooling
and global max pooling operations. Then we concatenate two
feature descriptors together and generate a spatial attention
map through a 7 x 7 convolution operation. Lastly, we use a
sigmoid function to scale the spatial attention map to 0 ~ 1.
The flow chart is illustrated in the spatial attention module of
Fig. 1. The spatial attention calculation formula is shown in
Formula 2.

W (F) = sigmoid(f™*" ([Avgpool (F); Maxpool(F)]))  (2)

where f7*7 represents a convolution operation with 7 x 7
kernel size.
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We can easily compute that the number of parameters of the
attention modules are so small that they can be neglected for
both our SCAttNet V1 and SCAttNet V2, which have tens of
millions of parameters. Specifically, the number of parameters
of the channel attention module is C' x C'/4(C is the number
of channels) and the and the number of parameters of the
spatial attention module is 98. In addition, we only add the
attention module at the end layer of the backbone network;
thus, it seldom brings computation complexity to our proposed
network.

In this study, we follow the method of Woo [18]|to integrate
the two attention modules. First, we use channel attention to
select significant feature maps in each layer, then use spatial
attention to choose considerable neuron’s activity in each
feature maps, which is conducive to extracting more valuable
feature expression.

III. EXPERIMENT

In this section, we evaluate the performance of our network
on the ISPRS Vaihingen and ISPRS Potsdam datasets

A. Datasets and evaluation metrics

The ISPRS Vaihingen dataset contains 33 orthophoto maps
and related DSMs. Sixteen of them are labeled. The aver-
age size of the images is 2494 x 2064 and the resolution
is 9 cm. Each image contains three bands: near infrared,
red and green bands. Moreover, it includes six categories:
impervious surfaces, buildings, low vegetation, trees, cars and
clutter/background. The ISPRS Potsdam dataset contains 38
orthophoto maps and related normalized DSMs. Twenty-four
of them are labeled. The size of each image is 6000 x 6000
and the resolution is 5 cm. Each image contains four bands:
near infrared, red, green and blue bands. It has the similar
categories as the ISPRS Vaihingen dataset.

To evaluate our proposed model, we use three evaluation
metrics including mean inter-section over union (MIoU), av-
erage Fl-score (AF) and overall accuracy (OA) to evaluate
semantic segmentation performance.

B. Implementation details

Considering that many remote sensing datasets in practice
do not have DSMs, we do not use such datasets in this ex-
periment for wide application value. For the ISPRS Vaihingen
dataset, we divide the labeled dataset into two parts, in which
(ID 30, 32, 34, 37) are for evaluating the performance of
the network, and the remaining 12 images are for training.
The number of Vaihingen dataset is small; thus, to prevent
overfitting, we first crop the training dataset randomly into a
256 x 256 size and then expand the data through rotation and
translation operations, and finally obtain 12,000 patches for
training. The Potsdam dataset is also divided into two parts,
in which (ID 2_12, 3_12, 4_12, 5_12, 6_12, 7_12) are for
testing, and the remaining 18 images are for training. Then,

! ISPRS 2d semantic labeling dataset.http://www2.isprs.org/
commissions/comm3/wg4/semantic-labeling.html

we crop it randomly and obtain 27,000 256 x 256 patches for
training.

We trained all the model from the scratch without bells
and whistles. The models including FCN-32s, FCN-8s, U-
net, SegNet and G-FRNet all use VGG-16 as backbone. As
for RefineNet and DeepLabv3+, we adopt the ResNet50 as
backbone with 32 times downsampling for RefineNet and
eight times downsampling for DeepLabv3+ as the original
paper. We also adopt ResNet50 as backbone with eight times
downsampling for CBAM. To train the proposed SCAttNet
V1, we set the learning rate of SCAttNet V1 on the Vaihingen
and Potsdam datasets to le-3 and le-4, respectively. To train
SCAttNet V2, we set the learning rate of SCAttNet V2 on
both datasets to 1e-3. The proposed models all adopt Adam as
the optimizer and cross-entropy as the loss function. And the
training epochs is set to 50. Considering limited computing
resources, the batch size is set to 16. To test all the above
models, we only use a sliding window without overlap to
crop the images and then stitch together. We conduct all our
experiments in Tensorflow platform with a NVIDIA 1080Ti
GPU.

