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Abstract— This study develops a deep learning (DL) model
to classify the sea ice and open water from synthetic aperture
radar (SAR) images. We use the U-Net, a well-known fully convo-
lutional network (FCN) for pixel-level segmentation, as the model
backbone. We employ a DL-based feature extracting model,
ResNet-34, as the encoder of the U-Net. To achieve high accuracy
classifications, we integrate the dual-attention mechanism into the
original U-Net to improve the feature representations, forming
a dual-attention U-Net model (DAU-Net). The SAR images are
obtained from Sentinel-1A. The dual-polarized information and
the incident angle of SAR images are model inputs. We used
15 dual-polarized images acquired near the Bering Sea to train
the model and employ the other three images to test the model.
Experiments show that the DAU-Net could achieve pixel-level
classification; the dual-attention mechanism can improve the
classification accuracy. Compared with the original U-Net, DAU-
Net improves the intersection over union (IoU) by 7.48.% points,
0.96.% points, and 0.83.% points on three test images. Com-
pared with the recently published model DenseNetFCN, the three
improvement IoU values of DAU-Net are 3.04.% points, 2.53.%
points, and 2.26.% points, respectively.

Index Terms— Dual-attention, sea ice and open water classifi-
cation, synthetic aperture radar (SAR) image, U-Net.

I. INTRODUCTION

THE changes in global sea ice volume, distribution, and
movement reflect the interaction of the atmosphere–

cryosphere–hydrosphere and the global climate change [1].
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Sea ice study is also significant because it causes marine
navigation and transportation safety concerns. Since the clas-
sification of sea ice and open water provides valuable informa-
tion for safe navigation, sea ice classification, and monitoring
draw extensive attention [2]. Satellite remote sensing, such as
optical camera, microwave radiometer, and synthetic aperture
radar (SAR), has been the most effective way to monitor sea
ice in the polar regions. SAR images have been the primary
source for sea ice classification and monitoring due to their
high spatial resolution, wide coverage, and ability to penetrate
clouds [3].

A series of studies have been devoted to classifying sea ice
and open water on SAR images, including threshold-based
methods [4], expert systems [5], and machine learning (ML)
methods. Since the 21st century, ML has become the
mainstream method, such as the neural network (NN)
model [6], [7], support vector machine (SVM) [8], [9], and
random forest (RF) classifier [10].

With the innovation of the method, the accuracy of sea ice
classification is improving. However, the methods above need
prior expert knowledge and sophisticated manual engineering.
This drawback has been a common challenge faced by earth
system science in the era of big data [11]. Deep learning (DL)
addresses this challenge. A typical DL model accepts input
data in a raw format and automatically discovers the required
features [12]. DL has been successfully applied in oceanogra-
phy and remote sensing [11], [13]–[16]. A deep convolution
NN (CNN) is a particular type of DL model composed of
CNN layers. A CNN layer connects to the local patches of
the previous layer through convolution kernels to extract local
spatial features. Researchers employed CNN to improve the
accuracy and efficiency of sea ice classification.

Xu and Scott [17] introduced an early CNN-based model
AlexNet to classify sea ice and open water. Li et al. [18] pro-
posed a CNN-based model to classify sea ice and open water
from Chinese Gaofen-3 SAR images. Wang et al. [19] con-
structed a three-layer CNN model. Gao et al. [20] integrated
transfer learning and DenseNet to form a transferred multilevel
fusion network (MLFN). Boulze et al. [21] proposed a model
composed of three CNN layers, two max-pooling layers, and
four fully connected (FC) layers to classify the detailed sea
ice types.

