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Change Detection in Dual Polarization Sentinel-1
Data with Wilks’ Lambda

Allan Aasbjerg Nielsen

Abstract—When the covariance matrix formulation is used for
multi-look polarimetric synthetic aperture radar (SAR) data,
Wilks’ Lambda can be used for change detection between
acquisitions at two time points. We briefly describe the theory for
dual polarization, diagonal only data. A case study illustrates the
technique on Sentinel-1 C-band data covering the international
Frankfurt Airport. We successfully detect change including
direction of change in the sense that Wilks’ Lambda shows
whether radar signal increases or decreases over time.

Index Terms—Complex covariance matrices, generation of
complex Wishart distributed matrices, Beta distribution approx-
imation, dual polarization, remote sensing change detection,
Sentinel-1.

I. INTRODUCTION

This paper presents a method for change detection in bi-
temporal, multi-look, dual polarization, diagonal only, syn-
thetic aperture radar (SAR) data in the covariance matrix
representation. Many authors have worked with this subject
(including the fully polarimetric case), see for example [1]–
[7]. In [4], [6] we deal not only with bi-temporal but with
truly multi-temporal polarimetric SAR data.

The method presented here uses Wilks’ Lambda [8] which
is an established quantity in multivariate statistics. We use it to
determine whether radar signal as measured by the determinant
of the covariance matrix has increased or decreased over time.
We also give an associated p-value in a Beta distribution
approximation to establish whether statistically significant
change has occurred over time. In this paper the use of the
Beta distribution approximation is based on simulation.

In [9] Wilks’ Lambda is used for change detection in both
simulated data and quadpol SAR data.

II. THEORY

Consider two p×p independent, Hermitian, positive definite
variance-covariance matrices X and Y representing geome-
trically co-registered multi-look covariance SAR data at two
time points, X at t1 and Y at t2, t2 > t1.

Below we confine ourselves to dual or single polarization,
and we look at the real case where we have diagonal elements
of the covariance matrix or single channel intensity or power
data only.
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Applied Mathematics and Computer Science, Technical University of Den-
mark, DK-2800 Kgs. Lyngby, Denmark. e-mail alan@dtu.dk, homepage
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A. Wilks’ Lambda
Wilks’ Lambda [8] is defined as the ratio of the determinants

Λ =
|X|

|X + Y |
, (1)

Λ ∈ [0, 1]. If Λ is large, X dominates the ratio and in
a change detection setting “something is removed” at time
point two (“something” being radar signal as expressed by the
determinant of the covariance matrix). If on the other hand Λ
is small, Y dominates and “something is added” at time point
two.
X = Y depicts no change between the two time points.

This leads to Λ = 2−p, i.e., 1/4 for dual polarization (p = 2),
and 1/2 for single channel power data (p = 1).

Alternatively, we could have |Y | in the numerator in (1).
Due to the symmetry in the handling of data from the two time
points, analysis where we look at both the lower and upper tails
of the distributions of both |X|/|X+Y | and |Y |/|X+Y | is
preferred over looking at lower and upper tails of |X|/|X+Y |
only.

B. Distribution of Wilks’ Lambda
Wilks’ Λ also known as Anderson’s U [8] for the so-called

null hypothesis H0 : X = Y (i.e., no change) versus the
alternative hypothesis H1 : X 6= Y , follows a complicated
three parameter distribution. For data following the real (as
opposed to the complex) Wishart distribution, often used
approximations for Wilks’ Λ are based on the χ2 (chi-squared)
distribution or the F distribution. Here, we follow another line
of attack based on simulations of outcomes of the (complex)
Wishart distribution and a Beta distribution approximation to
Wilks’ Λ rather than theoretical derivation.

Specifically, to emulate a no change situation in a change
detection setting, we generate two times 10242 observations
following the (complex) Wishart distribution (see [10], [11])
with the same parameters, only we vary the number of looks.
To emulate Sentinel-11 data acquired from the Google Earth
Engine2 (GEE) [12]), we do this for dual polarization diagonal
only data simply by removing the simulated off-diagonal
complex elements.

