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Abstract—With the development of deep learning, supervised
learning methods perform well in remote sensing images (RSIs)
scene classification. However, supervised learning requires a
huge number of annotated data for training. When labeled
samples are not sufficient, the most common solution is to
fine-tune the pre-training models using a large natural image
dataset (e.g. ImageNet). However, this learning paradigm is not
a panacea, especially when the target remote sensing images
(e.g. multispectral and hyperspectral data) have different imaging
mechanisms from RGB natural images. To solve this problem,
we introduce a new self-supervised learning (SSL) mechanism to
obtain the high-performance pre-training model for RSIs scene
classification from large unlabeled data. Experiments on three
commonly used RSIs scene classification dataset demonstrated
that this new learning paradigm outperforms the traditional
dominant ImageNet pre-trained model. Moreover, we analyze
the impacts of several factors in SSL on RSIs scene classification
task, including the choice of self-supervised signals, the domain
difference between source and target dataset, and the amount of
pre-training data. The insights distilled from our studies can help
to foster the development of SSL in remote sensing community.
Since SSL could learn from unlabeled massive RSIs which are
extremely easy to obtain, it will be a potentially promising way
to alleviate dependence on labeled samples and thus efficiently
solve many problems, such as global mapping.

Index Terms—Remote sensing image, scene classification, self-
supervised learning (SSL), unlabeled pre-training, limited labeled
samples.

I. INTRODUCTION

EMOTE sensing technologies are playing an increasingly

important role in global observing missions due to the
wide range of observations and high temporal resolution.
Particularly, RSIs scene classification, which aims to classify
scene images into different semantic categories, has been a hot
topic driven by applications such as land resource management
and urban planning [1], [2].

To achieve accurate scene classification, how to extract
discriminative features from RSIs to precisely represent the
semantic content of scene has attracted wide attention. In
recent years, with the powerful hierarchical feature extraction
capabilities of deep convolutional neural networks (DCNNs),
deep learning based methods have made significant progresses
in RSIs scene understanding [2]-[4]. However, learning DC-
NNS generally requires large datasets, and building a big
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remote sensing dataset like ImageNet (with more than 10
million annotated natural image samples) is almost impossible,
as the accurate annotation of RSIs is tedious work requiring
rich experience and sound geographic knowledge. Pre-training
methods can solve such problem effectively. These methods
pre-train the DCNNs on a large labeled RGB natural image
dataset (source data) and then fine-tune the network with small
remote sensing data (target data). Although many researches
[5]-[7] have demonstrated that the features extracted from
ImageNet pre-trained DCNNs can generalize well to aerial
image scene classification tasks, pre-training CNNs on Ima-
geNet has two limitations: 1) It may provide no benefit if there
exists significant domain difference between source and target
datasets. 2) Fine-tuning cannot be applied directly if the data
types and imaging mechanisms of source and target dataset
(natural RGB data vs. multispectral data) are quite different.

Most recently, a new trend is observed in machine learning,
which is learning representations by self-supervised learning
(SSL) methods without any additional annotation cost [8]. SSL
methods can first learn potential useful knowledge from a
large amount of unlabeled source data by solving pre-designed
tasks (called pretext tasks), then transfer them to target tasks.
Inspired by recent advances of SSL in applications like natural
language processing [9], nature image classification [10] and
object detection [11], we believe that this kind of feature
learning mechanism is a more effective and robust way for
RSIs scene understanding when labeled data is insufficient.
The main reasons could be: first, SSL provides a flexible
pre-training architecture, because we can use any type of
large-scale remote sensing data without human annotation
to pre-train DCNNSs; second, since we can choose a source
dataset similar to the target dataset at low cost for pre-
training, the new learning paradigm can potentially alleviate
the domain difference and thus ensure the performance of the
learned representations on target RSIs scene classification task.
Therefore, we introduce the self-supervised feature learning
mechanism for RSIs scene classification, and evaluate the
feature learning impact of three commonly used pretext tasks
on target RSIs scene classification. As far as we know, this is
the first time to use the self-supervised learning mechanism in
RSIs scene classification. The contributions of this work are
mainly in two aspects:

1) We demonstrate that SSL is an entirely new paradigm
which learns feature from unlabeled massive images for re-
mote sensing image understanding. This paradigm is extremely
suited to RSI understanding tasks because we have very easy
access to a large number of RSIs, over different areas and at
different times.

