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Abstract—Huge imbalance of different scenes’ sample numbers 

seriously reduces Synthetic Aperture Radar (SAR) ship detection 

accuracy. Thus, to solve this problem, this letter proposes a Bal-

ance Scene Learning Mechanism (BSLM) for offshore and inshore 

ship detection in SAR images. BSLM involves three steps: 1) based 

on unsupervised representation learning, a Generative Adversar-

ial Network (GAN) is used to extract the scene features of SAR 

images; 2) using these features, a scene binary cluster (offshore/in-

shore) is conducted by K-means; 3) finally, the small cluster’s sam-

ples (inshore) are augmented via replication, rotation transfor-

mation or noise addition to balance another big cluster (offshore), 

so as to eliminate scene learning bias and obtain balanced learning 

representation ability that can enhance learning benefits and im-

prove detection accuracy. This letter applies BSLM to four widely-

used and open-sourced deep learning detectors, i.e., Faster Re-

gions-Convolutional Neural Network (Faster R-CNN), Cascade R-

CNN, Single Shot multi-box Detector (SSD) and RetinaNet, to ver-

ify its effectiveness. Experimental result on the open SAR Ship De-

tection Dataset (SSDD) reveal that BSTM can greatly improve de-

tection accuracy, especially for more complex inshore scenes. 
 

Index Terms—Synthetic Aperture Radar (SAR), Ship Detection, 

Offshore, Inshore, Balance Scene Learning Mechanism (BSLM) 
 

I. INTRODUCTION 

HIP detection in Synthetic Aperture Radar (SAR) images is 

attracting increasing scholars’ attention [1]-[21] for its great 

value in traffic control, salvage at sea, fishery management, etc. 

So far, many traditional SAR ship detection methods have 

been proposed [1]-[4]. Hou et al. [1] designed a multilayer Con-

stant False Alarm Rate (CFAR) SAR ship detector. Zhu et al. 

[2] proposed a template-based SAR ship detection method. Xie 

et al. [3] and Zhai et al. [4] also proposed saliency-based meth-

ods. However, the above traditional feature extraction methods 

have huge difficulty in detecting more complex inshore ships. 

In recent years, increasing scholars [9]-[21] have started to 

make extensive research into deep learning-based SAR ship de-

tection methods, e.g., 1) based on Faster R-CNN [5], Cui et al. 

[9] proposed a dense attention pyramid network to detect multi-

scale ships, and Lin et al. [10] also proposed a squeeze and ex-

citation Faster R-CNN to improve detection accuracy; 2) based 

on Cascade R-CNN [6], Wei et al. [11] designed a high-resolu-

tion SAR ship detection network, and Li et al. [12] used a cas-

cade smoothing operator to ease speckle noise in SAR images; 

3) based on SSD [7], Wang et al. [13] applied transfer learning 

to improve accuracy, and Yang et al. [14] fused multi-scale fea-

ture for multi-scale ship detection; 4) based on RetinaNet [8], 

Wang et al. [15] performed ship detection in Gaofen-3 images, 

and Liu et al. [16] proposed an improved loss function to en-

hance training benefits. However, these deep learning methods 

still pay less attention to complex inshore scenes, and thus have 

a huge accuracy gap between inshore scenes and offshore ones. 

One possible reason is the huge imbalance of offshore scene 

and inshore one in sample number. Such huge imbalance refers 

that offshore samples in Fig. 1(a) are far more than inshore ones 

in Fig. 1 (b) among most datasets. As a result, it brings a huge 

imbalance in learning representation ability, causing lower in-

shore scene accuracy than offshore one. Moreover, our previous 

work [17] found that the detection accuracy of inshore scenes 

is too poor as well, seriously hindering our further progress. 

Thus, to solve this problem, this letter proposes a novel Bal-

ance Scene Learning Mechanism (BSLM) for offshore and in-

shore SAR ship detection. BSLM involves three steps: 1) using 

unsupervised representation learning, a GAN [22] is used to au-

tomatically extract different scenes’ features in an unsupervised 

manner by the confrontation between a generator and a discrim-

inator; 2) using extracted features, a scene binary cluster (in-

shore/offshore) is conducted by K-means; 3) finally, the sample 

number of the small cluster (inshore samples) is augmented by 

replication, rotation transformation or noise addition to balance 

another big cluster (offshore samples), so as to eliminate differ-

ent scenes’ learning bias and achieve balanced learning repre-

sentation ability of different scenes, which can enhance learning 

benefits. To confirm BSLM’s effectiveness, we apply it to four 

widely-used and open-sourced detectors, i.e., two high-accurate 

but low-speed two-stage detectors (Faster R-CNN and Cascade 

R-CNN) and two high-speed but low-accurate one-stage detec-

tors (SSD and RetinaNet). Experimental results on the open 

SSDD dataset [12] reveal that BSTM can greatly improve de-

tection accuracy, especially for more complex inshore scenes. 

