
JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 1

Multi-branch Selective Kernel Networks for
Hyperspectral Image Classification

T. Alipour-Fard, M. E. Paoletti, Student Member, IEEE, J. M. Haut, Senior Member, IEEE, H. Arefi,
J. Plaza, Senior Member, IEEE, and A. Plaza, Fellow, IEEE

Abstract—Convolutional neural networks (CNNs) have demon-
strated excellent performance in hyperspectral image (HSI)
classification. However, tuning some critical hyper-parameters
of a CNN –such as the receptive field (RF) size– presents a
major challenge due to the presence of features with different
scales in HSIs. Contrary to the conventional design of CNNs,
which fizes the RF size, it has been proven that the RF size
is modulated by the stimulus and hence depends on the scene
being considered. Such a dilemma has been rarely considered
in CNN design. In this letter, a new Multi-branch Selective
Kernel Network (MSKNet) is introduced, in which the input
image is convolved using different RF sizes to create multiple
branches, so that the effect of each branch is adjusted by an
attention mechanism according to the input contrast. As a result,
our newly developed MSKNet is capable of modeling different
scales. Our experimental results, conducted on three widely-
used HSIs, reveal that the MSKNet can outperform state-of-
the-art CNNs in the context of HSI classification problems. The
source code of our newly developed MSKNet is available from:
https://github.com/mhaut/MSKNet-HSI

Index Terms—deep learning, hyperspectral images (HSIs), con-
volutional neural networks (CNNs), receptive field (RF), selective
kernel networks (SKNets).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) comprise hundreds of
images (at different wavelength channels) for the same

area on the surface of the Earth. The resulting datacubes pro-
vide an opportunity to detect and recognize a wide variety of
objects. Classification is one of the most important techniques
to extract information from HSIs. However, there are some
general challenges for the successful classification of HSIs,
including the high dimensionality of the data, the limited
availability of training samples (which hampers supervised
classification techniques), or the correlation between spectral
signatures belonging to different classes. To address these
problems, spatial information has been used as a complement
to spectral information in HSI classification [1]. In a recent
study [2], by considering features in spatial and frequency
domains, invariant attribute profiles were adopted to address
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the different semantic characteristics of the input patches
with the same centered pixel label. Convolutional neural net-
works (CNNs) have become the state-of-the-art of supervised
techniques, due to their ability to perform automatic feature
generation and also to their generalization power [3]. Despite
the advantages of CNNs, the lack of training data and the
large number of hyper-parameters involved in the training of
CNNs (with the subsequent overfitting problem) have become
important obstacles to CNN-based HSI classification.

Among the CNNs hyper-parameters, the RF plays a very
important role [4], [5]. The RF is the region of the input space
that affects a particular unit of the CNN. Covering different
RFs is important to recognize features with different scales
and sizes at a specific layer of the CNN [4]. Fixing the RF
size on CNNs is an inefficient assumption. This is because
the visual cortex has the ability to collect information with
different scales at the same processing level [6], [7]. If the
RF size is selected to be too large, it can eliminate fine-
grained structures. If the RF size is selected to be too small, it
can remove coarse-grained structures. In both cases, the HSI
classification accuracy can be significantly reduced.

To overcome the disadvantage of using single-branch CNNs,
solutions for achieving an optimal architecture have been
developed in the computer vision literature [8], [9], [10].
Specifically, multi-branch approaches were introduced to cre-
ate branches with different RF sizes and combine them to
obtain highly informative feature maps.The GoogleNet [8]
incorporated an inception module, in which different branches
were generated by different RF sizes to aggregate/concatenate
information from different scales. The main weakness of
GoogleNet lies in the fact that its linear aggregation approach
may be insufficient to provide a powerful combination strategy
[5]. In addition, various methods such as grouped/depth-
wise/dilated convolutions have been introduced in order to
reduce the number of hyper-parameters while incorporating
parallel processing strategies [11]. Moreover, Hang et al. in
[12] designed a two-layer cascade recurrent neural network
(where the first layer removes redundant information and the
second layer learns in complementary fashion). Afterward, the
optimal weights for the fusion of the features from the two
layers are calculated through a gated recurrent unit.

