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Abstract—onvolutional neural networks (CNNs) have proven
to be very efficient for the analysis of remote sensing (RS)
images.onvolutional neural networks (CNNs) have proven to be
very efficient for the analysis of remote sensing (RS) images.C
Due to the inherent complexity of extracting features from these
images, along with the increasing amount of data to be processed
(and the diversity of applications), there is a clear tendency to
develop and employ increasingly deep and complex CNNs. In
this regard, graphics processing units (GPUs) are frequently
used to optimize their execution, both for the training and
inference stages, optimizing the performance of neural models
through their many-core architecture. Hence, the efficient use
of the GPU resources should be at the core of optimizations.
This letter analyzes the possibilities of using a new family of
CNNs, denoted as TResNets, to provide an efficient solution to
the RS scene classification problem. Moreover, the considered
models have been combined with mixed precision to enhance
their training performance. Our experimental results, conducted
over three publicly available RS datasets, show that the proposed
networks achieve better accuracy and more efficient use of
GPU resources than other state-of-the-art networks. Source code:
https://github.com/mhaut/GPUfriendlyRS

Index Terms—Remote sensing (RS), classification, convolu-
tional neural networks (CNNs), graphics processing units (GPUs).

I. INTRODUCTION

EARTH observation has experienced a fast development
in the last years due to the great improvement of remote

sensing systems and computing technologies. Remote sensing
(RS) images offer a major opportunity to increase our knowl-
edge of the surface of the Earth, allowing for the collection of
useful terrestrial information through a variety of observation
systems from both aircraft and space platforms. The large and
rich amount of RS data (collected in different formats, with
different spatial, spectral and temporal resolutions) is highly
attractive for the development of a wide range of applications
in a diverse set of disciplines [1]. As a result, both the quantity
and quality of RS images have been substantially increased,
opening the door for automatic and deep processing methods.

Since the first studies about the applications of RS images
[2], a great amount of work has been conducted to take
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advantage of machine (ML) and deep learning (DL) techniques
for the analysis of RS data. Cheng et al. [3] and Paoletti et
al. [4] provide a comprehensive review of the most recent
achievements. For instance, traditional ML-based techniques
such as k-means and gradient boosting have been used to
perform RS scene classification [5], [6], while deep models
and CNNs have demonstrated to be highly accurate techniques
due to their generalization power and their ability to extract
discriminative features automatically.

For instance, Hu et al. [7] studied how to extract relevant
features, using successfully pre-trained CNNs, from high-
resolution RS images. In a different approach, Zou et al.
[8] proposed the use of unsupervised DL-based techniques
to perform feature selection, reformulating the problem as
a feature reconstruction one. The authors in [9] introduce
a novel method based on two stages: first, they use fine-
tuned techniques (for a pre-trained network) to perform land-
use classification, then they implement an automatic object
detection algorithm that divides the high-resolution image into
overlapping small patches, and classifies them. Cheng et al.
[10] developed a novel representation called bag of convo-
lutional features (BoCFs), in which the words are directly
generated from the features extracted by a CNN. After training
the CNN, they used the k-means to cluster the features,
generating descriptors that can be quantized into a bag of
visual words. To deal with the limited availability of labeled
training data, Scott et al. [11] used both fine-tuning (from
previously trained models) and data augmentation to train
deep CNNs for classification purposes. Li et al. [12] use
the information hidden in different layers of a pre-trained
CNN model to improve feature discrimination techniques.
They build mid-level features from the hidden layers of the
CNN. Then, they perform dimensionality reduction. Another
feature fusion strategy is proposed in [13]. They combine
a very deep CNN (VGG-Net) to perform feature extraction
with a discriminant correlation analysis (DCA) to fuse the
extracted features, and then use a support vector machine
(SVM) as the final classifier. Cui et al. [14] proposed a hybrid
model, combining a convolutional auto-encoder (CAE) with a
CNN, to perform object-oriented scene classification allowing
to simplify the the CNN and to reduce its parameters. Cheng
et al. [15] use a metric learning regularization term on the
features of the CNN. The idea is to make the model more
discriminative so, in the new feature spaces, the images from
the same class are mapped closely to each other while the
images of different classes are mapped as far as possible.
The CNN-CapsNet in [16] combines both CNNs and capsule
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Fig. 1. Graphical representation of proposed architecture for RS image classification. The S2D block is developed to reduce the input spatial resolution
without losing spatial information. Then, four feature extraction stages are implemented. Stages 1 and 2 employ the basic block as the main building block,
including an optimized SE layer. Stages 3 and 4 employ the bottleneck block, introducing SE layers within stage 3. Downscaling layers have been replaced
by AAD units.