Notably, BSLM is a universal mechanism that is also useful for 

other object detectors and other SAR datasets, of great value. 
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Fig. 1. Ships in SAR images. (a) Offshore scenes; (b) Inshore scenes. 
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The main contributions of this letter are as follows: 

1) BSLM is proposed for offshore and inshore SAR ship detec-

tion via the balance idea of different scenes’ sample number. 

2) GAN is used to extract the scene features of SAR images to 

differentiate between offshore ships and inshore ships based 

on the unsupervised representation learning. 

II. METHODOLOGY 

A. Motivation of BSLM  

1) Motivation 1: Online Hard Example Mining 

Shrivastava et al. [23] proposed Online Hard Example Min-

ing (OHEM) to excavate hard samples where the samples with 

big training losses are seen as hard ones which are accumulated 

into a pooling. Once the sample number in the pooling equals a 

training batch, they will be regarded as a new training batch to 

be trained by networks repeatedly. In general, inshore samples 

can be seen as hard ones and the offshore as easy ones. However, 

OHEM is sensitive to noise labels [24] that widely exist in most 

SAR datasets, so it is not rather suitable for SAR ship detection, 

so it is essential to excavate difficult inshore samples for em-

phatical training to enhance their learning representation ability. 

2) Motivation 2: Balance Learning 

Pang et al. [24] found three imbalances in object detection, 

i.e., positive-negative sample, feature and object imbalances. 

We also found SAR image scene imbalance, i.e., offshore sam-

ples often account for a larger proportion than inshore ones in 

whole dataset, which is in line with almost SAR ship datasets, 

and also seems to accord with the fact that ocean area of the 

earth is much larger than land, but such scene imbalance can 

bring a learning bias, i.e., detectors can obtain strong learning 

ability in offshore scenes for more offshore samples, but poor 

one in inshore scenes for less inshore samples, because more 

data can bring better learning effects generally. Finally, leaving 

aside the differences in scene complexity, just considering the 

big gap in scene sample number, the accuracy of the inshore 

inevitably is inferior to the offshore, given its poor learning rep-

resentation ability [See Fig. 2(a).], so it is essential to balance 

scene sample number in order to obtain balanced scene learning 

representation. Finally, BSLM is proposed to make the above 

two imbalances in Fig. 2(a) to be balanced again [See Fig. 2(b).]. 

B. Implementation of BSLM  

1) Step 1: Unsupervised Scene Feature Extraction 

In Fig. 2, the core of BSLM is to distinguish different scenes. 

In fact, it is a challenging task because dataset’s publishers did 

not provide real scene class labels (inshore/offshore), so this is 

an unsupervised process. It is not advisable to adopt traditional 

methods to extract scene features for limited generalization per-

formance and excessive human intervention. Fortunately, GAN 

[22], a modern promising unsupervised algorithm [25], makes 

this problem solved smoothly. So far, by such unsupervised rep-

resentation learning, Lin et al. [25] and Radford et al. [26] have 

applied GAN to scene feature extraction of optical images, so 

we also adopt GAN to extract the SAR images scene features. 

Moreover, it is also feasible to collect some samples as offshore 

ships with homogeneous features to differentiate inshore ships 

in a supervised manner, but it is time-consuming and laborious, 

and may also cause limited application in other more datasets. 

BSLM
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Fig. 2. Scene imbalance and learning imbalance. 
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Fig. 3. Model of GAN. 

a). Model of GAN 

Fig. 3 shows the model of GAN. From Fig.3, a GAN consists 

of a generator G(z) and a discriminator D(x). The input of the 

generator G(z) is a random prior noise z with a distribution pz(z) 

that is used to: 1) learn the generator’s distribution pg on the real 

data x; 2) represent a mapping to data space as G(z; θg) where 

G is a differentiable function of a network with parameters θg. 