CNN-based models achieve end-to-end classification
between sea ice and open water on SAR images. However,
most of these CNN-based models use an image classification
framework, not a pixel-level segmentation framework.
A typical procedure of these CNN-based models includes
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Fig. 1. Overall structure of the proposed DAU-Net model. (a) Inputs of DAU-Net: VV, VH, and incident angle. (b) Encoder of DAU-Net, based on ResNet-34.
(c) Dual-attention structure we employed to optimize the original U-Net, including PAM, CAM, and three CNN blocks. (d) Decoder of DAU-Net. (e) Output
module of DAU-Net.

two steps: 1) inputting an SAR image chip (e.g., with the
size of 13 × 13, 45 × 45, or 50 × 50 [10], [17]–[20]) into
several stacking pairs of CNN + max-pooling layers to
extract downscaled feature using FC NN layers to connect
the downscaled feature maps and output the class of the
central pixel of the input chip. The drawback is that we need
manually construct training/testing samples for each pixel of
an image, increasing the workload and the storage burden of
memory. The FC NN layers have more trainable parameters
and increase computational complexity. Recently, fully
convolutional networks (FCNs) have been proposed to replace
the FC layers of image classification frameworks to achieve
pixel-level segmentation. In an FCN-based segmentation
framework, the downscaled feature maps are rescaled to the
same size as the input image by upsampling layers. The FCN
works on the rescaled feature maps and directly outputs the
classification results of all pixels, not only the central pixel.

To solve the mentioned drawback, we proposed an
FCN-based model to classify sea ice and open water on
SAR images. The proposed model integrates the dual-attention
mechanism into the U-Net and is named dual-attention U-Net
model (DAU-Net). The U-Net is a well-known FCN-based
segmentation model and is named for its almost symmetric
encoder–decoder network architecture like a “U” shape [22].
The dual-attention mechanism [23] is employed to enhance the
feature characteristics to improve the classification accuracy
further. We use SAR images near the Bering Sea to train and
evaluate the model. The main contributions of this study are:
we propose FCN-based sea ice and open water classification
model DAU-Net, and integrating the dual-attention mechanism
into the original U-Net is helpful to improve the classification
performance.

The rest of this letter is organized as follows. Section II
describes the proposed DAU-Net in detail. In Section III, com-
parison experiments are conducted to evaluate the effectiveness
of the DAU-Net. Section IV concludes this letter.

II. METHOD

A. Overall Structure of DAU-Net

The overall structure of DAU-Net is shown in Fig. 1, includ-
ing five parts: inputs, encoder, attention, decoder, and output.
An input unit consists of three channels of a 256 × 256 pixel
SAR image: VV (vertical emitting and vertical receiving),
VH (vertical emitting and horizontal receiving), and incident
angles [see Fig. 1(a)]. The encoder is the residual-CNN-
network-34 (ResNet-34) [24]. It extracts abstracted, down-
scaled high-level feature maps. The attention part includes the
position attention module (PAM) and channel attention module
(CAM). The decoder restores the resolution of the feature
maps. Skip connections pass the intermediate feature maps
extracted by the encoder to the decoder. The output module
generates pixel-level classification results. Following, we will
detail each part.

B. Encoder

The ResNet-34 encoder includes five stages: one zero-
padding layer with a 3 × 3 kernel, one CNN layer, and four
ResNet stages containing 3, 4, 6, and 3 ResNet blocks [see
Fig. 1(b)]. The number of convolutional kernels in the five
stages is 64, 64, 128, 256, and 512, respectively. We retain the
first three max-pooling layers of the ResNet-34. After encod-
ing, the inputs are transformed into 16 × 16 × 512 feature
maps.

C. Attention

Discriminant feature representations are essential for high
accuracy classification. We integrate PAM and CAM into the
original U-Net to improve the feature representations of sea
ice. The PAM captures long-range dependencies in spatial
dimensions. The CAM captures the channel dependencies
between any two channels.
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Fig. 2. Detailed calculation process of PAM in the DAU-Net. (a) Feature
map A without PAM, some water pixels are inaccurately encoded as ice pixels,
marked in the red rectangle. (b) Calculation process of PAM. (c) Feature
map E after PAM, some inaccurate ice pixels are optimized.

1) PAM: For semantic segmentation, local features captured
by standard CNN could lead to misclassifications. The PAM
updates the feature value at a specific position by aggregating
feature values at all positions with a weighted summation.
The global spatial dependencies of any two positions could be
captured.