Another relevant development along the aforementioned
lines is the highway network architecture presented in [13],
which uses a gating mechanism to modulate the flow of
information from different branches and create a deep network.
The training of the highway network is difficult, mainly
because of the gradient vanishing problem that resulted in
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the idea of ResNet (by utilizing skip connections) [9], [14].
FractalNet [15] and multi-level ResNet [16] methods were also
designed to aggregate different branches recursively. Other
than multi-branch methods, pyramidal structures (i.e., multi-
scale systems) have also been considered. Specifically, Zhao
et. al [17] proposed a multi-scale CNN (MCNN) to extract
high-level spatial features for satellite image classification. In
the MCNN, an image pyramid was constructed to capture
spatial features across scales, and then high-level spatial
features were combined with spectral features to train the
CNN. Multi-scale covariance maps have also been proposed to
extract hand-crafted features able to fully exploit the spectral-
spatial information present on HSIs [18]. This was done by
extracting patches with various sizes around the labeled pixels
and then calculating the covariance matrix between the spectral
bands. The authors in [19] presented a deformation-based
convolution strategy for finding the optimal RF size for targets
of interest in the image. A remaining challenge with multi-
branch approaches is how to incorporate a mechanism to
aggregate information from different branches in a non-linear
manner. Recently, attention mechanisms have been developed
to focus on key parts of the image, discarding irrelevant
information [20] (see Fig. 1). Attention mechanisms can be
used to recalibrate the feature response and to model adaptive,
non-linear dependencies between feature maps with the gating
mechanism.

In this letter, a new multi-branch selective kernel network
(MSKNet) for HSI classication was developed. MSKNet in-
corporates an attention mechanism that conducts non-linear
aggregation from different branches, addressing the ineffi-
ciency of the traditional (linear) aggregation approach by
proposing an end-to-end framework that aggregates branch
information by computing the contrast, and determining an
effective weight by means of an attention mechanism. Our
approach has been compared with a traditional CNN, using
several HSI benchmark datasets. The experimental results
demonstrate the superiority of the proposed approach, which
outperforms CNNs with linear branch aggregation.

Fig. 1. An example illustrating the attention mechanism implemented by our
MSKNet (the attention area is given by the two main buildings in the scene).

II. METHODOLOGY

Fig. 2 shows a general overview of the proposed MSKNet
model for HSI classication, which is composed by three groups
of selective kernel units (SKunits) followed by normalization-
activation functions and a fully connected (FC) classifier at
the end. The proposed workflow involves three main steps: (i)
preprocessing of the HSI data cube, (ii) multi-kernel feature

extraction, conducted by 2D convolutions, and (iii) selection
of the most descriptive ones through an attention mechanism
based on selective kernel layers.

A. Data Preprocessing

Let the HSI data cube be denoted by X ∈ RH×W×B , where
H is the height, W is the width and B is the number of spectral
bands. X is split into training and testing sets, considering for
each spectral pixel xi a neighborhood window of size S×S×
B, with the aim of providing spectral-spatial information to
enhance the feature learning of the proposed model. These HSI
patches are sent as input data to the proposed model, which is
understood as a mapping function Mθ : X→ Y that assigns
for each xi its corresponding land cover label yi, obtaining the
final classification map Y ∈ RH×W by adjusting its learnable
parameters θ.

B. Multi-Kernel Feature Extraction

The architectural body of the proposed model is composed
by blocks of SKunits followed by normalization and non-
linear activation functions. In this sense, SKunits implement
a multi-branch architecture composed by depth-wise separa-
ble convolutional layers that exhibit different kernels size1

C × k × k × Cin (depending on the branch in which they
are located) that are intended to extract multi-kernel spectral-
spatial features. Regarding to this, the convolutional-based
transformations F̃ (l) : X(l−1) → Ũ(l) and F̂ (l) : X(l−1) →
Û(l) (indicated as “split” step in Fig. 2) are applied to the
original l-th SKunit’s input (denoted as X(l−1) ∈ RS×S×Cin ).
These transformations apply 2D-grouped convolutions with
kernels 3×3 and 5×5 respectively, adapting the zero-padding
to maintain the spatial dimensions, and being followed by
batch normalization (BN) and ReLU (Rectified Linear Unit)
as non-linear activation function, resulting into the feature
volumes Ũ(l) ∈ RS×S×C and Û(l) ∈ RS×S×C :

Ũ(l) = F̃ (l)(X(l−1)) = ReLU
(
β
(
W(l) ∗C×3×3 X

(l−1) + bias(l)
))

Û(l) = F̂ (l)(X(l−1)) = ReLU
(
β
(
W(l) ∗C×5×5 X

(l−1) + bias(l)
)) (1)

where ∗C×k×k denotes the convolutional operation composed
by C filters with receptive field k × k, W(l) and bias(l) are
the weights and biases of the each convolutional layer that
belongs to the l-SKunit, and β is the BN. Each element of
∗C×k×k operation is obtained as:

u̇
(l),c
i,j =

Cin−1∑
ĉ=0

k−1∑
î=0

k−1∑
ĵ=0

(
w

(l)

î,ĵ,ĉ
· x(l−1)

i+î,j+ĵ,ĉ

)
+ bias(l) (2)

where u̇(l)i,j is the (i, j)-th element of the c-th feature map of
volumes Ũ(l) or Û(l), obtained at the l-th SKunit.