The output of the generator G(z) is the generated samples B. 

The inputs of the discriminator D(x) are both the samples from 

the real data x with a distribution pdata(x) and the generated sam-

ples B of the generator. The output of the discriminator D(x) is 

a single scalar D(x; θd) that is used to represent the probability 

that x came from real samples A rather than fake samples B, by 

using a sigmod function defined by y = 1/(1+e-x). 

In training, the generator G(z) generates fake samples B that 

come from its learning on the real samples A meanwhile the 

discriminator D(x) strives to distinguish fake samples B from 

real samples A. Then, based on the feedback of the training loss 

function, the generator G(z) will learn harder to make fake sam-

ples B closer and closer to real samples A, so as to deceive the 

discriminator D(x), but the discriminator D(x) will also work 

harder to improve its identification ability so as to resist the 

cheating of the generator G(z). Finally, the above confrontation 

process between the generator G(z) and the discriminator D(x) 

enables GANs to accurately learn the real data distribution [22]. 

Moreover, GAN can also learn multi-resolution scene features, 

for the existence of multi-resolution images in the training set. 

b). Network Architecture of GAN 

Similar to Radford et al. [26], we establish the GAN, shown 

in Fig. 4. From Fig. 4, there are 7 deconvolutional blocks in the 

generator (C1~C7) and 7 convolutional blocks in the discrimi-

nator (C8~C14). The network input of the generator is set as a 

100-dimension random noise vector obeying a uniform distri-

bution. After a series of deconvolution operations, it is mapped 

into an output image with 256×256×3 dimension. Then, the real 

samples A and generated samples B are used as inputs of the 

discriminator network. After a series of convolution operations, 

they are mapped into a feature vector with 1024×4×4 dimension.  

Similar to Lin et al. [25], we concatenate the last 3 convolu-

tion blocks’ feature maps (C12, C13 and C14) in the discrimi-

nator to form the scene feature vector of SAR images F, in order 

to aggregate the mid- and high-level information [25], i.e.,  
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 
=F F F F  (1) 

where FC12, FC13 and FC14 respectively denotes the feature maps 

of C12, C13 and C14, © denotes concatenate operation, Max-

Pool2× and MaxPool 4× respectively denotes 2 times and 4 times 

max pooling, and flatten is used to reshape feature maps into a 

column vector, i.e., from 1792×4×4 to 28672×1×1 where 1792 

equals 256+512+1024 and 28672 equals 1792×4×4. Finally, the 

scene feature vector of SAR images, 

 ( )1 2 3 28671 28672
, , , , ,

T

f f f f f=F  (2) 

is clustered using K-means algorithm.  

c). Training of GAN 

We train D(x) to maximize D(G(z)) that means assigning cor-

rect labels to real samples and samples from G(z), meanwhile 

train G(z) to minimize log[1−D(G(z))]. Moreover, the weights 

of G(z) are fixed when training D(x), and the weights of D(x) 

are fixed when training G(z). Finally, D and G play the two-

player minimax game with value function V(G, D) [22]: 

 

( ) ( )

min max ( , )

           [log ( )] [log(1 ( ( )))]
data z

G D

p p

V D G

D D G

=

+ −
x x z z

x z
 (3) 

More details about GAN can be found in [22], [25], [26]. 

2) Step 2: Scene Binary Cluster 

Using the scene feature vector F, K-means is used to conduct 

a scene binary cluster. Fig. 5 shows the clustering results of K-

means on the training set of SSDD. In Fig. 5, according to our 

observation, almost all inshore samples can be correctly classed 

into the small cluster with less samples, meanwhile almost all 

offshore samples can be correctly classed into another big clus-

ter. One possible reason is that GAN could have chosen better 

features to represent different scenes based on an even a small 

number of samples of the offshore and inshore classes. 

We conduct a performance evaluation of clustering using the 

cluster internal criteria [30] (i.e., real scene class labels are not 

required.), as is shown in Table Ⅰ. In Table Ⅰ, Calinski-Harabaz-

Index is used to measure the compactness within clusters de-

fined by Calinski et al. [27] (A higher value means better per-

formance.), Davies-Bouldin-Index is used to measure the aver-

age value of maximum similarity of clusters defined by Davies 

et al. [28] (A lower value means better performances and its 

value range is [0,1]) and Silhouette-Coefficient is used to meas-

ure the density within clusters and the dispersion between clus-

ters defined by Rousseeuw et al. [29] (A higher value means 

better performance and its value range is [-1,1]). In Table Ⅰ, the 

high Calinski-Harabaz-Index, small Davies-Bouldin-Index and 

high Silhouette-Coefficient jointly reveal the good cluster per-

formance using the scene features from GAN by K-means, from 

the perspective of statistical significance of datasets. 