networks to avoid the use of fully connected layers as a
classifier, keeping the spatial information in the last layers.
Siamese CNNs have also been successfully adapted to the
RS image classification problem in [17]. These networks are
composed of two identical CNNs sharing parameters that are
simultaneously fed with a pair of images. In addition, several
final layers are trained to recognize whether this pair of images
belong to the same category or not. In summary, CNNs have
been successfully applied to extract feature representations
from RS data. However, their training and inference stages
involve thousands of millions of floating point operations
for each image to be processed. This can easily exceed the
computational capacity of most conventional processors.

With the aim of overcoming this limitation, graphics pro-
cessing units (GPUs) have demonstrated to be a suitable archi-
tecture to deal with these computations. As a result, there is
a growing trend within the RS community to adapt traditional
algorithms and develop new processing methods using GPU
devices, in order to exploit their high parallelization power
through their many-core architecture [18]. For this reason it
is necessary to search for new solutions focused on a better
exploitation of GPU resources.

Recently, the authors in [19] proposed TResNet, a new fam-
ily of GPU-dedicated neural networks specifically designed to
take advantage of the GPU architecture. Their main idea relies
on the modification of successful deep models, such as the
ResNet50, by implementing several refinements to achieve a
better accuracy-throughput trade-off within the GPU. Thus, an
optimized stem unit has been developed on the bottom of the
model in order to avoid the loss of spatial information while
reducing the input’s resolution. Also, basic and bottleneck
residual blocks are combined along the architecture to enhance
the speed-accuracy trade-off. Within each block, several mech-
anism are introduced to improve the feature extraction per-
formance. For instance, the computationally-expensive stride
downsampling is replaced by anti-alias based components,
while the memory consumer BatchNorm is replaced by an
Inplace-ABN module to double the batch size. Finally, the
dedicated squeeze-and-excitation layers are introduced within
residual blocks to improve the extraction of relevant features.

In this letter, we analyze three TResNet models (denoted
as M, L and XL, according to their size) and adjust them
to perform efficient classification of RS scenes. Our experi-
ments have been conducted over three well-known datasets,
comparing the considered methods with other state-of-the-
art networks. An i9-9940X processor and a NVIDIA Titan

RTX GPU have been considered for experiments, while every
network has been trained with and without mixed precision.
The obtained results demonstrate that TResNets reach the best
results in terms of accuracy and use of GPU resources. It
should therefore become an essential reference for RS scene
classification.

II. METHODOLOGY

We introduce several very deep networks [19] for RS
scene classification whose architectures/operations have been
optimized through a series of modifications to make them more
GPU-friendly. They have been developed taking into account
the original ResNet50 model, to which some improvements
have been conducted to optimize not only their inference
step, but also their training procedure. In this sense, the
developed models include five refinements: i) space-to-depth
(S2D) stem, ii) anti-alias downsampling (AAD), iii) in-place
activated batchnorm (IPABN), iv) new block-type selection
(NBS) and v) optimized squeeze-and-excitation (OSE) layers.
Each one is detailed below, while Fig. 1 presents the general
architecture of the developed networks.

Traditional deep models implement a stem unit composed
by initial convolution-activation-pooling layers as bottom
block to reduce the input volume resolution. Although this
strategy can increase the GPU throughput by reducing the
feature size, a significant amount of information is lost due
to fast downscaling. To overcome this limitation (searching
for a good speed-accuracy trade-off), a dedicated S2D unit
is employed to rearrange the spatial information along the
spectral dimension [20]. In this context, instead of summa-
rizing the spatial information through k × k kernels with
stride s, this is distributed as the new volume’s depth. Then, a
point-wise convolution layer elongates or shortens the spectral
dimension to the desired depth. This prevents the loss of spatial
information, involving a lighter 1× 1 kernel computation.

