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Abstract— This letter addresses the use of the Sentinel-1 time
series with the aim of proposing an automatic and unsupervised
coastline detection method that averages the dynamical variations
of coastal areas over a limited period of time, e.g., one year. First,
we propose applying a temporal averaging filter that allows the
temporal variations in coastal areas, e.g., due to tides or vegeta-
tion, to be encapsulated, and, at the same time, the speckle to be
reduced, without decreasing the spatial resolution of the synthetic
aperture radar (SAR) time series. Then, based on the distinctive
backscattering values of the sea and land pixels, we will employ
an iterative hierarchical tiling method in order to accurately
characterize the two classes using bimodal distribution. The
distribution is then segmented by a thresholding and region-
growing procedure to separate the sea and land classes. A large-
scale quantitative comparison between the SAR-derived and open
street map (OSM) coastlines allows for a numerical evaluation
of the results, i.e., an overall agreement ranging from 80% to
90%. In addition, Sentinel-2 images are used to evaluate the
estimated SAR coastline qualitatively. Furthermore, the benefits
of having an accurate SAR coastline are shown in the case of
two well-known Earth observation-monitoring applications, ship
detection, and floodwater mapping.

Index Terms— Bimodal distribution, coastline, multitemporal,
region growing, synthetic aperture radar (SAR).

I. INTRODUCTION

COASTAL areas represent very diverse and dynamic zones
across the globe. As stated by the United Nations (UN)

Atlas of the Oceans [1], nowadays, approximately 44% of the
world’s population lives within 150 km of the coast. Coastal
zones are used for human settlement, agriculture, trade, indus-
try, and amenities [2], therefore playing an important role in
the global economy. For this reason, it is important to have
access to accurate information about these areas. For instance,
the detection and monitoring of the coastline are of great
importance for both maritime surveillance activities and study-
ing coastal environment spatiotemporal changes, e.g., erosion
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and sedimentation. Earth observation (EO) has been used to
detect coastlines in a variety of scientific techniques applied
operationally, providing information about their geographical
extent and characteristics at a global level [3]. This information
is essential for tackling the challenges of environmental mon-
itoring applications, including ship detection in the coastline
proximity [4] and coastal flood mapping [5].

Synthetic aperture radar (SAR) sensors occupy a privileged
place among EO sensors due to their quasi all-weather and
day/night observation capabilities. Numerous studies propose
algorithms enabling the detection/extraction of coastlines from
SAR observations. A pioneering study in the SAR research
field [6] proposes coupling basic image-processing techniques
with edge tracing algorithms in order to solve the coastline
detection challenge from Seasat and SIR-B SAR images.
A semiautomatic method of shoreline delineation from ERS-
1 SAR images was proposed in [7]. First, the sea regions are
detected based on their low edge density at coarse resolution,
and then, the areas near the shoreline are processed at high
resolution by using an active contour model. Other research
studies propose using wavelet methods [8] or region-based set
levels coupled with the expectation–maximization algorithm
[9] to estimate the probability density functions (PDFs) of the
land and water classes to be separated. Another unsupervised
method, based on the Bayesian stochastic estimation and the
Markov random field (MRF) frameworks applied to image
stacks, is proposed in [10]. Alternatively, polarimetry-based
approaches are also able to efficiently delineate the coastline
from SAR imagery. A first polarimetry-based study proposes
applying the constant false alarm rate (CFAR) thresholding
and a Sobel edge detector to a set of multipolarization
COSMO-SkyMed images in order to investigate the land/sea
discrimination for different polarization configurations [11].
The use of the correlation between the copolarized HH and
VV channels, followed by two Gaussian-shaped filters in
the polarimetric domain, allows the coastline to be extracted
from COSMO-SkyMed SAR images, as demonstrated in [12].
Later, a related study, aiming to assess the extraction of the
waterlines from single- and dual-polarimetric data and based
on multiscale normalized cut segmentation and the VV/HH
correlation, respectively, is proposed in [13]. More recent stud-
ies demonstrate that region-edge-based active contour models
combined with ratio edge detectors [14] or local spectral
histogram and level set techniques [15] also enable accurate
detection of shorelines by using Radarsat-2 and TerraSAR-X
images. In addition to the abovementioned research studies,
new SAR-based coastline mapping techniques have emerged
from the recent advances in SAR imaging capabilities, such
as those of the Sentinel-1 SAR mission. For instance, a fuzzy
clustering method based on the mean and standard devia-
tion parameters [16] or a modified K-means method coupled
with an adaptive object-based region-merging mechanism [17]
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are applied to Sentinel-1 imagery to extract the coastline.
The Sentinel-1 dual-polarization characteristics are also
employed in unsupervised methods, based on the correlation
between copolarized and cross-polarized channels, to delineate
the shorelines [18], [19]. The derived coastline can be used to
assess temporal changes by applying the proposed methods
[19], [20] to individual images from Sentinel-1 time series.
The accuracy achieved by state-of-the-art algorithms is gen-
erally estimated through comparisons with manually traced
coastlines or ancillary information, including global position-
ing system data. For example, in [17], 93% of the Sentinel-1
coastline lies within a 2-pixel distance in comparison with the
manually traced one.

