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Abstract— We present a classification post-processing (CPP) 
technique based on Fully Convolutional Neural Networks (CNN) 
for semantic remote sensing image segmentation. Conventional 
CPP techniques aim to enhance the classification accuracy by 
imposing smoothness priors in the image domain. In contrast to 
that, here, a relearning strategy is proposed where the initial 
classification outcome of a CNN model is provided to a 
subsequent CNN model via an extended input space to guide the 
learning of discriminative feature representations in an end-to-
end fashion. This deep relearning convolutional neural network 
(DRCNN) accounts explicitly for the geospatial domain by taking 
the spatial alignment of preliminary class labels into account. 
Hereby, we evaluate to learn the DRCNN in a cumulative and 
non-cumulative way, i.e., extending the input space based on all 
previous or solely preceding model outputs, respectively, during 
an iterative procedure. Besides, the DRCNN can also be 
conveniently coupled with alternative CPP techniques such as 
object-based voting (OBV). Experimental results obtained from 
two test sites of WorldView-II imagery underline the beneficial 
performance properties of the DRCNN models. They can 
increase the accuracies of initial CNN models on average from 
72.64% to 76.01% and from 92.43% to 94.52% in terms of κ 
statistic. An additional increase of 1.65 and 2.84 percentage 
points can be achieved when combining the DRCNN models with 
an OBV strategy. From an epistemological point of view, our 
results underline that CNNs can benefit from the consideration of 
preliminary model outcomes, and that conventional CPP 
techniques can profit from an upstream relearning strategy.  

Index Terms—deep learning, relearning, classification 
postprocessing, convolutional neural networks 

I. INTRODUCTION 

he accurate extraction of thematic information from 
remote sensing data is a prerequisite for numerous 
applications. Consequently, it has become a major 

research subject for the remote sensing community [1]. 
Thereby, supervised classification approaches are very popular 
due to their accuracy and flexibility [2]. The governing 
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principle of such methods is to infer a rule from limited but 
properly encoded prior knowledge, i.e., training data, to assign 
a class label to unseen instances of the domain under analysis. 
However, methods which solely exploit spectral signatures of 
individual pixels show frequently limited accuracy properties 
due to the well-known salt-and-pepper effect [3]. This is 
particularly relevant when analyzing remote sensing data with 
a ground sampling distance considerably higher than the 
objects of interest. The high spatial resolution can induce high 
intraclass and low interclass variabilities. 

To address this issue, distinguishable strategies were 
established in the past which consider not solely the spectral 
properties of individual pixels but also spatial relations. In this 
manner, features were designed which encode the 
neighborhood characteristics of individual pixels such as 
morphological operators [4] or texture measures [5]. 
Alternatively, the image is partitioned with a segmentation 
algorithm into segments/objects and e.g., the spectral means 
and spatial-hierarchical context characteristics are deployed 
(referred to as object-based image analysis (OBIA)) [3]. 
Hybrid approaches were followed also, which aim to combine 
the aforementioned processing principles (e.g., so-called 
Object-based Morphological Profiles [1]). 

As an alternative or additional processing step, the 
refinement of the classification outcome by classification 
postprocessing (CPP) can be followed [6]. With respect to 
CPP techniques, the majority of approaches aim to refine the 
initial classification outcome by building upon spatial 
occurrence and alignment of class labels and eventually 
relabel them in the image domain, based on e.g., majority 
filtering [7]. However, recently it was shown that the concept 
of relearning can be a more accurate CPP strategy [6], [8]-
[10]. Thereby, a supervised classification model is learned for 
a second time with additional features derived from the initial 
classification outcome to enhance the discriminative 
properties of relearned decision functions. Here, also a relation 
to methods such as stacked generalization [11] can be drawn, 
which include information from a prior model outcome for a 
new prediction. However, relearning methods in the context of 
remote sensing account explicitly for the geospatial domain by 
taking the spatial alignment of class labels into account: 
Huang et al. [6] calculate a primitive co-occurrence matrix 
and local class histograms for quantification of the spatial 
alignment of class labels in the feature space. Experimental 
results showed better accuracies compared to a per-pixel 
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approach and traditional CPP methods. Geiß and Taubenböck 
[8] model spatial-hierarchical context relations with the 
preliminary classification outcome by computing class-related 
features using a triplet of hierarchical segmentation levels. 
Following the general principle of relearning strategies, those 
features are used to enlarge the initial feature space and 
impose spatial regularization in the relearned model which 
allowed for enhanced accuracy properties of the resulting 
model. An overarching relearning strategy was recently also 
employed in the context of an ensemble classifier method [9] 
and active learning framework [10].  