Furthermore, AAD [21] is implemented to replace the
downscaling conv3×3 layers with stride s = 2 by an efficient
downscaling block. This combines a conv3×3 layer with s = 1
and a 3×3 blur filter with s = 2, increasing the model accuracy
and consistency with a significantly lower computational cost
in comparison with standard 3× 3 kernels with s = 2.

Also, the BN followed by activation functions have been
replaced by IPABN layers [22], in order to implement them
as a single in-place operation. In this sense, IPABN avoids the
data copy, so its memory consumption is considerably lower
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than the original BN. Moreover, IPABN is implemented with
leaky ReLU (LReLU) as activation function, which avoids
the dying ReLU problem in deep models and provides better
accuracy than the standard ReLU.

The original ResNet50 implements bottleneck residual
blocks, where each one combines two point-wise layers with
one 3×3 layer. In this sense, bottleneck blocks exhibit higher
accuracy in comparison with basic blocks (composed by two
3 × 3 layers), but they also have higher power and compute
consumption. In order to reduce the computational burden
without losing accuracy, the proposed models for RS data
classification combine both blocks, placing basic blocks at
the beginning of the network, while the bottleneck has been
placed at the end of the model to balance the computational
load across the architecture. Moreover, residual connections
have been implemented as in-place operations to reduce the
number of memory accesses.

Finally, in the first three stages, a squeeze-and-excitation
(SE) block [23] is included within each bottleneck and basic
residual block, considering a reduction factor of 8 and 4, re-
spectively (OSE) in order to lighten the computational burden
of the original SE.

During the training and inference steps of the proposed
models, the NVIDIA Apex library [24] has been used to
optimize the operations of the models when performing RS
scene classification.

III. EXPERIMENTS

We trained the three TResNet models in [19] and com-
pared their results with vgg16, inception v3, ResNet50 and
ResNet101. Training and inference have been executed in
an i9-9940X processor with a NVIDIA Titan RTX GPU,
using 24GB of memory and 4608 cores. We also used the
NVIDIA Apex library [24] for mixed precision, to increase
the performance of the models, comparing the results of the
baseline and the optimized executions.

A. Datasets

We selected three publicly available datasets to evaluate the
considered models. Their main characteristics are summarized
below:

• UC Merced (UCMERCED) [25]: This collection of
RGB Earth surface images is composed of 2100 aerial
shots classified into 21 different categories. Each one of
the RGB orthoimages has a 256× 256-pixel size, and its
spatial resolution is one foot per pixel.

• Aerial Image Dataset (AID) [26]: The 10000 RGB
images of this dataset are distributed into 30 classes, and
its size is 600×600 pixels, whose resolution varies from
8m to 0.5m.

• NWPU-RESISC45 (NWPU) [27]: This is a collection
of 31500 images that are uniformly distributed within 45
categories. They are RGB images of size 256×256-pixels,
and their spatial resolution varies from 30m to 0.2m.

B. Experimental results

For the experiments we used two different modes of the
NVIDIA Apex library (for pure and mixed precision). The
FP32 refers to the baseline without including any 16 bits
floating point (FP16) values, while mixed refers to the use
of NVIDIA Apex mixed precision modes to combine FP16
together with 32 bit values, which usually implies a reduction
of the accuracy as a trade-off for computational efficiency.

Each model has been trained 10 MonteCarlo iterations of
120 epochs using Adam optimizer with learning rate of 1e−3
and batching size of 100. For data augmentation we proceed as
follows: resize to 256×256, aleatory select a 224×224 section,
horizontal and vertical rotations both with 50% of probability,
randomly change the brightness, contrast and saturation with
0.4 factor, normalize and then apply the technique on [28]
with 50% of probability. For testing we resize to 256 × 256
and select the 224× 224 central section. Tables I to III show
the average accuracy values with the standard deviation in
brackets.