In the abovementioned state-of-the-art studies, single SAR
acquisitions are employed to extract the coastline. Therefore,
the SAR-estimated coastline characterizes a coastal area as
it appears at the time the SAR image was acquired, without
considering any dynamical effects of such areas, e.g., tides.
In addition, SAR-based coastline detection remains challeng-
ing due to the presence of speckle noise, the complexity
of coastal land covers, and sea state variations [11], [21].
Therefore, we propose employing multitemporal SAR filtering
to take into account constantly occurring coastal dynamical
effects and, at the same time, reduce the speckle. More-
over, in order to extract the coastline in an accurate and
efficient manner [22], we propose an adaptive hierarchical-
based automatic classification procedure, i.e., hierarchical split
based tiling approach (HSBA), that allows us to efficiently
separate the sea and land classes under dynamic temporal
scenarios [23].

II. METHODOLOGY

In this study, we define the coastline as a geographical vari-
able/map with constant dynamical variations within a limited
period of time, e.g., one year. The dynamical variations include
periodical coastal changes, due for example to tides, waves,
or currents that occur systematically (e.g., daily) or permanent
changes generated by vegetated coastal areas (e.g., deltas and
wetlands), erosion/sedimentation processes, or human inter-
ventions (e.g., dikes and walls) with evolution over a longer
time scale, ranging from weeks to months. The coastline
is defined as a geographical variable that encompasses the
average of all periodical changes and the most significant
permanent changes by making use of the SAR image time
series acquired over one year. We suppose that in a time
series spanning one year, the most relevant and representa-
tive dynamics influencing the location of the coastline will
be considered. In this framework, the Sentinel-1 mission is
particularly well suited to computing the coastline from the
SAR time series due to its short repeat pass (six days). This
Sentinel-1 characteristic allows image stacks to be generated
for nearly all the coastal regions across the globe with a regular
frequency of every few months, depending on the Sentinel-1
acquisition plan. Based on the Sentinel-1 stacks, we pro-
pose a coastline detection technique composed of three main
steps: 1) multitemporal filtering; 2) image tiling for bimodal
tile selection; and 3) estimation of the bimodal distribution
parameters and image segmentation. Each step is described
in the following paragraphs, while the entire procedure of
the Sentinel-1 based coastline detector is summarized in the
flowchart given in Fig. 1.

