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Abstract— Sea fog detection is a challenging and essential
issue in satellite remote sensing. Although conventional threshold
methods and deep learning methods can achieve pixel-level
classification, it is difficult to distinguish ambiguous boundaries
and thin structures from the background. Considering the
correlations between neighbor pixels and the affinities between
superpixels, a correlation context-driven method for sea fog
detection is proposed in this letter, which mainly consists of a
two-stage superpixel-based fully convolutional network (SFCNet),
named SFCNet. A fully connected Conditional Random
Field (CRF) is utilized to model the dependencies between pixels.
To alleviate the problem of high cloud occlusion, an attentive
Generative Adversarial Network (GAN) is implemented for image
enhancement by exploiting contextual information. Experimental
results demonstrate that our proposed method achieves 91.65%
mIoU and obtains more refined segmentation results, performing
well in detecting fogs in small, broken bits and weak contrast
thin structures, as well as detects more obscured parts.

Index Terms— Deep learning, satellite imagery, sea fog
detection, superpixel.

I. INTRODUCTION

SEA fog is a common and disastrous weather phenom-
enon for marine transportation and navigation. It reduces

horizontal visibility to less than 1 km or even much lower,
thereby greatly threatening the safety of maritime activities and
seriously affecting the operation of fishery industry. Hence, sea
fog detection is a highly demanding and significant task, which
can provide accurate and real-time weather forecast guidance.

In this work, sea fog detection is considered as a segmenta-
tion task, which requires pixel-level classification. Based on
remote sensing data of meteorological satellites, traditional
sea fog detection methods mainly use hand-crafted features
and empirical thresholds to identify whether a pixel is fog or
nonfog [1], [2]. The threshold-based methods are stable and
simple, but not flexible enough to deal with complex situations
by the combination of thresholds. Besides, the structures and
textures of sea fog are neglected. Wang et al. [3] adopted a
texture filter for 3 × 3 pixels, but the extracted features are
rough.
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Fig. 1. Results of segmentation methods on remote sensing images with
ambiguous boundaries and thin structures, which remains a hard case in sea
fog detection. Note that these segmentation results by U-Net and DeeplabV3+
have failed in detecting fogs in small, broken bits, and weak contrast thin
structures.

In recent years, deep learning has been gradually applied
to the field of geoscience and remote sensing [4], [5]. The
deep learning methods can automatically extract features of
different levels and learn from context. Many convolutional
neural network (CNN) structures for semantic segmentation,
such as U-Net [6] and Deeplab V3+ [7], show impressive
gains in remote sensing image interpretation. For example,
Chunyang et al. [8] employed the U-Net model for sea fog
detection in MODIS multispectral images. However, U-Net is
a basic network and has no specific design for the character-
istics of sea fog. Most of the existing methods cannot work
well on ambiguous boundaries and thin structures (see Fig. 1),
which still remains a hard case. Thin fog is semitransparent
and has a weak contrast with the background, so it can be
easily missed.

Despite getting progress, the aforementioned methods are
still not reliable enough due to their operations limited at the
pixel level. Therefore, superpixel-based methods are proposed.
In computer vision, superpixels over-segment an image into
perceptually meaningful subregions, containing adjacent pix-
els that are similar in appearance. Xie et al. [9] improved
the traditional superpixel segmentation method simple linear
iterative clustering (SLIC) [10] and designed a superpixel-level
cloud detection framework using CNN. Liu et al. [11] built a
superpixel-level remote sensing database and proposed hier-
archical fusion CNN (HFCNN) as a classifier to take full
advantage of low-level features like color and texture. These
superpixel-based methods used superpixels as basic units and
achieved excellent results compared with pixel-level methods.
Nevertheless, global information may be lost from remote
sensing images, and a single superpixel patch contains insuf-
ficient semantic features.

Note that sea fog exhibits self-similarity and spatial contin-
uous distribution. Human generally identifies sea fog roughly
by analyzing both local and global features of remote
sensing images, rather than pixel by pixel. We argue that
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Fig. 2. Overview of the proposed method. The decloud model represents the part of GAN-based image enhancement. First, it takes a composite image as
input and outputs an enhanced one after removing high clouds, both of which are fed into SFCNet, respectively. Then, SFCNet predicts a pixel-to-superpixel
association map. Based on this, superpixel feature maps are computed and used for superpixel-level dense prediction. Subsequently, the pixel-level prediction
map is upsampled with the association map. It is followed by a fully connected CRF for optimization to get more refined segmentation results. Finally,
the prediction mask is obtained by both the results of sea fog detection before/after high cloud removal.

correlation matters; the intrinsic pixel-wise relationship and
superpixel-wise association can be exploited, which is conduc-
tive to our task. Hence, we propose a correlation context-driven
method for sea fog detection in satellite imagery. First,
a pixel-to-superpixel association map which assigns each
pixel to its surrounding grids is obtained via a simple, yet
effective fully convolutional network, following up on [12].
Then, superpixel feature maps are computed and fed into the
downstream segmentation network for superpixel-level dense
prediction. To strengthen the pixel-wise semantic association
and capture contextual information, a fully connected condi-
tional random field (CRF) is used to model the dependen-
cies between pixels based on visual features and position
features.