 

Fig. 5. Clustering results of K-means on the training set. Visualization presen-

tation of (f1, f2, f3) from Eq. (2) for more intuitive observation. 

TABLE I 

EVALUATION INDICES OF K-MEANS CLUSTER RESULTS 

Type Value 

Calinski-Harabaz-Index 2991.61 

Davies-Bouldin-Index 0.26 

Silhouette-Coefficient 0.80 

 

Moreover, we also conduct a performance evaluation of clus-

tering based on the cluster external criteria [30] (i.e., real scene 

class labels are required.). However, SSDD’s publisher [12] did 

not provide the real labels of inshore or offshore, so we specif-

ically make scene class labels according to human visual expe-

rience, where the samples containing lands are regarded as the 

inshore scene and the samples not containing lands are regarded 

as the offshore one. Given above, the average accuracy of scene 

cluster reaches 96.15%, showing the scene features extracted 

from GAN are rather effective. 

Finally, we regard the small cluster as inshore scene and an-

other big one as offshore scene. In fact, our such practice is also 

certainly in line with the actual application situation, because, 

in almost all existing SAR ship datasets, the number of inshore 

samples is universally less than that of offshore ones, which 

also seems to accord with the fact that ocean area of the earth is 

also much larger than land. 

3) Step 3: Inshore Sample Augmentation 

Finally, we augment the small cluster with less samples (in-

shore samples) via sample replication, rotation transformation 

or noise addition to make the sample number of two clusters 

basically equal so as to obtain a balance between the inshore 

and the offshore. Finally, the learning bias of different scenes is 

eliminated and the learning representation of different scenes is 

balanced, bringing better learning benefits. 

III. EXPERIMENTS 

A. Dataset 

We use the first open SSDD dataset [12] to verify our work. 

There are 1,160 SAR images with 500×500 average size from 

Sentinel-1, TerraSAR-X and RadarSat-2 in SSDD1, with vari-

ous polarizations, various resolutions and abundant ship scenes. 

1 In our previous work [17], SSDD is divided into a training set, a validation set 

and a test set by 7:2:1, but such random partition may cause accuracy random-

ness on the test set, so Li et al. [12] appeal to use 8:2 ratio as a training set and 
a test set (image indexes’ suffix 1 and 9 as the test set). Furthermore, we also 

revised the error labels of the test set and the revised test set is available on: 

https://pan.baidu.com/s/1YvsrP84l_At-svoZu44q-w (password: e5fn). 
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Fig. 4. Network architecture of GAN. (a) Generator. (b) Discriminator. 
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TABLE Ⅱ 

EVALUATION INDICES OF DIFFERENT METHODS WITH BSLM OR WITHOUT BSLM. 

Type Method BSLM 
Inshore + Offshore Inshore Offshore 

Recall Precision mAP Recall Precision mAP Recall Precision mAP 

Two-Stage 

Faster R-CNN 
 89.34% 83.51% 88.26% 70.35% 62.05% 66.22% 98.12% 94.32% 97.68% 

 92.10% 89.95% 91.13% 78.49% 77.14% 74.82% 98.39% 95.81% 98.18% 

Cascade R-CNN 
 88.97% 94.16% 88.67% 69.19% 83.80% 68.00% 98.12% 98.12% 98.00% 

 92.10% 92.95% 91.53% 78.49% 82.32% 76.32% 98.39% 97.60% 98.25% 

One-Satge 

SSD 
 69.49% 96.43% 68.93% 47.67% 87.23% 46.52% 79.57% 99.33% 79.38% 

 78.12% 93.82% 76.59% 67.44% 85.29% 64.67% 83.06% 97.48% 82.44% 

RetinaNet 
 72.43% 94.26% 71.51% 48.26% 83.00% 45.66% 83.60% 97.80% 83.35% 

 81.80% 84.28% 77.85% 68.02% 61.26% 58.06% 88.17% 97.33% 87.50% 

B. Training Details 

In MMDetection (https://github.com/open-mmlab/mmdetec-

tion), BSTM is applied to four deep learning detectors (Faster 

R-CNN, Cascade R-CNN, RetinaNet and SSD). ResNet-50-

FPN [24] is set as backbones of the first three and VGG-16 as 

backbone of SSD. All samples are resized into 512×512 [20] 

for network training. We train these four detectors for 12 epochs 

via Stochastic Gradient Descent (SGD) [28] with learning rate 

= 0.02, momentum = 0.9, weight decay = 0.001 and 4 batch size. 