In parallel, deep learning methods became increasingly 
popular for classifying remote sensing data [12] [13]. Models 
such as Fully Convolutional Neural Networks (CNN) [14] 
allow for learning a hierarchy of discriminative feature 
representations which frequently enable beneficial accuracy 
properties of pixel-level predictions given a sufficient amount 
of training data. Analogous to the aforementioned features 
which internalize the neighborhood characteristics of 
individual pixels, learned feature representations accumulate 
contextual information over large receptive fields [15].  

In this letter, we built upon the idea of relearning and 
uniquely extend it in the context of a CNN model, referred to 
as deep relearning convolutional neural network (DRCNN). 
To this purpose, the initial classification outcome of a CNN 
model is provided to a subsequent CNN model via an 
extended input space to guide the learning of discriminative 
feature representations in an end-to-end fashion. Hereby, we 
evaluate the effects of learning the DRCNN in a cumulative 
and non-cumulative way, i.e., extending the input space based 
on all previous or solely preceding model outputs, 
respectively, during an iterative procedure. Finally, we also 
combine the outcome of the DRCNN with an alternative CPP 
strategy, i.e., object-based voting (OBV). Thereby, the 
imagery is partitioned with a segmentation algorithm on 

multiple segmentation layers. The DRCNN model outputs are 
aggregated on segment levels via a majority voting strategy. 
This strategy aims for preserving boundary information of 
objects which are frequently washed out by CNN models [15].  

The remainder of the letter is organized as follows: section 
II details the proposed DRCNN relearning method. We 
describe the experimental setup in section III and report results 
of actual experiments in section IV. Concluding remarks are 
given in section V. 

II. PROPOSED METHODOLOGY 

The proposed DRCNN builds upon a CNN but deploys the 
outcome, i.e., class-conditional probabilities, for relearning the 
model (sec. IIA). In addition, it can be coupled with OBV to 
ultimately preserve boundary information of objects (sec. IIB).  

A. Deep Relearning Convolutional Neural Network 

Let � ∈ ℝ�×�×� be the input space, e.g., a multichannel 
multispectral image, where ℎ, �, and �, correspond to height, 
width, and dimensionality, i.e., number of channels, 
respectively. A CNN imposes a set of learnable parameters � 
on � and establishes a corresponding output � = �(�, �), i.e., 

� ∈ ℝ��×��×��
. The building blocks of a CNN include 

frequently several model components (Fig. 1). A 
convolutional block calculates the convolution of � with a set 

of �� filters � ∈ ℝ��×��×�×��
given by  

��������� ���� + � � � ������

�

���

��

���

��

���

× �����,����,�� (1) 

where � is a learned bias term and �(·) denotes a nonlinear 
activation function [16]. Regarding the latter, the rectified 
linear unit is deployed  

���� = max�0, �����. (2) 

The convolution operation is directly followed by a batch 
normalization [17] to enhance stability properties of gradient 

 

 
Fig. 1. Overview of the proposed DRCNN approach.  
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descent optimization and speed up convergence. Further, a 
max pooling operator can be employed to establish the 
maximum response of each feature channel in a ℎ� × ��  patch 

������ = max
�����,� ������

�����,����,�. (3) 

After an upsampling module, multinomial logistic regression 
is deployed as classifier, whose scores represent class-
conditional probabilities given by the softmax function 

���� =
exp (����)

∑ exp�
��� (����)

 (4) 

for � classes. Based on the class label � of input �, the 
corresponding classification loss is computed via  

� = − � � �������

�

���

�

���

 (5) 

to force the network to put all the mass on the correct labeling. 
Given our geospatial classification task, the loss is computed 
uniformly over the grid of spatial predictions. During 
inference, the probabilistic output can be discretized to obtain 
an unambiguous classification map 

�(�) = argmax
�∈{�,…,�}

���� (6) 

where �(�) is the categorical label.  
However, for the relearning procedure the class-conditional 

probabilities as obtained with eq. 4 are provided as separate 
input layers for each class via an extended input space, i.e., 
�� ∈ ℝ�×�×�×�, to the DRCNN (Fig. 1). Hereby, we evaluate 
to learn the DRCNN in a cumulative and non-cumulative way, 
i.e., extending the input space based on all previous or solely 
preceding model outputs, respectively, during an iterative 
procedure. As such, the dimensionality of �� is enlarged by a 
value in proportion to the number of thematic classes to be 
estimated for both the non-cumulative and cumulative case. 
After the first iteration, the dimensionality of �� remains 
constant for the non-cumulative relearning procedure (Fig. 
1a). In contrast, the dimensionality of �� increases linearly in 
the cumulative case as a function of the number of thematic 
classes and iterations (Fig. 1b). It can be noted that the 
training set is newly drawn after each iteration where labels 
remain the same while the input is altered or extended for the 
non-cumulative and cumulative case, respectively. Thereby, 
the number of iterations can be set according to a stopping 
criterion. Finally, the model which maximizes a defined 
accuracy measure is selected. As such, we treat the number of 
iterations as a hyperparameter which needs to be optimized in 
a data-driven way without prior constraints. 