It is well known that SAR images are affected by speckle
noise, which deteriorates their radiometric resolution. Sev-

Fig. 1. Flowchart of the proposed algorithm.

eral filtering methods, including textural and multilooking
approaches, are generally used to reduce the speckle effect.
However, such techniques usually also reduce the spatial reso-
lution of the filtered SAR images. A common filtering solution
that allows the speckle to be filtered without decreasing the
SAR image spatial resolution is temporal averaging [24].
Certain land cover classes are characterized by radar signatures
that are rather stable in time, such as the water class generally
represented by very low backscattering values. Averaging SAR
time series with a sufficient number of images permits a
reduction in the speckle of the water class, making it separable
from the land class. The Sentinel-1 mission is particularly
well suited for applying this type of filtering since it allows
us to regularly create dense SAR image stacks covering a
relatively short period. Starting from the Sentinel-1 image
intensity stacks, we first propose performing a pixelwise
averaging operation in order to reduce the speckle effect. Then,
the multitemporal intensity average will be used as a basis for
extracting the coastline at the SAR data native resolution.

For multitemporal filtered SAR images, we assume that
the sea, as a smooth surface, exhibits low values, while land
classes present higher values. From a statistical point of view,
this specific characteristic can be represented by a bimodal
distribution. Since coastal areas often represent just a fraction
of SAR scenes, the parameterization of a bimodal distribution
from an entire SAR image might be difficult, if not infeasible.
Therefore, before applying any statistical processing, the SAR
image must be divided into several tiles that are representative
of the sea and land classes [23]. First, an iterative quad-
tree decomposition of the image into four equally sized
tiles is performed. The bimodal tiles are identified via an
adaptive thresholding operation. A tile is selected for threshold
determination under the following conditions: the histogram is
bimodal, the sea-land populations are normally, distributed,
and each population represents at least 10% of the total
population. The lowest tile decomposition level is fixed based
on the minimum number of pixels guaranteeing statistical
representativeness.

Based on the HSBA-selected tiles, we are able to estimate
accurate sea-land PDFs for the entire SAR image. The
Sentinel-1 Interferometric Wide (IW) swath mode variation
effect of backscattering values depending on the incidence
angle (29◦–46◦) is taken into account by the adaptive thresh-
olding via HSBA. The extracted sea PDF is then employed to
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generate the seed data of a region growing procedure. Within
this step, the seeds are iteratively grown until a given tolerance
level is reached. In order to find the optimal tolerance level,
we minimize the root-mean-square error (RMSE) between
the empirical distribution estimated from the region growing
pixels and the theoretical sea PDF. This procedure allows the
sea and land classes to be separated precisely.

III. EXPERIMENTAL RESULTS

The SAR data set is composed of Sentinel-1 ground range
detected (GRD) images in the IW swath mode, with a spatial
resolution rg × az of approximately 5 × 20 m and dual-
polarization channels (VV and VH). The coastline extraction is
performed independently for both the VV and VH polarization
channels. For each case study, a stack of ten Sentinel-1 images
from the same orbital track, acquired over one year, is selected.
The experiments were carried out using a computer with an i7-
6800K CPU processor with 3.40 GHz and a memory of 64 GB.
The proposed algorithm took about 10 min to extract the
coastline from the multitemporal averaged intensity, i.e., an
image of 14 300 × 10 800 pixels.

The results are evaluated through a comparison with
open street map (OSM) coastline available globally (www.
openstreetmap.org) as one of the largest sources of geographic
information based on volunteer data collection and human
mapping [25]. The OSM coastline is defined as the mean high
water spring (i.e., point of the highest tide) line between the
sea and the land. Sentinel-2 images are used for a qualitative
evaluation of the results.