1Convolutional layers are defined by an n-dimensional kernel Cout × k×
k × Cin, where Cin is the number of feature maps from the input volume
and Cout is the number of filters with receptive field k × k.
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Fig. 2. General flowchart of the proposed multi-branch selective kernel network (MSKNet) and the selective kernel building block (SKunit) for hyperspectral
image (HSI) classification. Usually, we set C = Cin and r = 2.

C. Selective Kernel Attention Mechanism

Once the multi-kernel feature extraction is performed, con-
trol gates are required to regulate the information flow between
the different branches, with the aim of combining and en-
hancing the most descriptive features in the subsequent layers.
The final goal is to allow our model to adaptively adjust the
receptive field k× k to handle different scales of information.
The selective kernel strategy (based on attention mechanism)
has been implemented in two main steps: multi-kernel data
fusion and attention-based selection (see Fig. 2).

At first, each SKunit fuses volumes Ũ(l) and Û(l) via
element-wise summation, obtaining as a result U(l) ∈
RS×S×C as U(l) = Ũ(l) + Û(l). Then, a global average
pooling (GAP) is performed to generate the feature response
vector (FRV) with the channel-wise statistics of the data,
reducing the spatial dimension of U(l) to s(l) ∈ RC by taking
the average of S × S spatial elements at each channel c:

s(l)c =
1

S2

S∑
i=1

S∑
j=1

u
(l),c
i,j (3)

The obtained FRV vector s is compacted by an FC layer
defined by weights W

(l)
fc ∈ Rd×C followed by BN and

ReLU, in order to obtain the neural activations of the different
channel-features, enabling their guidance for adaptive kernel
selections. In this sense, the feature weights vector (FWV)
z(l) ∈ Rd can be defined as z(l) = ReLU(β(W

(l)
fc · s)).

Parameter d plays an important role in the performance of
the SKunit, as its underestimation significantly reduces the
efficiency of the MSKNet. For this reason, r is considered
to control the compression rate of z(l), being determined by
d = max( cr , L), where L = 32 is the minimum value of d.
Finally, to achieve an adaptive adjustment, a control gate is
designed by means of an attention mechanism to select the
most important regions of the FWV z(l). This is done by

applying one FC layer per SKunit’s branch and computing
the softmax function to obtain the effective FWV (EFWV) as:

a(l)c =
eA

(l)
c ·z(l)

eA
(l)
c ·z(l) + eB

(l)
c ·z(l)

, b(l)c =
eB

(l)
c ·z(l)

eA
(l)
c ·z(l) + eB

(l)
c ·z(l)

(4)

where A(l), B(l) ∈ RC×d and a(l), b(l) ∈ RC are the soft
attention vectors of Ũ(l) and Û(l). Then, the final re-calibrated
feature map X(l) in the (l)-th SKunit is obtained by applying
the attention-based vectors a(l) and b(l) along the channel
dimension:

X(l),c = a(l)c · Ũ(l)+ b(l)c · Û(l), subject to a(l)c + b(l)c = 1 (5)

Resulting X(l) is fed to the next SKunit until the end of the
network is reached, where a FC layer is applied to perform
the final classification. Fig. 2 provides a detailed summary
of the proposed model in terms of its layers, kernel size and
output map dimensions. All weights are randomly initialized
and trained using the back-propagation algorithm with Adam
optimizer and cross-entropy loss. We use mini-batches of
size 100, and train the network for 200 epochs without data
augmentation.

III. EXPERIMENTAL RESULTS

A. Hyperspectral Datasets

Three real HSI datasets have been considered in our ex-
periments. The first one is the Indian Pines (IP) captured by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor [21] in 1992 over several agricultural fields in North-
western Indiana. It comprises 16 different classes, with size of
145×145×200. The second one is the University of Pavia (UP)
scene, with size of 610×340×113. This scene was gathered by
the Reflective Optics Spectrographic Imaging System (ROSIS)
sensor [22] over an urban area, comprising 9 different classes.
The third one is the University of Houston (UH) scene [23],
collected by the Compact Airborne Spectrographic Imager
(CASI) in June 2012 over the University of Houston campus.
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Its dimension is 349 × 1905 × 144, containing 15 ground-
truth classes. The UH scene was first presented by the IEEE
Geoscience and Remote Sensing Society Image Analysis and
Data Fusion Technical Committee during the 2013 data fusion
contest [24].