Generally, sea fog and all kinds of clouds are different
in forms and cloud heights. High clouds may occlude some
parts of sea fog, which hinders the expression of local context
and destroys the spatial coherence. Therefore, we additionally
employ an enhancement model based on an attentive gener-
ative adversarial network (GAN) [13] to remove high clouds
for more precise prediction of sea fog.

In summary, the main contributions of this letter are as
follows.

1) We propose a correlation context-driven sea fog detec-
tion method by exploiting pixel-superpixel relationships
and pixel-wise dependencies. Experimental results show
that our model obtains better detection effects for sea
fog in small, broken bits and weak contrast thin struc-
tures, preserving distinct boundaries and fine details.
Compared with the existing methods, ours yields more
refined segmentation results.

2) In order to alleviate the problem of cloud occlu-
sion and enhance contextual information, we employ a
GAN-based model for high cloud removal. An attention
mechanism is introduced to focus on high cloud area
and its surrounding structures for better restoration. With
high cloud removed, the obscured part of sea fog can be
predicted.

Fig. 3. Detailed components of the GAN model. Each block in the recurrent
network composes of residual blocks for feature extraction, a convolutional
long short-term memory (LSTM) unit, and convolutional layers for producing
attention maps. The attention map is a 2-D matrix ranging from 0 to 1, where
the greater the value, the more the attention it indicates. At each time step,
the current attention map is concatenated with the input image and then fed
into the next block. In the training phase, the initial value is set to 0.5.

II. METHODOLOGY

The whole framework can be roughly divided into two
parts. In Section II-A, we introduce the first part which
focuses on the problem of high cloud occlusion. An attentive
GAN model is trained for high cloud removal and outputs an
enhanced image as auxiliary data for further sea fog detection.
In Section II-B, we introduce the second part, its goal is
to achieve superpixel-based sea fog detection by superpixel-
based fully convolutional network (SFCNet), and utilize a
fully connected CRF to get more refined segmentation results.
A brief overview of our proposed method is shown in Fig. 2.

A. GAN-Based Enhancement

The high-level thin clouds in remote sensing images are
translucent and flocculent to some degree. We notice that
humans could roughly “see” through the clouds by synthesiz-
ing contextual information, in cases where the clouds do not
completely obstruct the scene. Some parts of the thin clouds,
especially at the periphery and semitransparent regions, con-
vey some information about the background, which can be
revealed and exploited. Thus, we utilize a GAN for high cloud
removal. The overall architecture of GAN is shown in Fig. 3.

It consists of two networks: a generative network (G) and
a discriminative network (D), which compete with each other
in a Minimax game [14]. G attempts to generate an image
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as real as possible and free from thin clouds. D attempts to
distinguish between real and generated images. The generative
adversarial loss can be formulated as follows:

min
G

max
D

ER∼pclean [log(D(R))]
+EI∼pcloud [log(1 − D(G(I )))] (1)

where R is a clean natural sample. I is a clouded sample, which
is the input of G. After several rounds of the Minimax game
between G and D, the distribution of G(I) will be similar to
pclean and D will be unable to distinguish between G(I) and R.
Our goal is to obtain a “realistic” cloud-free image generated
by G.

1) Generative Network: To focus on high cloud area and its
surrounding structures, we introduce the attention mechanism
in [13]. Consequently, G consists of two subnetworks: a recur-
rent network and an autoencoder. The recurrent network aims
to find regions in the input image that need attention and learns
the attention map progressively. The loss function is defined as
the mean squared error (MSE) between the generated attention
map A and the binary mask M. The autoencoder attempts to
generate a cloud-free image, which is the output of the whole
network. It takes the concatenation of the input image and
the final attention map from the recurrent network as input.
To capture more contextual information from different scales,
we adopt the multiscale loss. Overall, the generative loss is
expressed as

LG = L A({A},M)+ L M ({S}, {T })+ θlog(1 − D(O)) (2)

where T is the corresponding ground truth of S with the same
scale. O is the output of G. We give a weight θ = 0.01 to the
GAN loss for proportional balance.