C. Evaluation Indices 

Recall, Precision and mAP are defined by [17]: 

 Recall TP / (TP FN),  Precision TP / (TP FP)= + = +  (4) 

 
1

0
mAP P( )dR R=   (5) 

where TP is True Positive, FN is False Negative, FP is False 

Positive and the full name of mAP is mean Average Precision. 

IV. RESULTS 

A. SAR Ship Detection Results 

Fig. 6 shows the detection results of different methods on the 

test set of SSDD. Intersection over Union (IOU) threshold [17] 

is set as 0.5. From Fig. 6, when BSLM is adopted, the detection 

performance is universally improved, e.g., some false alarms 

are suppressed (marked in red ellipse), some missed detections 

are detected again (marked in red rectangle) and the confidence 

scores also universally become higher (marked in red arrow). 

B. Quantitative Performance Comparison 

Table Ⅱ shows the evaluation indices. Fig. 7 shows their P(R) 

curves. From Table Ⅱ, the following conclusions can be drawn: 

1) On the offshore and inshore scenes, BSLM improved Faster 

R-CNN, Cascade R-CNN, SSD and RetinaNet by 2.87%, 

2.86%, 7.66% and 6.34% mAP, respectively. 

 
Fig. 7. P(R) curves of different methods. P is Precision and R is Recall. 

2) On the inshore scenes, BSLM improved Faster R-CNN, Cas-

cade R-CNN, SSD and RetinaNet by 8.60%, 8.32%, 18.15% 

and 12.40% mAP, respectively. Therefore, the learning rep-

resentation ability of inshore scenes is greatly enhanced. 

3) On the offshore scenes, BSLM improved Faster R-CNN, 

Cascade R-CNN, SSD and RetinaNet by 0.50%, 0.25%, 3.06% 

and 4.15% mAP, respectively. Notably, while enhancing in-

shore learning ability, offshore one does not become weak 

but a little stronger. One possible reason may be that without 

BSLM, networks may happen overfitting for too many off-

shore samples’ over-learning, causing modest generalization 

ability, but with BSLM, networks can distract partial atten-

tion to the inshore, avoiding the above over-learning. 

4) The accuracy gap between inshore and offshore still exists, 

but their gap is far lower than the original one. 

5) When BSLM is applied to one-stage detectors, the accuracy 

gain is bigger than two-stage, so one-stage detectors’ biggest 

poor accuracy defect is smoothly solved. To be clear, BSLM 

is merely used in training, not reducing detection speed. 
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Fig. 6. Detection results on the test set. (a)Real ships; (b)Faster R-CNN; (c)Faster R-CNN+BSLM; (d)Cascade R-CNN; (e)Cascade R-CNN+BSLM; (f)SSD;(g) 

SSD+BSLM; (h)RetinaNet; (i)RetinaNet+BSLM. False alarm rates Pf of (b)-(i) are 16.49%,10.05%,5.84%,7.05%,3.57%,6.18%,5.74%,15.72% (Pf = 1-Precision). 
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TABLE Ⅲ 

EVALUATION INDICES OF DIFFERENT AUGMENTATION METHODS IN BSLM. 

