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 Abstract—Super-resolution mapping (SRM) is a commonly 

used method to cope with the problem of mixed pixels when 

predicting the spatial distribution within low-resolution pixels. 

Central to the popular SRM method is the spatial pattern model, 

which is utilized to represent the land cover spatial distribution 

within mixed pixels. The use of an inappropriate spatial pattern 

model limits such SRM analyses. Alternative approaches, such as 

deep-learning-based algorithms, which learn the spatial pattern 

from training data through a convolutional neural network, have 

been shown to have considerable potential. Deep learning 

methods, however, are limited by issues such as the way the 

fraction images are utilized. Here, a novel SRM model based on a 

generative adversarial network (GAN), GAN-SRM, is proposed 

that uses an end-to-end network to address the main limitations of 

existing SRM methods. The potential of the proposed GAN-SRM 

model was assessed using four land cover subsets and compared to 

hard classification and several popular SRM methods. 

Experimental results show that of the set of methods explored, the 

GAN-SRM model was able to generate the most accurate 

high-resolution land cover maps.  

 

Index Terms—Super-resolution mapping, deep learning, 

generative adversarial network 

 

I. INTRODUCTION  

HE problem of mixed pixels is commonly encountered 

during the process in the interpretation of remotely sensed 

imagery [1]. Soft classification estimates fraction values of all 

land cover classes within low-resolution pixels. However, it 

does not indicate their spatial distribution [2]. SRM may further 

predict the spatial distribution within the subpixels and yield a 

resultant high-resolution land cover map from the intermediate 

output of soft classification or from remotely sensed imagery 

directly [3, 4]. SRM has been widely applied in the 

geographical fields and shown to be prospective in the analysis 

of the mixed pixels problem [5, 6].  

SRM techniques can roughly be classified into two 

categories, mainly according to the process representing the 

land cover spatial distribution. The first category describes land 
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cover patterns using pre-defined prior models, such as the 

spatial dependence model, which can be developed at the 

sub-pixel scale [7], the pixel/sub-pixel scale [8], or the multiple 

scales [9]. These models have been widely used, but it can be 

challenging to appropriately model some land cover mosaics, 

especially in highly fragmented landscapes [10]. The second 

category learns the land cover spatial distribution directly from 

additional training samples [11]. The learning-based models 

learn the land cover spatial pattern directly from the training 

samples, and can reconstruct the land cover spatial pattern 

better compared with the pre-defined prior models [12]. 

Learning-based SRM models often comprise two steps. The 

first step is fraction-image super-resolution (SR), which 

reconstructs a high-spatial-resolution fraction image from the 

low input. At present, support vector regression (SVR) [13], 

convolutional neural network (CNN) [14], and other machine 

learning methods have already been widely used in the 

fraction-image SR  task. The second step is converting the 

high-resolution fraction images to a categorical land cover map.  

Although the two-step learning-based SRM models have 

shown great potential, limitations still exist. First, the 

information extracted from the training data is only used in the 

fraction-image SR step, but is not used in the step of converting 

the fraction images to the categorical map [15]. Since the latter 

step does not use any information from the training data and can 

be viewed as a post-processing process applied to the 

super-resolved fraction images, the existing two-step 

learning-based SRM models, such as CNN-based [14], are not 

end-to-end. Second, the conversion step of the fraction images 

to the categorical map usually contains a large uncertainty. For 

instance, the softmax function was used in [16] to assign each 

high-resolution pixel to a unique category value, while 

optimization algorithms, such as the simulated annealing 

algorithm [17] and the linear optimization model [14], are used 

in the conversion of the fraction images to the categorical map 

so that the class fractions in the input low-resolution fraction 

image and the resultant high-resolution categorical map are 

unchanged. Different methods used in the conversion of the 

fraction images to the categorical map step will generate 

different SRM results [14,16-17]. The uncertainty is especially 

large when the high-resolution class fractions of different 

classes are close or equal and when the scale factor is large [14].  

In this letter, an end-to-end SRM model based on a 

generative adversarial network (GAN), i.e., GAN-SRM, is 

proposed to improve the current two-step learning based SRM 

methods. GAN has shown more potential than other CNN 

based approaches in image SR [18], but to our knowledge, it 

has not been used in SRM. In the proposed GAN-SRM model, 
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both the fraction-image SR and the conversion of the fraction 

images to categorical map steps are fully integrated to reduce 

the resultant uncertainty. The remainder of this letter is 

organized as follows. Section II introduces the detailed 

architecture of the GAN-SRM model. Section III represents the 

validation of the proposed model by experimental maps, and 

Section IV summarizes this letter. 