B. Object-based voting 

The DRCNN can be coupled with a CPP strategy such as 
OBV [1], [8]. � is partitioned with a segmentation algorithm at 
a certain segmentation level s in �� objects ��

� (� =
1, 2, … , ��). Thereby, the following constraint must be 
fulfilled to establish an unambiguous hierarchy of 
segmentation levels:  

� ��
��� = ��

�

��
���⊆��

�

 (7) 

This way it is ensured that an object at segmentation level � −
1 must be included in only one object at level �. For an 
exhaustive description of the objects of an image, multiple 

hierarchical segmentation levels can be deployed, i.e., � ∈
{… , � − 1, �, � + 1, … }. For aggregation of the class labels 
obtained with eq. 6 to �, we deploy a crisp OBV scheme [6], 
what corresponds to a majority vote per object: 

�(�) = argmax
�∈{�,…,�}

�
1

��
� �(�(�) = �)

�∈�

�. 
(8) 

Thereby, �(�) refers to the final label of object �. � is an 
indicator function which captures the number of times that the  
labeled pixels � within an object feature class label �. �� 
corresponds to the number of pixels of an object. 

III. EXPERIMENTAL SETUP 

The experimental analysis was carried out by classifying 
two test areas taken from a multispectral image. This image 
was acquired over the city of Cologne, Germany, by the 
WorldView-II satellite sensor on January 31, 2014, with a 
geometric resolution of 0.5 m. The first data set consists of 
2000 × 2000 pixels and shows an urban area of Cologne, 
which is dominated by buildings of commercial use (Fig. 2a; 
data set I). The second data set comprises 900 × 900 pixels 
and represents an area of residential buildings next to the river 
Rhine (Fig. 2e; data set II). Both image subsets feature a 
complex and small-scale composition of urban land cover 
captured by an off-nadir acquisition. The pixels of the image 
were grouped into six relevant thematic classes (Fig. 2b/f). 
The thematic classes of the individual pixels were determined 
based on photointerpretation analysis under consideration of 
additional aerial imagery and cadastral maps. In the 
subsequent experiments, the training patches were sampled 
from the training data pool uniformly with respect to class 
frequencies to establish a balanced training set. Thereby, it 
was made sure that training and testing data were compiled in 
a strict spatially disjoint way, while also taking the spatial 
extents of the receptive fields into account, to allow for 
unbiased estimates of model generalization capabilities [18] 
(Fig. 2c-d/g-h). Additionally, it was made sure that both the 
training data pool and testing data contains a sufficient number 
of samples for each class. For the experiments a subset of the 
training data is deployed for model learning, however, the 
complete set of testing samples is used for validation. 

 
Fig. 2. Experimental data for two test areas; (a/e) multispectral image from 
WorldView-II acquired over the city of Cologne (Germany); (b/f) reference 
pixels; (c/g) pool of labeled pixels used for stratified random selection and 
model learning; (d/h) spatially disjoint labeled pixels used for validation. The 
number of pixels assigned to the training data pool and testing data is also 
provided. 
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Regarding the OBV strategy, we deploy a bottom-up region-
growing segmentation algorithm for partitioning of � (i.e., 
fractal net evolution approach [19]). In the experiments, we 
put more emphasis on shape heterogeneity rather than on gray-
value heterogeneity with respect to the segmentation 
algorithm. This is due to the fact that man-made structures 
such as buildings and other elements of urban environments 
have distinct shape and size properties, unlike, for example, 
natural features. Analogously, the weights for heterogeneity of 
smoothness and compactness were maintained equal (i.e., 
shape: 0.7 and color: 0.5) and kept constant. Three 
hierarchical segmentation levels were created for the 
experiments to establish a range of potentially useful segment-
based representations of the image content.  