As shown in Fig. 2(a), AH×W×C is the feature map extracted
by the encoder. H , W , and C are the rows, columns,
and channels, respectively. The gray/dark regions represent
ice/water features. The red rectangle marks some inaccurate
features, which should be water but are encoded to be sea ice.
A is transformed and reshaped to B N×C , CC×N , and DN×C

(N = H × W ) [see Fig. 2(b)]. A matrix multiplication and
softmax activation is performed on B and C to obtain the
spatial attention map SN×N . The more similar features of two
positions (i , j) generate a large element at Si j . S is multiplied
by D and reshaped to AH×W×C

S . For each channel of AS,
the element of a position is the weighted sum of elements
across all positions in D based on the weights in S. AS is
multiplied by a scale parameter α and added to the input A
in element-wise to obtain the output E H×W×C

E = αAS + A (1)

where α is a trainable parameter that gradually learns to assign
weight from 0 by the backpropagation. E integrates the local
features (A) and the global features (AS). Intuitively, as shown
in Fig. 2(c), feature map E optimizes the inaccurate features
in A by the PAM, resulting in accurate segmentation.

2) CAM: There are 512 channels in the high-level feature
map output by the ResNet-34. The CAM updates the fea-
ture value at a position by aggregating all channels’ feature
values with a weighted sum. The channels corresponding to
the same or similar class responses will be assigned with
large weights. The interdependencies among channels can be
captured.

As shown in Fig. 3(a), AH×W×C is the feature map output
by the encoder. A is reshaped to AN×C

1 and AC×N
2 . A2 is

multiplied by A1 and is activated by a softmax function to
obtain the channel attention H C×C . A1 is multiplied by the
transpose of X and is reshaped to Ac. For each position of
Ac, the element of a channel is the weighted sum of elements
across all channels in the corresponding position of A. Ac is
multiplied by a scale parameter β and added to A element-wise

Fig. 3. Detailed calculation process of CAM in the DAU-Net. (a) Feature
map A without CAM, some water pixels are inaccurately encoded as ice pix-
els, marked in the red rectangle. (b) Calculation process of CAM. (c) Feature
map F after CAM, some inaccurate ice pixels are optimized.

TABLE I

INFORMATION ON TESTING DATA SETS

to obtain the output F H×W×C :

F = β AC + A (2)

where β is a trainable parameter that gradually learns a weight
from 0 by the backpropagation. The final feature map is a
weighted sum of the original feature and the global semantic
dependencies between different channels, boosting feature
discriminability. In Fig. 3(c), CAM optimizes the inaccurate
features in Fig. 3(a), resulting in accurate segmentation.

3) Fusion: Fig. 1(c), the PAM output, and CAM output are
transformed by two CNN layers. An element-wise summation
is performed on the two results. A CNN layer further fuses
the summation.

D. Decoder

Fig. 1(d), the DAU-Net, has five decoder modules. Each
decoder module contains one upsampling layer and two CNN
layers. The number of convolutional kernels of the five
decoders is 256, 128, 64, 32, and 16, respectively. After
decoding, the 16 × 16 feature maps are rescaled to the same
size of the input.

E. Output

The output module contains one CNN layer and one sigmoid
layer. The CNN layer transforms the last feature map of the
decoder into a 256 × 256 × 1 feature map. The sigmoid layer
activates the feature map and output values between [0, 1].
If it is larger than 0.5, the pixel is sea ice; otherwise, it is
open water. The loss function is binary cross-entropy.

III. EXPERIMENTS

A. Experiment Data and Setting

The experiment data locate near the Bering Strait,
with a spatial extent of [173◦W, 163◦W, 69◦N, 61◦N].
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Fig. 4. SAR image (VV channel), the classification results of DAU-Net, U-Net, and DenseNetFCN. (a)–(d) Data1. (e)–(h) Data2. (i)–(l) Data3.