II. METHODOLOGY 

A. GAN-SRM Description 

Suppose the low-resolution fraction image F has been 

generated by soft classification from the original remotely 

sensed image. This input fraction image F has ijc pixels, 

whose the number of land cover classes is c. It is assumed the 

zoom factor is z, each low-resolution pixel from F is divided 

into z2 high-resolution subpixels, and these all target 

high-resolution subpixels are considered to be assigned to a 

unique land cover class from c. The goal of GAN-SRM is to 

produce a high-resolution land cover map M  with a size of 

(i·z)(j·z)1 using F as input.  

N pairs of training datasets are available during the training 

procedure. Each pair contains a low-resolution class fraction 

image L and corresponding high-resolution land cover map H. 

The GAN-SRM should be first trained to model the relationship 

between L and H. Once the GAN-SRM model is trained, it can 

then be used to generate M from F.  

B. FISRGAN (fraction-image SR using GAN) 

In general, FISRGAN consists of two adversarial models: a 

generative network G and a discriminative network D [19]. The 

goal of FISRGAN is to train G to generate a high-resolution 

fraction image from a low input. At the same time, D seeks to 

help G to reconstruct spatial details by distinguishing real 

high-resolution fraction images drawn from training datasets 

and fake images estimated from G [20]. More details about 

SRGAN architecture and training procedures are introduced in 

[18] and [19].  

To achieve this goal, the training procedure is performed on 

G and D iteratively for solving the two-player min-max game 

with a value function [21]: 

~p ( ) ~p ( )min max [log ( )] [log(1 ( ( )))]
G D

Y Xy y x xD y D G x+ −E E     (1) 

 Equation (1) enables G to fool D that distinguishes between 

generated from G and real from pY(y). G is first trained by 

learning the relationship between the low- and high- resolution 

images from the training dataset, and then producing a 

high-resolution fraction image G(x) using a low-resolution 

input image x from pX(x). Here, the training dataset that includes 

pX(x) and pY(y) is available, and y is the high version of its 

low-resolution image x.  

At the same time, D is further trained. D takes an image as 

input stochastically chosen to be either G(x) produced by G, or 

y drawn from the pY(y), and outputs a scalar probability D(G(x)) 

or D(y). The probability is set to between 0 and 1, which is high 

(close to 1) if the input was y and low (close to 0) if the input 

was G(x). Then this probability will be used to guide the 

optimization of G. In other words, the discriminative network is 

a magistrate of the generative network [19].  

C. GAN-SRM Network Architecture 

The proposed GAN-SRM model also includes a generative 

network G and a discriminative network D (Fig. 1). 

1) The Generative Network G 

The input to the generative network G is a c-classes 

low-resolution fraction image with the size of ijc, and the 

output is a high-resolution land cover map with the size of  

(i·z)(j·z)1. G includes a residual block, a pixel-shuffle layout, 

and a deconvolutional layer.  

In this letter, a selected part of layers from [18], which include 

residual blocks and a pixel-shuffle layout, are used. The 

residual block aims to convolute the c-class fraction values to a 

one-strided channel through 64 feature maps. The pixel-shuffle 

layout is used for upsampling the feature maps [22]. According 

to the FISRGAN, the cores of the residual block and 

pixel-shuffle layout are conventional CNNs. Additional details 

can be obtained in Fig. 1, Fig. 2 (a-b) and [18]. 

With FISRGAN, the output is not the expected land cover 

map but the fraction images. A deconvolutional layer is further 

modeled to learn the nonlinear relationship between fraction 

values and class labels, which has already been shown to an 

effective technique for data-type transformation in [23]. 

 
Fig. 1.  Architecture of Generative and Discriminative Network of GAN-SRM. 
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Employing the same operation, the expected one-channel 

(i·z)(j·z) high-resolution land cover map can be estimated by 

compressing the feature maps to one dimension and 

normalizing the fraction values into a unique discrete land 

cover class labels from c.  
2) The Discriminative Network D 

Once G has been trained, it can be used for SRM. However, 

the ill-posed nature of the SR problem is still pronounced. Thus 

the discriminative network D is designed to tackle the ill-posed 

drawbacks, which aims to distinguish real and generated land 

cover maps through recovering spatial details. The input of the 

D is an (i·z)(j·z) land cover map stochastically chosen from 

the training dataset or the generative network, and the output is 

a scalar probability. D includes a convolutional layout, a dense 

layer, and a final sigmoid function (Fig. 1 and Fig. 2 (c)). A 

convolutional layout is firstly employed to feature extraction. 

After extraction, a dense layer is used to further reduces the 

dimensions of land cover feature maps. Finally, a sigmoid 

function is used to constrain the dense to a scalar value between 

0 and 1, which will guide to optimize the generative network.  