B. Experimental Setting

To evaluate the performance of the proposed MSKNet
model for HSI classification, three widely used quantitative
metrics have been considered: the overall accuracy (OA),
average accuracy (AA), and Kappa coefficient. Moreover, the
number of parameters has also been reported, to determine the
volume of data to be trained and the computational cost. The
proposed model has been compared with a recent study using
different scale information in CNNs called MSDNet [25], and
also with a standard CNN (Table I).

TABLE I
DETAILS OF STANDARD CNN FOR COMPARATIVE PURPOSES

Network Layer ID Kernel/Neurons BatchNorm Act. function

CNN

ConvA1 bands× 1× 1× 32 Yes Linear
ConvB1 32× 3× 3× 32 Yes ReLU
ConvA2 32× 1× 1× 64 Yes Linear
ConvB2 64× 3× 3× 64 Yes ReLU
ConvA3 64× 1× 1× 128 Yes Linear
ConvB3 128× 3× 3× 128 Yes ReLU

FC nclasses No Softmax

Different training percentages (i.e., varying the percentage
of available labeled samples that are used for training, with
the remaining labeled samples used for testing) and input
patch size of 11 × 11 have been considered empirically. Fig.
3 shows the OA results obtained by the proposed method
(denoted by MSKNet), MSDNet and the traditional CNN for
the IP and UP datasets (in all cases, the vertical bar represent
the average after 10 Monte Carlo experiments, with the error
bar representing the standard variation). In general, the OA

Fig. 3. OA results obtained by the proposed method, a standard CNN and
MSDNet [25] for IP (a) and UP (b) scenes (average restults after 10 Monte
Carlo experiments)

of the considered methods improves with the percentage of
training samples. As it can be seen from Fig. 3(a), the proposed
MSKNet outperforms the MSDNet and traditional CNN. The
superiority of the proposed method over the other two methods
is clear from Fig. 3, especially when the number of training
samples is limited. In the IP dataset, the OA obtained for
training percentages of 1%, 3% and 5% is poor due to the over-
fitting problem. However, when the percentage increases, the
proposed method achieves OA values higher than 95% (with
smaller variance). Focusing on Fig. 3(b), the MSKNet method
is superior to the traditional CNN method when the training

data is limited. Specifically, the OA of MSKNet raises above
98% with 3% of training samples. Another interesting remark
concerning Fig. 3(b) is that, when the training percentage is
just 1%, the variance of the MSKNet is significantly lower than
the other two methods. It is apparent that the performance of
MSKNet consistently yields higher OAs than those obtained
by the MSDNet and CNN.

(a) Ground-truth (b) MSDNet (86.44%) (c) CNN (91.33%) (d) MSKNet (95.09%)

Background Asphalt Meadows Gravel

Trees Painted metal sheets Bare Soil Bitumen

Self-Blocking Bricks Shadows

Fig. 4. Classification maps obtained for the UP scene (using 1% of the
available labeled samples). The obtained OAs are shown in brackets.

Table II reports the classication accuracies of proposed
method, MSDNet and traditional CNN for the considered
datasets. Focusing in IP dataset, the OA, AA and Kappa of
our MSKNet are higher than those reported by MSDNet and
CNN, being MSDNet the worst classifier and CNN the thinnest
method in terms of parameters. It is remarkable that the
accuracies obtained for most classes by the proposed method
are also higher than those obtained by the MSDNet and CNN.
Regarding to UP dataset, the OA of the proposed method is
increased to 90.66%, while the number of model parameters
and the standard variation of the OA is the lowest. Most of the
results obtained from two previous datasets hold true for UH
dataset, as can be seen the OA, AA and kappa is increased to
88.28%, 88.87%, and 0.8728, respectively.

Fig. 4 shows the classication maps obtained by the proposed
method and the traditional CNN on the UP image. As it can be
observed, by incorporating the selective kernel unit, the visual
quality of the proposed method is increased compared to the
traditional CNN. For example, in Fig. 4(d), the structure of the
building block is better preserved, with more clear boundaries
as compared with the traditional CNN in Fig. 4(c). Also, by
comparing the parking area in the bottom leftmost part of the
image (area with trees and asphalt) in Figs. 4(c) and 4(d), we
can observe that the regions obtained by our method are better
connected.