A. Quantitative SAR-OSM Cross Comparison

First, in order to analyze the overall performance of the
SAR coastline detection method, we carry out a quantitative
cross-comparison with the OSM coastline over two large
areas of interest (AOIs). The AOIs, as shown in Fig. 2,
comprise the entire coastline area of the Sinaloa state in
Mexico (Gulf of California) and the coastline located in
the south of Houston, USA, with total lengths of more
than 500 and 200 km, respectively. In order to compute the
coastline for the two AOIs, we have processed seven different
Sentinel-1 IW image stacks. The comparison is realized in
a buffer area with a width of 4 km selected across the OSM
coastline in order to have the two classes, sea and land, well
balanced. The overall agreement (OA) values, between the
Sentinel-1 VV based coastline and the OSM one, defined
as the total number of pixels classified as sea by both OSM
and the proposed algorithm divided by the total number of
pixels, are approximately 80.6% for the Sinaloa AOI and
90.4% for the South Houston AOI. The Sinaloa AOI is a
complex coastal environment, including numerous mangrove
areas and rocky shores. This aspect is likely to explain the
lower OA with respect to the South Houston AOI, which
is rather a coastal environment with various sand and bay
areas. For the VH channel, the OAs are slightly lower than
for the VV channel, approximately 77.3% for the Sinaloa
AOI and 90.0% for the South Houston AOI. From the zoom-
ins 1 and 2 shown at the top of Fig. 2, we notice that the
OSM and Sentinel-1 coastlines show important differences for
irregular shores composed of many inlets and bays, whereas,
for regular/relatively straight shores, the two coastlines are
very similar as shown in zoom-ins 3 and 4.

B. In-Depth Qualitative Analysis

The first case study focuses on an area extracted from
the Sinaloa coastline, Mexico, containing vegetated areas that

Fig. 2. Comparison between OSM (pink line) and VV SAR (blue line)
coastlines within the AOI depicted in green: a buffer zone of 4-km width
traced along the coastlines of (Top map) Sinaloa state, Mexico, and (Bottom
map) South of Houston, USA.

are clearly visible in both the Sentinel-1 average intensity
image and the Sentinel-2 image, as shown in Fig. 3(a)–(c).
These vegetated areas correspond to mangrove forests [26]
mainly located in the vicinity of aquacultural zones, e.g.,
shrimp farms. We can notice from Fig. 3(a) that a majority
of mangrove areas are not mapped by the OSM coastline,
whereas, in the Sentinel-1 average intensity image, this land
class is represented by high backscattering pixel values that are
accurately delineated in the SAR water–land map, as shown
in Fig. 3(b). Moreover, we notice that despite the different
polarimetric sensitivity of Sentinel-1 backscatter for VV and
VH with respect to vegetation dynamics, the mangrove areas
are delineated by the SAR coastline for both polarizations.
In addition, we notice that the VV SAR-derived coastline
allows us to delineate water–land classification details more
accurately for both sand and aquacultural areas, as shown
in Fig. 3(b). Fig. 3(c) shows a visual comparison between
the SAR-detected coastline and a Sentinel-2 image from the
area, thereby illustrating the capability of the SAR images to
accurately delineate the shoreline for different types of coastal
structures ranging from mangrove forests and large beaches
to small cliffs and rocks. The zoom-in on the bottom left-
hand side of Fig. 3(c) illustrates the added value of the SAR
coastline with respect to the OSM for the mangrove areas.

The second case study focuses on shoreline detection in
an area with classic coastal dynamic variations, such as tides,
waves, or currents, located south of Houston in the Gulf of
Mexico. A visual comparison between the OSM and SAR-
based coastlines showcased in Fig. 3(d) and (e) indicates that
for the regular/straight coastal areas covered by sand, the two
coastlines are indeed very similar. In addition, the SAR-based
coastline allows inland water bodies located in the vicinity
of the coastline to be precisely detected. Fig. 3(f) shows a
visual comparison between the SAR-detected coastline and a
Sentinel-2 image from the area, demonstrating the capability of
the SAR time series data to accurately detect the coastline and
also smaller water bodies connected to sea waters, including
rivers, lakes, and water channels. The zoom-in in the bottom



1774 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 18, NO. 10, OCTOBER 2021

Fig. 3. Case studies. First row: Mexican coastline, Gulf of California. Second row: South of Houston, Gulf of Mexico. Sentinel-1 VV averaged intensity
over 2019 and 2017 overlaid by (a) and (d) OSM (pink) and (b) and (e) SAR-derived VV (orange) and VH (violet) coastlines. (c) and (f) Sentinel-2 RGB
image at 10-m resolution and overlaid SAR-derived VV (orange) coastline.

right-hand side of the figure illustrates that the SAR data
allows the channel located in the north of East Matagorda
Bay, which is completely masked in the OSM data, to be
delineated precisely. For instance, having precise information
about the channel location is important for monitoring ships
that are navigating inside or in the proximity of the channel,
as shown in Fig. 3(f).