C. Results of Vaihingen dataset

Table [I] reports the semantic segmentation of the ISPRS
Vaihingen dataset. We adopt the practice of [23[][24] and
do not report the accuracy of the clutter/background class
because the Vaihingen dataset has less clutter/background.
From the experimental results in Table 1, the MIoU/AF/OA
increased by 1.4%/1.25%/0.56% with the channel attention
module, compared with original SegNet. This increase shows
the effectiveness of the channel attention module to capture
meaningful semantic information; With the spatial attention
module, the IoU/Fl-score for small objects such as cars
increased by 3.08%/3.21%. This increase shows that the spatial
attention module can aggregate more location information
even if the small objects in original images are 32 times
downsampling in SegNet. Though the accuracy of impervious
surfaces, buildings, and trees classes slightly decreased, we
can still increase the MIoU/AF by 2.9%/2.59% compared with
original SegNet after inputting the channel-refined features
to the spatial attention module. Moreover, in SCAttNet V2,
the MIoU/AF/OA increased by 1.21%/0.83%/0.90% compared
with ResNet50 which as a baseline model. In addition, we find
that in FCN-32s, the car category shows a low accuracy, but
the car category in FCN-8s has improved much compared with
FCN-32s, which shows the importance of low-level features
for segmenting small objects.

To compare the semantic segmentation results, we visualize
the semantic segmentation results of ID32. The visualization
results are shown in the first row of Fig. [2l We can see that
our SCAttNet V1 achieves more coherent results compared
with the original SegNet model. In addition, our model infers
more accurately in small object areas such as cars in the right
middle of the image. We also test the accuracy of the ID32
area. The MIoU/AF/OA of SegNet is 60.57%/74.01%/82.78%,
whereas that of our SCAttNet V1 is 64.92%/77.74%/85.49%.
On this basis, our network can improve semantic segmentation
accuracy by incorporating the attention module effectively.
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TABLE I

SEMANTIC SEGMENTATION RESULTS OF ISPRS VAIHINGEN DATASET. THE ACCUARCY OF EACH CATEGORY IS PRESENTED IN THE IOU/F1-SCORE FORM.

Model Imp. Surfaces Building Low Veg. Tree Car MIoU (%) AF(%) OA(%)

FCN-32s [4] 68.31/81.17 70.59/82.76  57.22/72.79  60.95/75.74 8.16/15.09 53.04 65.51 78.01

FCN-8s [4] 71.32/83.26 71.64/83.48  63.67/77.80  65.78/79.36  44.73/61.81 63.43 77.14 80.99

U-net [3] 79.48/88.57 81.91/90.06  65.03/78.81  66.78/80.08  52.36/68.74 69.11 81.25 84.88

SegNet [5] 75.73/86.19 79.09/88.32  62.83/77.17  65.42/79.09  37.22/54.24 64.06 77.00 82.92

SegNet + cha. att 76.74/86.84 80.46/89.17  63.31/77.53  65.13/78.89  41.67/58.83 65.46 78.25 83.48

SegNet + spa. att 74.46/85.36 77.01/87.01  63.37/77.58  65.08/78.85  40.30/57.45 64.05 77.25 82.38

SCALttNet V1(ours) 77.75/187.36 81.05/89.54  63.00/77.30  65.51/79.16  47.71/64.60 66.96 79.59 83.79

ResNet50 78.46/87.93 80.92/89.46  65.99/79.51  65.84/79.41  53.68/69.86 68.99 81.23 84.57

CBAM [18] 78.36/87.86 80.56/89.23  66.97/80.22  68.91/81.60  52.52/68.87 69.46 81.56 84.96

RefineNet [20] 77.42/87.27 76.83/86.90  64.40/78.34  66.16/79.63  61.15/75.89 69.19 81.61 83.36

DeepLabv3+ [21] 79.43/88.54 81.73/89.95  66.88/80.15  66.73/80.05  52.57/68.91 69.47 81.52 85.15

G-FRNet [22] 80.09/88.94 82.60/90.47 66.85/80.13  67.31/80.46  56.99/72.60 70.77 82.52 85.52

SCALttNet V2(ours) 80.40/89.13 82.32/90.30  66.73/80.04  67.09/80.31  54.44/70.50 70.20 82.06 85.47