IV. CONCLUSIONS AND FUTURE LINES

In this letter, we presented a new HSI classification frame-
work that exploits different scales of information present in
the input data. Our newly developed method, called MSKNet,
creates different branches by convolving the input HSI data
cubes with different kernel sizes, and then aggregates the
resulting information using a non-linear attention mechanism.
The classification results obtained by the proposed method on
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TABLE II
COMPARISON BETWEEN THE STANDARD CNN AND THE PROPOSED METHOD USING THE FIXED TRAINING SET AVAILABLE FOR IP, UP AND UH SCENES

IN HTTP://DASE.GRSS- IEEE.ORG.

Class
INDIAN PINES UNIVERSITY OF PAVIA UNIVERSITY OF HOUSTON

MSDNet CNN MSKNet MSDNet CNN MSKNet MSDNet CNN MSKNet
1 61.36±20.12 46.0±5.54 65.33±13.4 84.04±7.92 84.52±2.88 84.96±2.06 81.56±1.11 81.72±1.46 82.75±0.32
2 69.8±5.73 76.37±5.17 85.98±1.77 93.84±3.07 96.3±1.06 96.3±1.66 81.78±2.02 86.62±4.66 86.28±4.19
3 30.86±7.16 54.62±8.9 68.85±5.39 43.94±8.38 58.6±4.58 64.32±7.63 62.12±2.92 91.12±6.36 95.25±2.38
4 24.53±5.74 45.62±8.48 41.24±3.57 96.36±1.69 97.34±0.79 97.42±0.59 87.0±3.46 85.78±3.12 90.29±1.42
5 57.69±6.41 50.43±10.36 69.77±16.33 99.03±0.6 98.1±0.89 99.0±0.61 89.4±5.35 99.5±0.38 99.8±0.34
6 92.0±3.36 93.69±3.04 91.95±3.65 56.27±5.21 68.41±11.58 77.42±7.72 81.52±6.06 90.33±5.32 84.27±3.17
7 0.0±0.0 0.0±0.0 0.0±0.0 75.8±9.24 87.15±4.55 81.98±6.14 82.78±3.21 74.16±3.25 76.96±3.3
8 96.44±3.08 94.07±4.24 90.13±6.06 95.79±1.35 96.14±1.73 95.86±1.44 60.9±1.98 75.94±4.85 77.92±1.73
9 38.88±8.49 80.0±20.0 65.0±17.08 96.62±2.59 95.79±1.3 95.6±2.09 76.25±4.16 74.4±6.28 84.48±3.24

10 36.57±8.97 79.72±6.48 85.55±3.82 - - - 46.28±3.18 72.94±13.21 84.38±7.22
11 79.02±4.0 86.98±4.28 84.9±2.33 - - - 64.44±5.38 88.1±4.77 94.21±4.12
12 49.94±5.23 45.86±6.99 54.43±9.29 - - - 58.49±16.95 95.31±2.78 98.27±0.82
13 93.75±4.15 87.92±3.2 93.96±5.7 - - - 88.35±4.14 75.79±4.12 82.98±6.86
14 89.01±9.06 91.01±3.82 95.57±1.94 - - - 84.16±2.17 99.6±0.57 97.98±2.78
15 24.91±4.28 36.03±20.45 65.66±14.07 - - - 30.4±10.1 98.34±3.15 97.18±2.04
16 40.42±10.94 89.77±3.41 84.09±11.95 - - - - - -
OA 66.49±1.28 76.5±1.92 81.73±1.92 85.84±1.56 89.43±1.61 90.66±1.32 71.57±2.95 84.56±1.4 88.28±1.31
AA 55.33±1.19 66.13±2.35 71.4±2.09 82.41±1.16 86.93±1.93 88.09±1.23 71.69±2.74 85.98±1.39 88.87±1.41

K(x100) 61.54±1.49 73.07±2.17 79.2±2.19 80.72±1.99 85.6±2.25 87.34±1.79 69.25±3.17 83.24±1.52 87.28±1.4
Parameters 1.54M 263K 322K 2.13M 237K 202K 2.57M 254K 187K

three real HSIs (with very limited training samples) outper-
form those achieved by the traditional CNN and the MSDNet
quantitatively and also in terms of visual performance. In the
future, we will combine our model with more sophisticated
CNN architectures such as ResNet. We also plan to incorporate
other different attention mechanisms to our model.
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