2) Discriminative Network: The discriminative network is
a CNN classifier to verify whether the input image is real
or fake. In order to guide the discriminator to focus on the
attention area, we add an interior convolutional layer to output
a mask and multiply it with previously extracted features.
We define a loss function based on the mask and the attention
map as follows:
L I (O, R, An) = LMSE(DI (O), An)+ LMSE(DI (R), 0) (3)

where An is the final attention map and 0 is a map with full
0 values. Overall, the discriminative loss is written as

L D(O, R, An) = − log(D(R))− log(1 − D(O))

+L I (O, R, An). (4)

B. SFCNet

1) Superpixel Segmentation: Given an image of size H × W,
the first step is to partition it into regular grids of size h × w as
initial superpixels (i.e., seeds) and then learn a mapping which
assigns each pixel p to one of the seeds s. In practice, it is not
cost-effective to compute all pixel–superpixel pairs. Given a
pixel p, a set of 3×3 surrounding grid cells Sp are considered,
instead. Note that the constraint of search scope contributes
to the compactness for spatial coherence in the local region.
Therefore, the mapping can be expressed as a tensor A ∈
RH×W×|Sp|, where |Sp| = 9. Here, let as(p) be the probability
that p is assigned to s ∈ Sp, such that

∑
s∈Sp

as(p) = 1.

2) Superpixel Pooling: Let f (p) represent the feature vector
of p. The position coordinates of each pixel p can be written as
P = [x, y]T . According to the association map A, we calculate
the center of each superpixel s, cs = ( fs , ls), where fs

and ls are the feature vector and the location vector of each
superpixel s, respectively

fs =
∑

p:s∈Sp
f (p) · as(p)∑

p:s∈Sp
as(p)

, ls =
∑

p:s∈Sp
P · as(p)∑

p:s∈Sp
as(p)

. (5)

The feature vector and the location vector of each pixel p
can be reconstructed by

f �(p) =
∑
s∈Sp

fs · as(p), p� =
∑
s∈Sp

ls · as(p). (6)

l2-norm is used as the distance measure and the superpixel
loss is defined as follows:

Lsuperpixel =
∑

p

|| f (p)− f �(p)||2 + k||p − p�||2 (7)

where the former term tends to group similar pixels together
and the latter one facilitates spatial compactness. k is a
balancing coefficient and set to 0.002 by default.

3) Dense Prediction: Subsequently, the computed super-
pixel feature maps are fed into a downstream segmentation
network for superpixel-level dense prediction. Here, we adopt
the focal loss

pt =
{

p if y = 1

1−p otherwise.
(8)

L focal(pt) = −α(1 − pt)
γ log(pt) (9)

where α and γ are set to 0.2 and 2, respectively, to balance
the positive and negative samples, as well as put more focus
on hard, misclassified examples. Consequently, the overall loss
function becomes

L = L focal(pt − p̂t)+ λLsuperpixel(A) (10)

where λ is a weight to balance the two terms. The predicted
probability map is upsampled via the association map to get
the final pixel-level prediction.

4) Network Architecture: SFCNet consists of two-stage
fully convolutional networks: the former for superpixel seg-
mentation and the latter for dense prediction. In the first
stage, the network is a standard encoder–decoder architecture
with skip connections. The encoder automatically extracts
features and produces high-level embeddings via convolutional
layers. Then the decoder upsamples the feature maps con-
catenated with the corresponding size ones from the encoder
via deconvolution. All convolutional layers are followed by
batch normalization and leaky rectified linear unit (ReLU)
activation except the last prediction layer, where softmax is
used. In the second stage, we adopt a similar U-Net structure as
segmentation network, since it combines high-level informa-
tion (for semantic comprehension) and low-level information
(for precise localization).



1003105 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 4. Results of sea fog detection by all methods. From left to right: true-color image, synthetic image, superpixel image, ground truth, U-Net, DeeplabV3+,
SFCNet, and SFCNet with CRF.

5) CRF Refinement: A fully connected CRF is used to
model the relationships between pixels for further refining
pixel-level prediction. In the CRF model, the Gibbs energy
is the objective function

E(x) =
∑

i

ψu(xi)+
∑
i, j

ψp(xi , x j ) (11)

where ψu(xi) is the unary potential energy of the pixel i
belonging to the category xi . ψp(xi , x j) is the pairwise poten-
tial energy of the pixels i and j belonging to the categories
xi and x j , respectively. The latter term encourages similar
pixels to be predicted as the same category, while pixels
with sharp contrast are prone to be assigned different labels.
Overall, the combined energy is minimized by Mean-field
inference [15] to iteratively optimize the results. As thus, our
model achieves more precise segmentation.