Depending on the characteristics of each dataset, we se-
lected a different amount of images as training data. For
each dataset we explored different percentages, and selected
some representative values. For small datasets (such as
UCMERCED) we selected three different scenarios with 20%,
50% and 80% of the data as the training set. As it can be seen
in Table I, TResNet clearly provides the best results when few
images are available for the training set. This is a remarkable
result, since the lack of labeled images is a major concern in
the RS field. For the other two scenarios, the results are very
similar for all the analyzed CNNs. The results for the AID
dataset are shown in Table II. In this case, since the dataset
is larger, we selected 20% and 50% of the data for training.
For this dataset, TResNet achieved the best results for all the
tested configurations. Finally, for the NWPU dataset (which
includes more images than the previously considered ones),
we selected two scenarios with 10% and 20%. In Table III,
we can see that, as in the previous case, the TResNet CNNs
achieve the best results.

TABLE I
UCMERCED RESULTS WITH 20%, 50% AND 80% OF TRAINING DATA

Tr=20% Tr=50% Tr=80%
Method FP32 Mixed FP32 Mixed FP32 Mixed

ResNet50 87.47(2.0) 90.62(2.1) 95.60(1.2) 96.93(1.5) 96.46(1.5) 96.76(1.4)
ResNet101 87.83(2.4) 91.73(2.4) 95.71(1.8) 97.17(1.2) 96.70(1.4) 97.50(1.3)
TResNet M 91.31(1.7) 90.09(1.6) 96.55(1.5) 96.82(1.2) 97.62(1.0) 97.83(1.1)
TResNet L 89.82(1.7) 91.67(1.6) 96.54(1.4) 97.11(1.2) 96.85(1.1) 97.89(1.0)

TResNet XL 89.20(2.8) 93.30(1.8) 95.77(1.6) 97.50(0.9) 97.05(1.1) 98.12(1.0)
VGG16 85.95(2.4) 64.40(2.5) 94.37(1.7) 82.92(2.1) 95.15(1.7) 87.44(1.7)

Inception V3 89.11(2.2) 80.83(2.2) 95.77(1.7) 96.10(1.5) 96.73(0.9) 96.82(1.3)

TABLE II
AID RESULTS WITH 20% AND 50% OF TRAINING DATA

Tr=20% Tr=50%
Method FP32 Mixed FP32 Mixed

ResNet50 90.58(1.5) 90.99(1.1) 94.45(0.6) 94.14(1.0)
ResNet101 90.74(1.0) 91.91(0.9) 94.11(0.9) 94.75(0.8)

TResNet M 92.59(0.8) 91.01(1.1) 95.10(0.7) 94.96(0.6)
TResNet L 92.06(1.0) 92.45(0.9) 95.01(0.9) 95.32(0.4)

TResNet XL 92.31(0.6) 92.91(1.0) 95.07(0.6) 95.60(0.7)
VGG16 89.28(0.8) 75.50(0.7) 92.95(0.6) 83.41(1.3)

Inception V3 92.05(1.4) 89.70(0.8) 94.29(0.7) 93.86(0.8)
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TABLE III
NWPU RESULTS WITH 10% AND 20% OF TRAINING DATA

Tr=10% Tr=20%
Method FP32 Mixed FP32 Mixed

ResNet50 86.40(0.6) 84.06(0.7) 90.13(0.4) 88.17(0.6)
ResNet101 86.47(0.4) 85.91(0.6) 89.91(0.6) 89.73(0.6)
TResNet M 88.05(0.8) 85.00(0.8) 91.19(0.4) 89.29(0.5)
TResNet L 87.68(0.7) 87.38(0.6) 90.94(0.8) 91.10(0.5)

TResNet XL 87.74(0.7) 87.74(0.5) 91.12(0.5) 91.77(0.5)
VGG16 82.79(0.7) 56.76(1.0) 87.26(0.7) 62.73(0.8)

Inception V3 86.90(0.6) 80.75(0.7) 90.57(0.5) 86.10(0.9)

An interesting special case to analyze is the comparison
between TResNet M and ResNet50 models. TResNet M has
been specifically designed to provide a similar GPU through-
put with regards to ResNet50. The objective is to carry out
a fair comparison between them [19]. As it can be seen in
the corresponding tables, TResNet M achieves better accuracy
than ResNet50 in 13 of the 14 analyzed scenarios.