Regarding the CNN model architecture, the spatial extent of 
the input training samples, i.e., receptive field, should 
internalize the size of the objects of interest. As such, the 
majority of urban land cover objects feature dominant scales 
between three and 24 meters [20]. Consequently, the window 
size for training sample extraction was set to 60 × 60 pixels, 
i.e., 30 meters. Overall, we deploy five hidden layers with 3 × 
3 kernels, and implement max pooling after the last block. The 
number of features was set to 10 for each convolutional layer. 
The learning rate was fixed to 0.0006 and deployed over 30 
epochs per iteration. We want to stress that our goal here is not 
to set up the best possible model architecture for the data sets, 
but to enable ceteris paribus-near conditions for the 
comparative evaluation of the different processing principles.  

The relearning procedure was implemented with five 
iterations. Final model selection was carried out by evaluating 
corresponding κ statistics as global measures of accuracy, 
whereas the thematic accuracies of the obtained classification 
maps were additionally assessed by computing the overall 
accuracy (OA) and producer’s (PA) and user’s accuracy (UA).  

IV. EXPERIMENTAL RESULTS 

Averaged estimated κ statistics and OA with corresponding 
standard deviation (SD) from five model runs with 
independently drawn 5000 labeled training samples per class 
are revealed for both data sets in Fig. 3. It can be seen that the 
proposed DRCNN approach can on average achieve 
consistently higher accuracies than the CNN models while 
simultaneously reducing SD. An increase of 3.09 and 2.52 
percentage points (p.p.) in terms of κ and OA, respectively, 
can be observed for data set I. A similar trend is revealed for 
data set II, where κ and OA can be further increased from a 
fairly high accuracy level by 1.95 and 1.28 p.p., respectively. 
Thereby, the non-cumulative relearning strategy provides on 
average slightly higher accuracies compared to the cumulative 
scheme with an additional increase of 0.56 and 0.29 p.p. in 
terms of κ for data set I and II, respectively. Thereby, the non-
cumulative strategy is also beneficial regarding the time for 
learning the models. During the experiments, we observed that 
the runtime remained approximately constant while it 
increased in a linear fashion for the cumulative relearning 
strategy. Generally, the experimental analyses underline that 
CNNs can benefit from the consideration of preliminary 
model outcomes and that the proposed DRCNN can 

unambiguously provide superior accuracies compared to the 
initial CNN models.  

When coupling the models with the OBV scheme, 
additional improvements can be observed. The accuracies of 
the initial CNN models increase from 72.64% to 75.24% and 
from 92.43% to 94.53% with respect to κ for data set I and II, 
respectively. The DRCNN-based results can provide an 
additional increase to 77.45% and 77.66% as well as 97.19% 
and 97.36%, regarding the cumulative and non-cumulative 
strategy for data set I and II, respectively. Generally, these 
findings are in line with recent studies which couple CNN 
models with an OBV strategy and also obtain enhanced 
accuracy properties [21]. However, here we additionally show 
that conventional CPP techniques such as OBV can further 
profit from an upstream relearning strategy. 

We can therefore state that, overall, the best results could be 
achieved with the DRCNN models which deploy also an OBV 
scheme over a non-cumulative relearning strategy. They 
allowed increasing the initial CNN model accuracies by 5.02 
and 3.75 p.p., as well as by 4.93 and 3.25 p.p. regarding κ and 
OA for data set I and II, respectively. This underlines the 
beneficial performance of the proposed methods.  

When inspecting the classification maps of a single model 
run and corresponding PA and UA values (Fig. 4), it becomes 
comprehensible that the DRCNN models with OBV strategy 

 
Fig. 3. Averaged κ statistic and OA with corresponding error bars representing 
one SD as obtained from five independent trials for the two test data sets 
given 5000 labeled samples per class.  
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can provide spatially homogenized solutions and synergize 
most class-specific top scores. This confirms the capability of 
the proposed methodology to deploy the intrinsic patterns in 
initial classification outcomes for learning models with 
enhanced discriminative properties while simultaneously 
encoding adequate smoothness priors. 

V. CONCLUSIONS 

In this letter, we have proposed a novel post-classification 
relearning strategy for CNNs to enhance classification 
accuracy. It was inspired by the observation that relearning 
strategies can be superior compared to CPP methods which 
relabel model outcomes in the image domain. Thus, the 
designed DRCNN model deploys initial classification 
outcomes via an extended input space to guide the learning of 
discriminative feature representations. The experimental 
results unambiguously stress that CNNs can benefit from the 
consideration of preliminary model outcomes and also that 
conventional CPP techniques can further profit from an 
upstream relearning strategy. In the future, we aim to 
implement diagnostic schemes which allow to further track the 
improved feature representations of CNN-based relearning 
strategies.    
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Fig. 4. Classification maps obtained from a run with 5000 samples per class for the two data sets. Class-specific values for PA and UA are also provided. Highest 
PA and UA values for each land cover class are marked in bold.  