III. EXPERIMENTS

A. Data

We choose Himawari-8 satellite to obtain remote sensing
data due to its new payload called Advanced Himawari
Imager (AHI) for dedicated meteorological missions. It has the
advantages of high radiometric, spatial, spectral, and temporal
resolution, which can provide comprehensive and detailed data
support for our research. We focus on parts of the Yellow Sea
and Bohai Sea, with the longitude ranging from 117.50◦E to
128.76◦E and the latitude ranging from 29.74◦N to 41.00◦N.
In this letter, Himawari-8 Standard Data (HSD8) is used as
experimental data, including 193 daytime sea fog samples
from 2017 to 2019. The dataset has 155 training images
and 38 test images of size 1024 × 1024. HSD8 contains
16 observation bands distributed in visible, near-infrared, and
infrared channels. According to the detection category and
physical meaning of each band, we select three bands which
are closely related to the recognition of sea fog, namely B03,
B04, and B14, to synthesize nature-color images for further
experiments. Compared with the true-color (RGB) images, sea
fog in the synthesized images can be better distinguished from
cloud groups visually, as shown in Fig. 4.

To train the image enhancement model, we first manually
extract high cloud covers in the above images, then randomly
composite them with clean background samples in red, green,
blue, alpha (RGBA) color space, preserving the value of
transparency with an extended alpha channel. Consequently,
the composited images (i.e., input) and the corresponding
backgrounds (i.e., ground truth) make up 5625 pairs of images
for GAN, from which the binary masks for attention can be
derived by contrast.

B. Implement Details

1) High Cloud Removal: In the GAN model, the generative
network and the discriminative network are trained in an
adversarial manner. We use Adam optimizer with β1 = 0.9,
β2 = 0.999, and a weight decay of 0.001. The model is trained
for 200 iterations with batch size 4. The learning rate for both
is set to 1 × 105. In the recurrent network, the number of
iterations is set to 4, considering a tradeoff between the quality
of attention map and memory allocation.

2) Sea Fog Detection: During the training phase, we first
pretrain the superpixel network and then update it with the
rest of network simultaneously. We apply some augmentation
techniques: randomly flip and rotate the images by 90◦ as
well as crop them to the sizes between three-quarters and the
whole and then resize to the original size. The input size of
the network is 1024 × 1024 and we predict superpixels with
16 × 16 grid size to perform 16× up/down sampling. Adam
is adopted as the optimizer with β1 = 0.9 and β2 = 0.999.
The model is trained for 200 iterations with batch size 4. The
initial learning rate is set to 5 × 105 and reduced by half
after 150 and 180 epochs, respectively. In the post-processing,
the Mean-field inference is iterated ten times.

C. Result Analysis

To validate the SFCNet, we compare it with two pixel-level
segmentation methods both quantitatively and qualitatively on
the test set. For a fair comparison, all the methods were trained
in the same manner. The accuracy of semantic segmentation
is measured by the metric, mean intersection over the union
(mIoU). As shown in the table, our proposed method shows
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TABLE I

QUANTITATIVE RESULTS OF DIFFERENT METHODS

Fig. 5. Results of high cloud removal. The blue area is the high cloud that we
want to remove, which hinders the expression of local context and destroys
the spatial coherence of sea fog. The white/gray areas are sea fog detected
before/after high cloud removal, respectively. Note that the gray areas are the
extra detected parts.

better performance compared with U-Net and DeeplabV3+.
SFCNet achieves nearly five points higher mIoU than that of
U-Net, which verifies the effectiveness of the superpixel-based
method. By applying CRF, mIoU is improved by 2.48%.
After high cloud removal, mIoU is improved by 1.45%, which
demonstrates the effectiveness of GAN-based enhancement.

Fig. 4 shows the results of sea fog detection. It is obvious
that most of sea fog can be detected by all methods. However,
U-Net and DeeplabV3+ cannot work well on some ambiguous
boundaries and thin structures, while our proposed method per-
forms better in detecting fogs in small, broken bits and weak
contrast thin fog areas. We also see that fully connected CRF
can modify and restore some misjudged points or segments,
thus yielding more refined segmentation results in preserving
object boundaries and fine details.

Fig. 5 shows the results of high cloud removal and further
sea fog detection. It can be seen that high cloud removal visu-
alizes the obscured part of sea fog to be detected by exploiting
contextual information, which validates the decloud effect on
contextual expression. In this way, the high cloud-free images
can be used as auxiliary data that makes sea fog detection
more intelligent.

IV. CONCLUSION

In this letter, an automatic and effective correlation
context-driven method for sea fog detection in satellite
imagery has been proposed. Quantitative and qualitative results

show that the proposed method achieves the best mIoU
of 91.65% and obtains more refined segmentation results
compared with other methods. From the visual effect, our
proposed method performs well in detecting fogs in small,
broken bits and weak contrast thin structures. Additionally,
experimental results demonstrate that the GAN-based image
enhancement model can implement high cloud removal, which
helps to further detect the obscured part of sea fog. In future
work, we will apply the proposed method to sea fog detection
in remote sensing images from different satellites to find new
enhancements.
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