A remarkable result is that, with the exception of VGG-
16, mixed precision options allow to reduce the size and the
computations of the models without reducing the accuracy. As
it can be seen in Figure 5, it accelerates the inference by a
factor of 2. In fact, it often improves accuracy. The reason is
that large models can easily fall into overfitting, and, if that
is the case, mixed precision can reduce it and improve the
results.

Accuracy is a critical metric, but it is not the only one that is
important. We have also analyzed other relevant information,
such as the size of the models, and the computations needed.
Figs. 2 to 4 depict the scenario for FP32 precision (FP32) and
the highest number of images used as training set for each
dataset. The x-axis represents the number of operations, and
the y-axis represents the accuracy, while the size of each circle
is proportional to the number of parameters of the model.

Fig. 2. Network characteristics for UCMERCED dataset. The x-axis shows
the number of GMAC operations per image during inference. The y-axis
shows the achieved accuracy (Tr=80% and FP32). The size of each circle
represents the number of parameters, which is also specified at the top of the
graph.

For UCMERCED and AID TResNet M provides an in-
teresting trade-off, since it achieves the best accuracy with
smaller size and less MAC operations than TResNet L,
TResNet XL and ResNet101, and with less than half of the
operations that VGG16 requires. For NWPU, TResNet XL
achieves the best accuracy results, but it is also the largest
model (and also the one that needs to calculate more MAC
operations).

Fig. 3. Network characteristics for AID dataset. The x-axis shows the number
of GMAC operations per image during inference. The y-axis the achieved
accuracy (Tr=50% and FP32). The size of each circle represents the number
of parameters, which is also specified on top of the graph.

Fig. 4. Network characteristics for NWPU dataset. The x-axis shows the
number of GMAC operations per image during inference. The y-axis the
achieved accuracy (Tr=20% and FP32). The size of each circle represents the
number of parameters, which is also specified on top of the graph.

Another important metric is the throughput achieved by
every model during inference. Fig. 5 shows the throughput
in terms of images per second for both scenarios, FP32 and
mixed. Again, TResNet M provides a very interesting trade-
off between accuracy and throughput. It is remarkable that it
achieves better throughput than smaller models that carry out
less computations, such as inception V3 or ResNet50. This is
not an intuitive result, but the truth is that GPU performance is
often not bounded by the number of operations, but by com-
munications and memory bandwidth. Because this network
has been designed with these parameters in mind, it achieves
throughput results which are far better than what could be
expected according to its size and the number of required
computations. Regarding TResNet L and TResNet XL, they
clearly provide worse throughputs than TResNet M, although
for some datasets they can provide slightly better results.
Therefore, they only need to be taken into account if accuracy
is the only objective, and even in that case it is likely that
TResNet M may achieve the best results. If throughput is in-
deed important, we recommend TResNet M since it provides
very good results in all the considered scenarios and it is three
times faster than TResNet XL.
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Fig. 5. Number of images per second analyzed on inference by each model
(for FP32 and mixed precision configurations).

IV. CONCLUSIONS

In this letter, we have analyzed the performance/accuracy
trade-offs of the recent family of TResNet networks on RS
scene classification. The main contribution of TResnets is that
they have been specifically designed for GPUs (i.e., with the
GPU architecture in mind). We have tested TResnets in three
widely used RS datasets. Thanks to their GPU-friendly design,
these neural networks are capable of fully taking advantage
of the GPU resources, achieving better performance than
smaller models that require considerably fewer operations.
Moreover, they also provide better accuracy results than other
well-known, state-of-the-art networks, in most scenarios. We
have also identified that, in most scenarios, TResNet M, (the
smaller version of the TResNet family) provides the best
results, both in terms of throughput and accuracy. Hence, it
appears to be the most suitable one for RS data processing.
This was not the case in [19], where TResNet XL provided
better accuracies in other application domains. The main
reason is that the considered datasets are smaller than those
used in [19]. Another interesting result is that for these data
sets mixed precision can be used to reduce the size and the
computations of the models without reducing their accuracy.
In fact, it can even improve it. Hence, it is important to
explore this option. After analyzing the obtained results, we
believe that TResNets (specially TResNet M) may become an
essential reference for RS classification purposes. Further work
will be focused on analyzing other (possibly larger) datasets
and different kinds of RS data.
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