The Beta distribution is a good approximation to many con-
tinuous distributions on the interval [0,1] such as probabilities.
For positive α and β the probability density function is

f(x) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1

1 https://sentinel.esa.int/web/sentinel/missions/sentinel-1
2 https://earthengine.google.com
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Fig. 1. Histograms (in blue) for Wilks’ Λ (|X|/|X+Y | top and |Y |/|X+
Y | bottom) and fitted Beta distribution (in red) for generated no change data,
dual polarization diagonal only, L = 5.

and f(x) = 0 elsewhere. To indicate that a stochastic variable
X follows a Beta distribution, we write X ∼ Be(α, β). Above
B(α, β) is the Beta function

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt

=
Γ(α)Γ(β)

Γ(α+ β)
, α > 0, β > 0.

Here Γ(α) is the Gamma function

Γ(α) =

∫ ∞
0

tα−1e−tdt, α > 0,

Γ(1) = 1 and αΓ(α) = Γ(α + 1), hence for integer numbers
Γ(n) = (n− 1)!, i.e., Γ(n) is n− 1 factorial.

We now fit Beta distributions to the histograms obtained
for Wilks’ Lambda as a function of the number of looks, L =
2, 3, 4, 5, 6, 10, 20, 30, 100, 170, 180, 190, 194, 195, 196, 197,
198. This is done by means of maximum likelihood estimation
as implemented in Matlab function fitdist. Figures 1 and
2 show two examples for L = 5 (the nearest integer to the
equivalent number of looks (ENL) of 4.9 given earlier by
ESA for the Sentinel-1 data used below, now that number
is 4.4), and for L = 20. Both examples shown (as well
as examples not shown), exhibit good agreement with the
sample histograms (judged visually, there is a tendency to a
slightly better fit for higher L).

Following this, we fit straight lines to the estimates obtained
for α and β as functions of L. Figure 3 shows the functions for
dual polarization diagonal only data. The estimated values are
α = 0.750L and β = 2.250L, see tables below (we get highly
insignificant estimates for the intercepts which are therefore
removed).

α Est. Std. err. t P{> |t|}
Intercept –0.00662 0.04413 –0.1500 0.8828
Slope 0.75019 0.000332 2262.0 6.5 10−43

Slope 0.75015 0.000212 3538.5 1.4 10−48

Fig. 2. Histograms (in blue) for Wilks’ Λ (|X|/|X+Y | top and |Y |/|X+
Y | bottom) and fitted Beta distribution (in red) for generated no change data,
dual polarization diagonal only, L = 20.
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Fig. 3. Linear fits for α (top) and β (bottom) as functions of L for generated
no change data, dual polarization diagonal only.

β Est. Std. err. t P{> |t|}
Intercept –0.02896 0.13267 –0.2183 0.8302
Slope 2.2506 0.000997 2257.3 6.7 10−43

Slope 2.2505 0.000638 3528.1 1.5 10−48

Residual analysis shows that the absolute values of the
residuals generally increase with L and that no standardized
residual is above 2 or below −3. The leverage of observations
increases with L, no leverage value is too high.

Similar regression analysis for single polarization data re-
sults in estimates α = β = L.

It is stressed that this simulation study including the re-
gression models was performed under the null hypothesis that
there is no change between acquisitions times.

III. CASE STUDY ON SENTINEL-1 DATA

Our case study is based on dual polarization (VV and
VH) Sentinel-1 C-band data over the international Frankfurt
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Fig. 4. Sentinel-1 SvvS∗
vv , SvhS

∗
vh and the ratio SvvS∗

vv/(SvhS
∗
vh) for the two time points as RGB (top row), Wilks’ Λ |X|/|X + Y | in red and

|Y |/|X + Y | in green (bottom row left), and the same combination, both tails thresholded at 0.005% and 99.995% (bottom row right).

Airport, Germany.
The 4.9-look images used are 600 rows by 1000 columns

10m pixels acquired in IW mode on 29 March and 10 April
2016. The data (VV and VH only, no off-diagonal elements
in the covariance matrix) are obtained from and preprocessed
by the Google Earth Engine (GEE) [12].

Figure 4 shows SvvS
∗
vv , SvhS

∗
vh and the ratio

SvvS
∗
vv/(SvhS

∗
vh) for the two time points as RGB (top

row), Wilks’ Lambda |X|/|X +Y | in red and |Y |/|X +Y |
in green (bottom row left), and the same combination with
both lower and upper tails of the estimated Beta distribution
thresholded at 0.005% and 99.995% (bottom row right).