2) Experiments on three RSIs scene classification datasets
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Fig. 1. Flowchart of the self-supervised learning paradigm for remote sensing image scene classification.

show that the proposed method overpass the traditional dom-

inant ImageNet pre-training approach when labeled data is

insufficient.

3) We analyze the effects of several factors on the perfor-
mance of SSL, which contributes to a deeper understanding Encoder Decoder

of what enables useful self-supervised feature representation
for RSIs scene understanding.

II. METHODOLOGY
A. Overview of self-supervised learning paradigm

In this letter, we suggest a self-supervised learning frame-
work for RSIs scene classification. As shown in Fig. 1, the
general pipeline of self-supervised learning paradigm consists
of two phases. In the self-supervised training phase, a DCNN
is trained to solve predefined pretext tasks for learning po-
tential useful representations on large unlabeled source data.
And the learned representations are stored as parameters of
the encoder of the DCNN. In the second phase, the learned
representations are transferred to target tasks as a pre-trained
model. Compared with training from scratch, fine-tuning the
pre-trained model with good representations can overcome
overfitting and achieve higher performance on target task,
especially when labeled samples are insufficient.

B. Learning representations by solving pretext tasks

In the self-supervised learning framework, image inpaint-
ing [12], predicting relative position [13] and instance-wise
contrastive learning [14] are three common pretext tasks for
training DCNN encoders. In the following, we brief the learn-
ing algorithms of these three pretext tasks, and evaluate their
feature learning impacts on target RSIs scene classification by
experiments.
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Fig. 2. Illustration of image inpainting pretext task. Given the corrupted image
(left), the model is used to restore the missing part (right) based on the rest
of the image.

1) Image Inpainting: In image inpainting, model f(-) takes
the corrupted image «; as input and is trained to predict the
original image. &; is obtained by masking arbitrary regions of
x;. Generally, the objective function for such a task uses 1.2
loss as shown in (1). By optimizing Eq. (1), the encoder of
DCNN is driven to model pixel-level relationships and local
contextual relations within the image for guessing the missing
regions based on the rest of the image (Fig. 2).

Einpainting = Hf (:Ail) - wl”i M

2) Predict the Relative Position: Image parts have rich
complex spatial or sequential relations, especially natural
images. For instance, in portrait photos the head is above
the body. Therefore, various models regard recognizing rel-
ative positions between parts of images as the pretext task
for self-supervised learning. The relative positions could be
between two patches from a sample [15], or between shuffled



Fig. 3. A typical example for predicting the relative position: 3 X 3 Jigsaw
puzzles. A DCNN takes nine patches as input and predict their positions.

segments of an image (solve jigsaw) [13], as shown in Fig.
3. Given an image meshed into m x n patches p; (i =
1,2,...,mand j =1,2,...,n), model f(-) learns contextual
relationships between patches by optimizing the loss function
in Eq. (2):
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where P; ; is the ground truth position of p; ;.