C. Support for EO-Monitoring Applications
in Coastal Areas

Several challenges arise when SAR-based ship- and flood-
monitoring operational services are applied in coastal areas.
In the following, we demonstrate that an accurate SAR coast-
line delineation can help in tackling such challenges.

Ship Detection Near the Coastline: An essential step in
SAR-based ship detection is land masking, usually realized
with a dedicated coastline, i.e., OSM or other coastline vector
files. A buffer area is usually employed in order to account for
any inaccuracies between the two data sources, but this leads to
an underdetection of vessels located near the shoreline. Fig. 4
shows an example of an SAR image containing a vessel mak-
ing its way in a navigation channel, as shown in the zoom-in
area of the same figure. One can see that due to the new SAR-
based coastline, no buffer needs to be applied for detecting
vessels in such scenarios, while the OSM coastline masks the
navigation channel, hindering the detection of such vessels.

Flood Mapping in Coastal Areas: Across the globe, many
countries located in coastal areas are at high risk of damage
caused by natural disasters. Numerous devastating water-
related disasters have recently hit coastal regions all over the
world. For example, in 2017, Hurricane Harvey hit Texas
in August and September 2017, causing major flood dam-
age in large areas surrounding Houston. The AOI addressed
in Fig. 3(d)–(f) is located in the south of Houston and was
affected by Harvey-related flooding. In order to precisely

Fig. 4. Example of a ship located in a navigation channel in the coastline
proximity of South Houston, USA: Sentinel-1 image (July 24, 2017), OSM
coastline (pink), and SAR-VV coastline derived from the SAR averaged image
over 2017 (orange).

delineate such a large size flood located in the proximity of the
shoreline, it is essential to have access to information about the
coastline, allowing us to more easily separate the floodwater
from the permanent water bodies. Fig. 5(a) shows a subset of
a Sentinel-1 image presenting a high sea state and acquired
during the flood and the overlaid SAR coastline derived
from the intensity average image over 2017. We can observe
that the precise SAR-derived coastline makes it possible to
identify the floodwater separately from the permanent water,
i.e., flood extent. Fig. 5(b), illustrating a Sentinel-2 image
acquired one day later, confirms the same large flood extent.

IV. CONCLUSION

In this letter, we propose an unsupervised and automatic
method enabling precise detection of the coastline extent that
encapsulates all its temporal variations by making use of
the SAR time series. The tiling-based classification approach
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Fig. 5. Flood caused by hurricane Harvey that hit the Texas coast (zoomed-in view on south of Houston): (a) Sentinel-1 image, August 29, 2017. (b) Sentinel-2,
August 30, 2017. SAR-VV coastline derived from the SAR averaged image over 2017 (orange).

used allows us to separate the land and water classes in
a computationally efficient manner. A large-scale compari-
son with an independent data set, i.e., OSM, shows a high
agreement ranging from 80% to 90%, which is confirmed
by several qualitative evaluations, including Sentinel-2 image
samples. An in-depth analysis shows that the proposed method
allows for the provision of more detailed coastline products
that accurately detect vegetated areas as mangroves for the
Sinaloa AOI or navigation channels for the South Houston
AOI. The effectiveness of the SAR-based coastline illustrates
that it is possible to improve the detection of vessels located
in the shoreline proximity and to accurately map floods
occurring in coastal areas. In order to surpass the limitations
of the Sentinel-1 coastline product, e.g., for certain sand areas
represented by low SAR backscattering values, in a future
study, the Sentinel-2 time series could be integrated for further
developing the proposed method.
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