The SAR images are the ground range detected high resolution
(GRDH) products of Sentinel-1A in the interferometric wide-
swath (IW) mode with VV + VH polarizations. We use Sen-
tinel Application Platform (SNAP) 3.0 to perform radiometric
calibration. We downscale each image to 1/3 of its original
size. The downscaled pixel spacing is 30 m × 30 m (rg ×
az). The images are labeled by LabelMe [25] based on visual
interpretation to obtain ground truths:1 for sea ice and 0 for
water. We choose image blocks that are easily distinguishable
to build the training set. Inevitably, a few mislabeling pixels,
especially some small sea ice objects, exist; such mislabeled
pixels account for a small proportion of all pixels and do
not affect the model’s convergence. The training set includes
15 SAR images, from December to April of the next year.
We move a 256 × 256 box across the entire SAR image to
clip the image into input chips. We select 4684 chips to train
the model. The other three SAR images are used as the test set,
named Data1, Data2, and Data3. Fig. 4(a), (e), and (f) shows
the VV channels of the test images. Table I shows the details.

The hardware is a workstation with one NVIDIA TESLA
V100 32 GB GPU. We use Keras as the DL packages. The
mean intersection over union (IoU), accuracy, precision, and
recall are four metrics.

B. Comparison Experiments Against Other Models
We compare DAU-Net with the other two FCN models.

The first one is the original U-Net, without a dual-attention

TABLE II

METRICS OF DIFFERENT MODELS

mechanism. The other one is the DenseNetFCN, modified
based on the MLFN proposed in 2019 [20]. To make a fair
comparison, we replace the FC layers in the MLFN with FCN
layers and add upsampling blocks. All three models output the
pixel-level classification results of the input chip directly.

The metrics and classification results of the test images are
shown in Table II and Fig. 4. For three images, the IoUs and
accuracies of DAU-Net are the highest. Some differences occur
among different test sets. Data1 is an entire block of sea ice
with an open water region inside. The upper left corner of
the image has some dark pixels. U-Net performs the worst as
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it misses the most sea ice pixels [see Fig. 4(c)]. Comparing
Fig. 4(b) and (d), DAU-Net misses less sea ice than U-Net.
The results of DAU-Net and DenseNetFCN are very close.
In terms of metrics, DAU-Net performs a little better than
DenseNetFCN. As shown in Fig. 4(e), Data2 contains many
small floes and could be challenging for the ice/water classifier.
Fig. 4(g) and (h) shows that the U-Net and DenseNetFCN

misclassify some water pixels as sea ice pixels. DAU-Net
corrects the misclassifications in the middle of the image and
improves the classification results in the lower right corner [see
Fig. 4(f)]. Data3 has a complex sea ice boundary. Fig. 4(j)–(l)
shows that all three models generate false alarms in the lower
right corner of the image. The false alarms of DAU-Net are the
lowest. Compared with the original U-Net, DAU-Net improves
the IoU by 7.48.% points, 0.96.% points, and 0.83.% points
on three test images. For DenseNetFCN, the three improvement
values are 3.04.% points, 2.53.% points, and 2.26.% points,
respectively.

DAU-Net performs the best among the three models. The
main reason is that the feature map extracted by DAU-Net
integrates the local feature extracted by CNN and the global
feature generated by the attention mechanism. In the other
two models, there are only local features extracted by CNN,
limiting the characterization ability of the feature map and
affecting segmentation accuracy.

IV. CONCLUSION

This study proposes an FCN-based model, DAU-Net,
to classify the sea ice and open water on SAR images.
We integrate the dual-attention mechanism, PAM and CAM,
into the original U-Net model to extract more characteristic
features. The proposed model is trained and tested by Sentinel-
1A SAR images near the Bering Strait. Experiments show
that the DAU-Net achieves pixel-level classification on the
SAR image. The dual-attention mechanism helps the DAU-Net
achieve better classification results than the original U-Net and
DenseNetFCN. However, the generalizability of the results to
larger data sets/wider range of ice conditions still needs to be
proven. In the future, we will collect more SAR images to
evaluate the applicability of the model.
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