3) Instance Discrimination: Different from the above pre-
text tasks, instance discrimination (ID, or instance-wise con-
trastive learning) tasks classify examples as their own labels
[10], [11]. Specifically, the ID-based self-supervised learning
(IDSSL) method takes different augmented views of a sample
as positive samples, and takes other different samples as
negative ones. Then, a DCNN is trained to distinguish between
positive and negative samples by embedding them to a proper
feature space with learned representation f(-) (Fig. 4). A
minibatch of N samples is augmented to be 2N samples
Z;(i=1,2,...,2N). For a pair of positive samples (&;, Z;),
other 2(INV — 1) samples are negative ones. Then, a pairwise
contrastive loss, the NT-Xent loss [10], is defined as Eq. (3):

exp (sim (f (&:) , f (&,)) /7)
K)/7)°

SRS T exp (sim (f (&1) . f (&
where 7 denotes a temperature parameter, and Ij;) € {0,1}
is an indicator function evaluating to 1iff[k # ¢]. The similar-
ity measure function sim(u,v) = uTwv/||ul|||v| denotes the
cosine similarity between vectors w and v. ¥¢; ; is asymmetri-
cal, so the total loss of a minibatch can be computed by Eq.
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III. EXPERIMENT
A. Datasets Description and Experiment Designing

The scene classification experiments used three public
datasets with few labeled samples, which are EuroSAT, AID
and NR. These datasets can be divided into low-resolution
multi-spectral RSIs datasets and high-resolution RSIs datasets:

1) Multi-spectral RSIs datasets

EuroSAT [16] contains 27,000 samples of 10 categories,
collected from Sentinel-2 satellite. These images in 13 bands
have a spatial resolution of 30-10m. We used all the 27,000

DCNN
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Fig. 4. Illustration of the instance discrimination pretext task. A DCNN is
asked to draw near multiple augmentation views of an image sample, and
pull away one sample from the other samples by embedding them to a proper
feature space.

TABLE I
THE TRAINING-TESTING SET CONFIGURATION OF THREE DATASET IN THE
EXPERIMENTS
Dataset EuroSAT AID NR
Classes 10 45 30
Unlabeled samples used for SSL 21,600 25,200 8,000
Labeled samples used for fine-tuning S/class S/class  5S/class
Samples used for testing 5,400 6,300 2,000

samples without annotation as the source data for SSL pre-
training, and 5,400 samples were used for test.

2) High-resolution RSIs datasets

Aerial Image dataset (AID) [17] contains 10,000 samples
of 30 classes, collected form Google Earth. These overhead
scene images in RGB color space have a resolution of ap-
proximately 8-0.5m. We used all the 10,000 samples without
annotation for SSL pre-training, and 8,000 for testing.

NWPU-RESISC45 dataset (NR) [ 18] contains 31,500 sam-
ples of 45 scene categories, collected from Google Earth. The
spatial resolution varies from about 30m to 0.2m per pixel
for most images. We used all the 31,500 samples without
annotation for SSL pre-training, and 25,200 for testing.

To evaluate the performance of the SSL-based method on
RSIs scene classification task, we carried out the following
two experiments in PyTorch environment under the CentOS
7.5 platform with four NVIDIA Tesla V100 (memory 16 GB).
The overall accuracy (OA) is used to compare the performance
quantitatively.

An overview of the two experiments is as follows:

o Experiment I aims at analyzing several factors that may
affect the pre-training performance of SSL on the target
RSIs scene classification task, including the choice of
self-supervised signals, the domain difference between
source and target dataset, and the amount of pre-training
data.

o Experiment II aims at evaluating the performance of SSL
on the task of RSIs scene classification, and demon-
strating the advantage of SSL over other methods when
labeled training samples are insufficient.



TABLE II
RESULTS ON THE CHOICE OF SELF-SUPERVISED SIGNALS FOR
EXPERIMENT I

OA on target scene classification tasks
EuroSAT AID NR
Image Inpainting 53.81+1.62  41.15+1.13  17.58+1.22
Predict Relative Position ~ 53.15+1.64  50.32+0.79  34.23+0.85
Instance Discrimination  76.10+0.27  76.80+0.30  80.63+0.03

Pretext task

B. Experiment 1

In this section, we performed controlled studies to investi-
gate several factors that may affect the pertaining performance
of SSL on the target RSIs scene classification task. In the stage
of SSL training, we pre-trained ResNet50 [19] model using
the Adam optimizer with a batch size of 256 samples. The
learning rate was initially set to le-4 and was reduced in a
cosine manner within 400 epochs. In the stage of fine-tuning,
we used only five labeled samples per category to fine-tune
the target task.