Type Method Replicate Noise Rotate 
Inshore + Offshore Inshore Offshore 

Recall Precision mAP Recall Precision mAP Recall Precision mAP 

Two-Stage 

Faster R-CNN 

   92.10% 89.95% 91.13% 78.49% 77.14% 74.82% 98.39% 95.81% 98.18% 

   92.28% 88.38% 91.59% 79.07% 73.12% 76.15% 98.39% 95.81% 98.16% 

   92.10% 86.68% 91.30% 78.49% 66.50% 74.91% 98.39% 97.60% 98.21% 

   93.20% 84.08% 92.22% 81.98% 62.67% 76.59% 98.39% 96.83% 98.31% 

Cascade R-
CNN 

   92.10% 92.95% 91.53% 78.49% 82.32% 76.32% 98.39% 97.60% 98.25% 

   92.10% 93.47% 91.59% 77.91% 84.28% 75.51% 98.66% 97.35% 98.60% 

   92.28% 92.96% 91.84% 78.49% 81.82% 76.24% 98.66% 97.87% 98.60% 

   92.28% 92.79% 91.73% 79.07% 80.47% 76.33% 98.39% 98.39% 98.33% 

One-Stage 

SSD 

   78.12% 93.82% 76.59% 67.44% 85.29% 64.67% 83.06% 97.48% 82.44% 

   71.14% 94.16% 70.05% 60.47% 86.67% 58.36% 76.08% 97.25% 75.46% 

   72.43% 94.03% 71.24% 59.88% 82.40% 56.84% 78.23% 98.98% 77.92% 

   71.51% 94.65% 70.69% 58.14% 84.75% 55.94% 77.69% 98.63% 77.43% 

RetinaNet 

   81.80% 84.28% 77.85% 68.02% 61.26% 58.06% 88.17% 97.33% 87.50% 

   78.68% 86.46% 75.56% 62.21% 67.30% 54.27% 86.29% 95.54% 85.30% 

   79.41% 82.13% 74.79% 63.37% 57.37% 51.81% 86.83% 96.13% 86.08% 

   80.70% 82.06% 76.32% 64.53% 57.51% 54.14% 88.17% 95.91% 87.25% 

 

C. Discussion on Different Augmentation Methods 

Table Ⅲ shows different augmentation methods’ influences 

on model generalization ability where “replicate” is sample rep-

lication, “noise” is random gaussian noise addition with mean 

0 and variance 0.1, and “rotate” is 90°, 180° and 270° rotation. 

From Table Ⅲ, the following conclusions can be drawn: 

1) For two-stage detectors, noise addition or rotation operation 

obtains better generalization ability than sample replication, 

in line with traditional machine learning common sense. 

2) For one-stage detectors, these two methods do not obtain bet-

ter accuracy than sample replication. One possible reason is 

that one-stage detectors may be sensitive to noise and rota-

tion. Still, their overall detection performances both remain 

superior to initial detection performances of not using BSLM. 

V. CONCLUSIONS 

BSLM is proposed for offshore and inshore SAR ship detec-

tion. First, GAN is used to extract image scene features. Then, 

K-means is used to perform a scene binary cluster. Finally, in-

shore samples are augmented to balance offshore ones. As a re-

sult, different scene learning bias is eased. Experimental results 

on SSDD verified the effectiveness of BSLM. BSLM is a uni-

versal mechanism that is also effective for more other detectors.  

Our work of this letter is of great meaning, because: 

1) We innovatively solved scene detection imbalance from the 

dataset perspective, even though simple but rather effective. 

2) We originally used GAN for unsupervised SAR image scene 

feature extraction that can also stimulate new research ideas, 

e.g., scene adaption, scene recognition before detection, etc. 

REFERENCES 

[1]. B. Hou, et al., “Multilayer CFAR detection of ship targets in very high-

resolution SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 12, no. 4, 
pp. 811-815, 2015. 

[2]. J. Zhu, et al., “Projection shape template-based ship target recognition in 

TerraSAR-X images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 2, pp. 
222-226, 2017. 

[3]. T. Xie, et al., “Inshore ship detection based on level set method and visual 
saliency for SAR Images,” Sensors, vol. 18, no. 11, pp. 3877, 2018. 

[4]. L. Zhai, et al., “Inshore ship detection via saliency and context information 

in high-resolution SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 13, 
no. 12, pp. 1870-1874, 2016. 

[5]. S. Ren, et al., “Faster R-CNN: Towards real-time object detection with re-

gion proposal networks,” arXiv:1506.01497. 

[6]. Z. Cai, et al., “Cascade R-CNN: Delving into high quality object detection,” 

arXiv:1712.00726.  

[7]. W. Liu, et al., “SSD: Single shot multibox detector,” arXiv:1512.02325. 
[8]. T. Lin, et al., “Focal loss for dense object detection,” arXiv:1708.02002. 