3) Loss function of GAN-SRM 

In GAN-SRM, the generalized loss function in equation (1) 

is re-written as the sum of a generative loss (LossMSE) and an 

adversarial loss (LossProbability) as: 

{
Generative loss calculated based on MSE Adversarial loss calculated based on Probability

to capture pixel-wise differences to capture high-frequency differences

total MSE Pr obability

Loss Loss Loss= + 1442 443 (2) 

The generative loss aims to assess the pixel-wise similarity 

between the generated and real land cover maps, which is 

calculated as: 

MSE 2

2

1 1

,

1
( ( ) )

zi zj

G

i j

i jLoss H G L
z ij


= =

= −               (3) 

where GθG is the generative network parameterized by the 

weights and biases θG. Here, θG is obtained by solving the 

generative loss function in equation (3). The optimization target 

of generative loss based on pixel-wise is the minimization of 

the mean squared error (MSE), which is calculated between the 

generated GθG(L) and real H [24]. 

Given that fraction-image SR and the conversion of the 

fraction images to the categorical map steps are intended to 

train in one generative network simultaneously, the 

computational burden of the target is cumbersome, and the 

ability of generative loss to capture high-frequency differences 

is minimal. Thus, the high-frequency spatial details cannot be 

thoroughly recovered by calculating a single generative loss. 

An adversarial loss is then further designed to favor solutions 

that reside on the high-frequency details, which is the most 

considerable improvement in contrast to existing CNN. The 

adversarial loss is calculated as negative log-likelihood loss as: 

1

log ( ( ))D G

N

Probability

n

Loss D G L 

=

= −               (4) 

where DθD is the discriminative network parameterized by the 

weights and biases θD. Here, θD is obtained by solving the 

adversarial loss function in equation (4). The adversarial loss is 

calculated based on the probability DθD(GθG(L)), which is used to 

decide whether the generated map GθG(L) is real or generated.  

III. EXPERIMENTS 

A. Dataset 

The proposed model was explored using subset test maps and 

training datasets extracted from the National Land Cover 

Database (NLCD) obtained from Landsat with 16 land cover 

classes [13]. The elementary classes of NLCD were 

summarized into four typical classes: forest, urban, agriculture, 

and water. The methods were validated using four maps with 

120120 pixels in Fig. 3. For each map, the synthetic 

low-resolution fraction images were produced by linear 

averaging the original land cover map with a zoom factor z=8. 

B. Model Implementation 

In the initialization step, the hyper-parameters of GAN-SRM 

are set manually. The initial learning-rate was 0.001, the 

mini-batch was 32, and the number of the iteration was 2000. 

The whole model was trained by an Adam optimizer. All 

weights and biases of θG and θD were randomly initialized by a 

zero-centered normal distribution, whose standard deviation is 

0.02. The work was undertaken on TensorFlow 2.0 with an 

NVIDIA RTX 2070 Super GPU. 

During the training process of the mini-batch, the parameters 

θD will be obtained when GθG is first trained. In each inner loop, 

DθD is then updated by one real case and one generated case of 

random inputs. In the real case, the parameters θD are updated 

by setting the output probability to be 1. In the generated case, 

the parameters θD are updated by setting the output probability 

to be 0. Thus, this convergence process will emerge a gradient 

∇, which will guide GθG again to produce more accurate 

high-resolution land cover maps by backpropagation. The same 

procedure for renewing θG and θD is repeated. The iteration 

terminates when the constant Losstotal in equation (2) is 

obtained, or the predetermined iteration times are reached.  

C. Comparison Methods 

The proposed GAN-SRM was evaluated by comparing with 

a pixel-based method of hard classification (HC), as well as 

 
Fig. 2.  Detailed architecture of a) the residual blocks, b) the pixel-shuffle layout, and c) the convolutional layout  

with corresponding kernel size (k), number of feature maps (n) and stride (s) indicated for each convolutional layer. 
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sub-pixel scale SRM methods of pixel swapping based model 

(PS) [15], bilinear interpolation based model (BI) [25], 

back-projection neural network based model (BPNN) [26], and 

deep convolutional network based model (DeepSRM) [14]. In 

order to further validate if the proposed end-to-end strategy is 

better than the two-step strategy, a new learning based SRM, 

i.e., FISRGAN-MV, was compared. In FISRGAN-MV, GAN 

was first used to downscale the low-resolution fraction images 

to a high-resolution scale, and then the pixel label for each 

fine-resolution pixel was assigned to the class with the maximal 

fraction value in that pixel. For the learning-base SRMs, 900 

subsets maps of NLCD (each containing 400400 pixels) and 

the corresponding fraction images were used to form the 

required training dataset. By comparing different SRMs with 

the reference maps in Fig. 3, the overall accuracy (OA) was 

chosen for assessment.   