1) Study of the choice of self-supervised signals: We
evaluated the feature learning performance of different self-
supervised signals or pretext tasks on target scene classifi-
cation task. As shown in TABLE II, the pretext of instance
discrimination consistently outperforms other two pretext tasks
by a large margin on all three datasets. These results indicate
that choosing an appropriate pretext task is crucial, and the
correlation between pretext and target tasks plays an important
role in learning representative and transferable features. For
solving instance discrimination tasks, models are required to
learn high-level abstract features with semantic information,
which is crucial for classifying RSIs scenes. While in image
inpainting and predicting relative position tasks, models are
mainly concerned with the pixel-level relationships and local
context.

2) Study of domain difference: In this study, we com-
pared the performance of models pre-trained using various
source datasets by instance discrimination-based SSL on target
datasets'. TABLE III shows that pre-training the model using
a source dataset similar to the target dataset can make the
learned representations suit the target dataset better. For ex-
ample, source-target pairs with strong domain similarity (e.g.,
EuroSAT—EuroSAT, AID—AID, and NR—NR) achieves the
best results for the three datasets. On the other hand, the
performance drops dramatically if the domain difference is
large (e.g. from low-resolution multi-spectral RSIs dataset
(EuroSAT) to high-resolution RSIs dataset (NR, AID)). This
phenomenon exists in most machine learning methods. How-
ever, considering SSL training does not need human annotated
data, it is efficient and low-cost to obtain source datasets
similar to the target dataset.

3) Study of the amount of pre-training data: Since SSL
training does not need human annotated data, it is interesting
to see whether more pre-training data can bring performance
improvements. To this end, given a source training dataset, we

'Here only RGB bands were used for EuroSAT to ensure that the pre-
trained models on the three datasets are transferable to each other datasets.

TABLE III
RESULTS ON THE DOMAIN DIFFERENCE FOR EXPERIMENT I

OA on target scene classification tasks for experiment I
Source data

EuroSAT AID NR
EuroSAT (30-10m)  76.10+0.27  42.80+0.47 26.85+0.08
AID (8-0.5m) 61.84+0.52  76.80+0.30 54.77+0.15
NR (30-0.2m) 71.45+0.20  74.10+0.07 80.63+0.03
TABLE IV

RESULTS ON THE AMOUNT OF UNLABELED DATA FOR SSL FOR
EXPERIMENT I

OA on target scene classification tasks
Source data Number g

EuroSAT AID NR
EuroSAT 2,160  57.06+0.31 \ \
EuroSAT 10,800 69.12+0.14 \ \
EuroSAT 21,600 76.10+0.27 \ \

AID 800 \ 46.88+0.21 \

AID 4,000 \ 63.80+0.27 \

AID 8,000 \ 76.80+0.30 \

NR 2,520 \ \ 39.79

NR 12,600 \ \ 68.52

NR 25,200 \ \ 80.63+0.03
AID and NR 33200  72.30+0.15 84.20+0.50  81.13+0.10

AID, NR and EuroSAT 54,800  67.69+0.42  78.60+0.23  75.25+0.24

created two subsets by randomly sampling 10% and 50% of
samples and then evaluated the effect of the amount of pre-
training data using different subsets of each dataset. The exper-
iment result is shown in TABLE IV. As can be seen, enlarging
the training data size generally leads to better performance
because deep learning-based method is data hungry. For all
three datasets, the performance improved significantly when
the amount of pre-training data increases from 10% to 50%,
but the growth rate gradually slows down when the amount of
pre-training data increases from 50% to 100%.