Where the bottom row images are red, time point one
dominates the ratio and “something is removed” at time point
two, where they are green, time point two dominates the ratio
and “something is added” at time point two.

Figure 5 shows Wilks’ Λ from a part of Figure 4 bottom
row right overlaid in Google Earth3.

We see mostly aircraft and vehicles coming and going at
the gates, on the aprons, taxiways and runways, and on the
motorway, as well as ships coming and going on the River
Main.

The results shown in Figures 4 and 5 are very similar to
results from detection by means of the Wishart test statistic
[1], [2] followed by determination of the Loewner order of
the difference image X − Y shown in Figure 6, see [13],

3 https://earth.google.com

[14] where the latter reference gives computational speed-up
of factors in the hundreds of the methods described in the
former. The Loewner order determines whether the difference
matrix is positive definite, negative definite or indefinite.
Hence, it gives a measure of direction of detected change.
In the few situations where the combined Wishart-Loewner
method detects significant change with indefinite difference
matrices shown in yellow in Figure 6, Wilks’ Lambda in
this example appears to detect no change. This indicates that
the combined Wishart-Loewner measure is richer in change
information content than Wilks’ Lambda.

No change from time point one to time point two, X = Y ,
in this case (p = 2 and m = n = 4.9) leads to mean value
0.25 for Wilks’ Lambda with α = 3.6750 and β = 11.0250 for
the approximate Beta distribution. Figure 7 shows histograms
of Wilks’ Lambda, |X|/|X + Y | (top) and |Y |/|X + Y |
(bottom), for the Sentinel-1 data in a wooded no change region
immediately west of the runways. Judged visually the sample
histograms nicely follow the estimated Beta distribution. More
formally, the Kolmogorov-Smirnov test statistic for the null
hypothesis that the sample histogram and the corresponding
values from the Beta distribution are from the same contin-
uous (Beta) distribution is 0.1667 with p-value 0.7601 for
|X|/|X + Y |. For |Y |/|X + Y | the Kolmogorov-Smirnov
test statistic is 0.1333 with p-value 0.9360. In both cases we
cannot reject the null hypothesis: for this no-change region the
fits to the approximated theoretical distribution are good.
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Fig. 5. Wilks’ Λ from a part of Figure 4 bottom row right overlaid in Google Earth.

Fig. 6. Result from the combined Wishart-Loewner method described in [13] based on the same data covering the same area as in Figure 5 overlaid in Google
Earth. A few indefinite matrix differences (in yellow) are seen, an example on the north side of the airport is marked with a black circle. These statistically
significant changes are not detected by Wilks’ Λ indicating that the combined Wishart-Loewner measure is richer in change information content.
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Fig. 7. Histograms for Wilks’ Lambda |X|/|X + Y | (top) and |Y |/|X +
Y | (bottom), and Beta distribution approximation (α = 3.6750 and β =
11.0250), Sentinel-1 data, dual polarization diagonal only in a wooded no
change region immediately west of the runways.

IV. CONCLUSIONS

Unlike other methods for change detection in polarimetric
SAR data in the covariance matrix representation in [1]–
[4], [6], and most methods published by other authors, this
paper gives a method that can give the direction of change
by determining whether the radar signal (as measured by
the determinant of the covariance matrix) has increased or
decreased over time.

It is emphasized that the simulation study including the
regression models was performed under the null hypothesis
of no change between acquisitions times.

In an example with Sentinel-1 dual polarization diagonal
only data, change is succesfully detected by Wilks’ Lambda
and an associated p-value from a simulation based Beta
distribution approximation.

For a no-change region fits to the approximated theoretical
distribution are good judged both visually and more formally
by means of the Kolmogorov-Smirnov test.

Detection results are very similar to results from detection
by means of the Wishart test statistic [1]–[4], [6], followed by
determination of the Loewner order of the difference image
as described in [13]. However, in the few situations where the
combined Wishart-Loewner measure detects significant change
with indefinite difference matrices, Wilks’ Lambda here tends
to detect no change. This indicates that the combined Wishart-
Loewner measure is richer in change information content than
Wilks’ Lambda.

Matlab code wilks_lambda_change.m to perform the
analysis is available on the author’s homepage.
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