IV. RESULTS AND DISCUSSION 

The resultant high-resolution land cover maps produced 

from all SRMs were shown in Fig. 3. In general, SRM results 

based on deep-learning methods, such as DeepSRM, 

FISRGAN-MV, and GAN-SRM, had better performance than 

other algorithms. The HC results cannot represent detailed land 

cover features, as the spatial resolution is too low. For the 

results in PS, BI, and BPNN models, inter-class boundaries in 

the were jagged, and many linear class features were wrongly 

classified into round or circle patches. PS and BI use the 

maximum spatial dependence principle and may be 

inappropriate to describe the land cover pattern of linear 

features, and generate aggregated patches and discontinuous 

linear features. This is because the maximal spatial dependence 

is suitable for objects that are larger than the size of an image 

pixel, but is not suitable for objects with the linear shape [1]. 

Although BPNN aims to learn the land cover pattern, it has a 

unique three-layer shallow network architecture, which is 

consists of an input layer, a hidden layer, and an output layer. 

Through this architecture, BPNN has a very small amount of 

parameters, and the shallow network used in BPNN does not 

thoroughly learn the complex spatial information.    

In comparison, DeepSRM, FISRGAN-MV, and GAN-SRM 

are convolutional networks-based methods. Many isolated land 

cover patches and jagged shapes were found in the DeepSRM 

and FISRGAN-MV maps. For instance, the linear urban pieces 

were disconnected (as are highlighted in the purple and brown 

circle in Fig. 3). In contrast, details produced by GAN-SRM 

were better reconstructed, and the linear urban patches (as are 

also highlighted in the black circle in Fig. 3) were more 

connected. This improvement arises based on two aspects. 

First, the architecture of DeepSRM is a CNN with 21 

convolutional layers [14], which only calculates MSE loss 

function by reconstructs purely pixel-wise differences, while 

the two methods using GAN add an extra adversarial loss 

function to capture high-frequency differences. As a result, the 

performance of reconstructing high details in GAN (with 

discriminative network and adversarial training) is better than 

the CNN. Second, both DeepSRM and FISRGAN-MV are 

two-step approaches. The information from the training data is 

only used in the fraction-image SR but not in the conversion of 

the fraction images to the categorical map step. Therefore, the 

latter step in DeepSRM and FISRGAN-MV generated isolated 

patches and jagged shapes that were dissimilar to the reference. 

In contrast, GAN-SRM adopts a novel end-to-end architecture 

 I

II

III

IV

HC PS BI BPNN DeepSRM FISRGAN-MVReference GAN-SRM

HC PS BI BPNN DeepSRM FISRGAN-MVReference GAN-SRM

HC PS BI BPNN DeepSRM FISRGAN-MVReference GAN-SRM

HC PS BI BPNN DeepSRM FISRGAN-MVReference GAN-SRM

Urban Forest Agriculture Water  
Fig. 3. The reference and predicted high-resolution land cover maps from different methods in four testing areas (zoom factor z = 8).  

Each area contains 120  120 pixels and four land cover classes. 
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and fully considers the spatial distribution for discrete land 

cover class labels through the deconvolutional layer, and 

generate land cover maps that are the most similar to the 

reference maps in Fig. 3. 

Table 1 illustrates the quantitative result of different 

methods. The OA of HC, PS, BI, and BPNN, are lower than 

those obtained by SRM methods based on deep-learning, such 

as DeepSRM, FISRGAN-MV, and GAN-SRM. Furthermore, 

the OA of GAN-SRM is the highest, highlighting the advantage 

of the proposed approach. 

V. CONCLUSION 

In this letter, a novel end-to-end GAN-SRM model is 

proposed for super-resolution land cover mapping. In the 

proposed model, fraction-image SR and the conversion of the 

fraction images to the categorical map steps are integrated into 

one generative network. A discriminative network is further 

trained and plays an adversarial role to optimize the generative 

network to model a nonlinear function between the 

low-resolution fraction images and high-resolution land cover 

categorical maps. The performance of the proposed GAN-SRM 

algorithm was validated with several test maps, and was 

compared with popular PS, BI, BPNN, DeepSRM, and adjusted 

FISRGAN-MV methods. The experimental results showed that 

the GAN-SRM model was superior to other comparing SRMs 

not only in terms of the OA but also visually. In comparison to 

the other SRMs, the resultant high-resolution land cover maps 

from GAN-SRM provided a superior representation of class 

distributions by restoring more high-frequency details.   
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TABLE I 

OVERALL ACCURACY OF LAND COVER MAPS BY DIFFERENT METHODS 

Test Map HC PS BI BP DeepSRM FISRGAN-MV GAN_SRM 

I 69.57 68.06 70.54 71.24 74.19 81.63 84.27 

II 67.91 63.85 68.72 68.01 75.55 77.41 79.89 

III 76.90 75.90 78.53 78.52 83.70 84.51 86.25 

IV 76.84 74.97 79.35 79.72 88.63 89.34 90.97 

 

 