C. Experiment Il

In this section, we compared the instance discrimination-
based SSL (IDSSL) method with two techniques, which are
(a) ImageNet pre-trained ResNet50 and (b) multiple-layer
feature-matching generative adversarial networks (MARTA
GANs) [20]. Here, MARTA GANSs is also an unsupervised
representation learning method for RSIs scene classification.
It learns features with multiscale spatial information from
unlabeled images by proposing a multiple-feature-matching
layer combined with GANSs. For target tasks, we chose the
optimal fine-tuning strategy for each method. Considering
the non-negligible domain differences between ImageNet and
the above three remote sensing datasets, we fine-tuned the
entire ImageNet pre-trained ResNet50. For IDSSL, we fixed
the parameters of models’ encoder and optimized the full
connectivity layer. We used Adam optimizer with a batch
size of 64. And the learning rate was initially set to le-
4 and was reduced in a cosine manner within 200 epochs.
Consist with [20], we regarded the model obtained by MARTR
GANSs as an feature extractor. The extracted features were fed
into the SVMs for classification. Since the models pre-trained



TABLE V
OA OF THE STATE-OF-THE-ART METHODS ON THREE DATASETS FOR EXPERIMENT II

EuroSAT AID NR
Method Number of samples per category
5 20 5 20 5 20
ResNet50 from scratch [19] 53.60+0.58  74.14+0.69  40.75+1.53  59.2840.88  32.70+0.40  58.29+1.10
ImageNet pre-trained ResNet50  69.24+0.62  80.91+0.28  72.77+0.09  81.60+0.17  59.6340.06 ~ 73.74+0.17
MATAR GANs [20] 50.92+1.16  68.60+0.28  53.08+0.44  61.90+0.60  43.52+0.18  59.01+0.24
IDSSL 76.10+0.27  84.68+0.03  76.80+0.30  80.62+0.22  80.63+0.03  85.80+0.15
on ImageNet (natural RGB images) cannot be directly fine- REFERENCES

tuned on EuroSAT datasets (multi-spectral RSIs), only RGB
channels were used on this dataset for ImageNet pre-trained
ResNet50.

From the experimental results in TABLE V, we got the
following findings. First, IDSSL consistently outperforms Im-
ageNet pre-trained model on all three datasets, especially
when using only 5 labeled training samples per category.
One possible reason is that the domain difference between
ImageNet and remote sensing datasets reduces the perfor-
mance of the ImageNet pre-trained model. In contrast, SSL
provides a flexible pre-training architecture, because we can
use any type of large-scale remote sensing data with human
annotation to pre-train DCNNs. As a result, the new learning
paradigm can potentially alleviate the domain difference and
ensure the performance of the learned representations on
target RSIs scene classification task. Second, IDSSL is less
sensitive to the amount of labeled data than other methods. For
example, when the fine-tuning data on NR reduces from 20
per class to 5 per class, the performance of IDSSL decreases
by only 6.02%, whereas the relative reduction of ImageNet
pre-trained ResNet50 and MATAR GANs are 19.13% and
26.24%, respectively. This might be caused by that with robust
representations, IDSSL has little risk of overfitting to labels
of small-sized target data.

IV. CONCLUSION AND FUTURE WORKS

In this study, we introduce a new learning paradigm, SSL,
for RSIs scene classification for the cases of lacking labeled
data. Moreover, we performed comprehensive comparative
study by analyzing several factors in SSL on RSIs scene
classification task and uncovered that the choice of self-
supervised signals, the domain difference between source and
target dataset, and the amount of pre-training data strongly
affect the pre-training performance of SSL. By combining
our findings, the SSL based method outperforms traditional
dominant ImageNet pre-training approach as well as other
state-of-the-art methods by a large margin when labeled data
is insufficient. Future work aims at constructing large scale,
publicly available benchmarks for different sensors to foster
the development of new SSL methods in remote sensing com-
munities and also using the proposed method to applications
such as global mapping which struggle with the limited labeled
samples and transferability problems.
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