[9]. Z. Cui, et al., “Dense attention pyramid networks for multi-scale ship de-

tection in SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 
11, pp. 8983-8997, 2019. 

[10]. Z. Lin, et al., “Squeeze and excitation rank Faster R-CNN for ship detec-

tion in SAR images,” IEEE Geosci. Remote Sens. Lett., vol. 16, pp. 7, 2019. 
[11]. S. Wei, et al., “Precise and robust ship detection for high-resolution SAR 

imagery based on HR-SDNet,” Remote Sens., vol. 12, no. 167, 2020. 

[12]. J. Li, et al., “A ship detection method based on Cascade CNN in SAR im-
ages,” Control Decision, vol. 34, no. 10, pp. 2191-2197, 2019. 

[13]. Y. Wang, et al., “Combining a single shot multibox detector with transfer 

learning for ship detection using Sentinel-1 SAR images,” Remote Sens. 
Lett., vol. 9, no. 8, pp. 780-788, 2018. 

[14]. L. Yang, et al., “SAR ship detection based on convolutional neural network 

with deep multiscale feature fusion,” Acta Optica Sin., vol. 40, pp. 21, 2020. 

[15]. Y. Wang, et al., “Automatic ship detection based on RetinaNet using multi-

resolution Gaofen-3 imagery,” Remote Sens., vol. 11, no. 5, pp. 531, 2019. 
[16]. J. Liu, et al., Ship target detection in SAR image based on RetinaNet. J. 

Hunan. Univ. Nat. Sci. Ed., vol. 47, no. 2, pp. 85-91, 2020. 

[17]. T. Zhang, et al., “High-speed ship detection in SAR images based on a grid 
convolutional neural network,” Remote Sens., vol. 11, pp. 120, 2019. 

[18]. J. Zhao, et al., “A coupled convolutional neural network for small and 

densely clustered ship detection in SAR images,” Sci. China Inf. Sci., vol. 
62, no. 4, pp. 42301, 2018. 

[19]. Y. Zhao, et al., “Attention Receptive Pyramid Network for Ship Detection 

in SAR Images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., 
early access, 2020. 

[20]. Y. Mao, et al., Efficient low-cost ship detection for SAR imagery based on 

simplified U-Net. IEEE Access, vol. 8, pp. 69742-69753, 2020. 
[21]. Z. Deng, et al., “Learning deep ship detector in SAR images from scratch,” 

IEEE Trans. Geosci. Remote Sens., vol. 57, no. 6, pp. 4021-4039, 2019. 

[22]. I. J. Goodfellow, et al., “Generative adversarial nets,” arXiv:1406.2661. 
[23]. A. Shrivastava, et al., “Training region-based object detectors with online 

hard example mining,” arXiv:1604.03540. 

[24]. J. Pang, et al., “Libra R-CNN: Towards balanced learning for object detec-
tion,” arXiv:1904.02701. 

[25]. D. Lin, et al., “MARTA GANs: unsupervised representation learning for 

remote sensing image classification,” IEEE Geosci. Remote Sens. Lett., vol. 
14, no. 11, pp. 2092-2096, 2017. 

[26]. A. Radford, et al., “Unsupervised representation learning with deep con-

volutional generative adversarial networks,” arXiv:1511.06434. 
[27]. T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,” 

Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974. 

[28]. D. L. Davies and D. W. Bouldin, “A Cluster Separation Measure,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 1, no. 2, pp. 224-227, 1979. 

[29]. P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and val-

idation of cluster analysis,” J. Comp. Appl. Math., vol. 20, pp. 53-65, 1987. 
[30]. Rendón E. et al., “A comparison of internal and external cluster validation 

indexes,” in Proc. WSEAS Int. Conf. Comp. Eng. Apps., pp. 158-163,2011 


	I. INTRODUCTION
	II. Methodology
	A. Motivation of BSLM
	1) Motivation 1: Online Hard Example Mining
	2) Motivation 2: Balance Learning

	B. Implementation of BSLM
	1) Step 1: Unsupervised Scene Feature Extraction
	2) Step 2: Scene Binary Cluster
	3) Step 3: Inshore Sample Augmentation


	III. Experiments
	A. Dataset
	B. Training Details
	C. Evaluation Indices

	IV. Results
	A. SAR Ship Detection Results
	B. Quantitative Performance Comparison
	C. Discussion on Different Augmentation Methods

	V. Conclusions
	References