TABLE II

SEMANTIC SEGMENTATION RESULTS OF ISPRS POTSDAM DATASET. THE ACCUARCY OF EACH CATEGORY IS PRESENTED IN THE IOU/F1-SCORE FORM.
Model Imp. Surfaces Building Low Veg. Tree Car Clutter/background ~ MIoU(%)  AF (%) OA(%)
FCN-32s [4] 64.28/78.26 71.78/83.57  55.21/71.15  49.39/66.12  58.83/74.08 9.58/17.49 51.51 65.11 75.94
FCN-8s [4] 66.81/80.10 74.17/85.17  57.19/72.777  51.57/68.05  69.02/81.67 13.11/23.18 55.31 68.49 77.82
U-net [3] 65.29/79.00 73.64/84.82  65.11/78.87  59.88/74.91  77.72/87.47 14.97/26.04 59.44 71.85 79.84
SegNet [5] 68.17/81.07 76.07/86.41  63.91/77.98  58.54/73.85  75.01/85.72 13.41/23.65 59.18 71.45 80.27
SCALttNet V1(ours) 69.51/82.01 77.40/87.26  66.72/80.03  62.50/76.92  76.20/86.49 15.22/26.42 61.26 73.19 81.62
ResNet50 81.25/89.65 87.39/93.27  71.13/83.13  65.41/79.09  80.58/89.24 17.39/29.62 67.19 77.34 86.94
CBAM [18] 79.52/88.60 87.03/93.07 68.96/81.63  65.11/78.87  79.86/88.81 18.84/31.71 66.56 77.11 86.24
RefineNet[20] 77.91/87.58 79.37/88.50  69.36/81.91  65.38/79.07  78.41/87.90 16.27/27.98 64.45 75.49 84.38
DeepLabv3+ [21] 80.70/89.31 86.59/92.81  71.48/83.37 64.47/78.40  78.96/88.24 18.74/31.56 66.82 77.28 86.76
G-FRNet [22] 80.50/89.20 86.38/92.69  70.71/82.84  65.29/79.00  75.88/86.28 18.05/30.58 66.14 76.77 86.84
SCALttNet V2(ours) 81.83/90.04 88.76/94.05  72.49/84.05  66.33/79.75  80.28/89.06 20.18/33.58 68.31 78.42 87.97

D. Results of Potsdam dataset

Table [[] reports the semantic segmentation results of the IS-
PRS Potsdam dataset. From the semantic segmentation results,
the proposed SCAttNet V2 model is superior to the compara-
tive models. Moreover, it achieves 1.12%/1.08%/1.03% higher
in MIoU/AF/OA metrics compared with ResNet50 which as
a baseline model. In SCAttNet V1, The MIoU/AF/OA has
increased by 2.08%, 1.74% and 1.35%, respectively compared
with SegNet which as a baseline model. Thus, we further
confirm the effectiveness of the attention module.

The second row of Fig. ] shows the visualization re-
sults of the ID 5_12 area of the ISPRS Potsdam dataset.
Compared with the comparative model, our proposed net-
work achieves improved segmentation results in the building
area, especially in terms of avoiding background interfer-
ence. We also test the semantic segmentation performance
in this area. The MIoU/AF/OA of the SegNet network is
57.19%/68.87%/83.81%, whereas that of SCAttNet V1 net-
work is 59.50%/71.16%/85.04%. We find that our network
achieves higher accuracy in all three metrics compared with
the comparative model.

E. Quantitative analysis of improved interpretability

To analyze the enhancement of the attention module to the
network, we visualize the feature expression of the SegNet net-
work and our SCAttNet V1 network on the ISPRS Vaihingen
dataset. We can simply overlay the heatmap of the network
before SoftMax operation with an original image, and the
relevant areas can be highlighted for a specific category. The
visualization results are shown in Fig. [3] After incorporating
the attention module, our network can focus on the areas of

Legend

Imp. Surfaces Building  Low Veg. Tree Car  Clutter/background

Fig. 2. Visualization results of the Vaihingen and Potsdam datasets. The
first row presents the visualization results of the ISPRS Vaihingen dataset,
from left to right: original image, SegNet output results, SCAttNet V1 output
results and ground truth. The second row presents the visualization results of
the ISPRS Potsdam dataset, from left to right: original image, SegNet output
results, SCAttNet V1 output results and ground truth.

target and suppress the influence of other categories better
than before. As shown in the first column of Fig[3] after
incorporating the attention module, our network only has a
strong response in the car category and other areas are cold
toned, which means that the relevance in other areas is very
low. However, in the original SegNet network, the impervious
area also shows a certain response that may cause interference
for the car category. In addition, as shown in the building
category in the third column of Fig[3|, the impervious surface
area is suppressed after incorporating the attention module.
Thus, the impervious surface area avoids classifying into
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Fig. 3. Visualization analysis results of Vaihingen dataset. From left to right: the first two columns represent car categories, the second two columns represent
building category, the third two columns represent impervious surfaces category, the fourth two columns represent low vegetation category, the fifth two

columns represent tree category.

buildings.

IV. CONCLUSION

In this study, we propose a new semantic segmentation
network that can adaptively refine features based on the
attention module. Experiments on the ISPRS Vaihingen and
Potsdam datasets demonstrate the effectiveness of our method.
However, some shortcomings remain. The study only uses two
common attention modules. Thus, how to design the attention
module effectively and capture more discriminative features
for semantic inference remains a promising direction for future
work.
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