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Abstract— Graph convolution networks (GCNs) are useful in
remote sensing (RS) image retrieval. It is found to be effective
because, in a graph representation, the relative geometrical inter-
actions between different regions (or segments) are appropriately
captured, along with their region-wise features in their region
adjacency graphs. Also, the attention mechanism has often been
applied to the nodes to highlight the essential features in each
node. In this regard, a significant amount of high-frequency
information is missed since each image segment is effectively sum-
marized within a single node. To account for this and increase the
learning capacity, we propose to attend over the edge/adjacency
matrix to highlight the interactions among meaningful regions
that contribute to supervised learning from images. We exploit
this novel edge attention mechanism together with node attention
to highlight essential image context by allowing more importance
to the meaningful neighboring regions that highlight a relevant
node. We implement the proposed context-attended GCN frame-
work for image retrieval on the benchmarked UC-Merced and
the PatternNet datasets. We observe a notable improvement in
the results compared to the state of the art.

Index Terms— Attention network, graph convolution networks
(GCNs), image retrieval, remote sensing (RS), Siamese architec-
ture.

I. INTRODUCTION

ATA pruning and retrieval have received paramount

interest in the remote sensing (RS) community due to
the advancement in sensor technology and the accumula-
tion of vast amounts of data. A conventional context-based
image retrieval (CBIR) task uses a target query image as
the context and uses it to prune the database to search
for its nearest matches. Hence, it is essential that the
designed framework provides an adequate representation of
the extracted features of the images and is also efficient at the
same time [1].

Convolutional neural networks (CNNs) mainly comprise
data-driven feature extractors [1] which describe the global
level features from the images. Such a global descriptor can
often yield inferior results in RS as they do not include
the local neighborhood constructs within the images. To this
end, researchers have found Graph convolution networks
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(GCNs) [2] to be more effective in RS image retrieval [3]-[5].
It helps in highlighting the local scene constructs in addition to
describing the global scenes. GCNs can be employed either in
the spatial or spectral domain. They are usually applied in the
spatial domain as it provides the notion of part learning and
part interactions in objects. It works on a local neighborhood
of nodes and learns from the properties of a node based on
its local neighbors. Until recently, attention mechanism has
received a lot of consideration in learning sequence-based
tasks [6] by using CNNs and recurrent neural networks. It pri-
marily helps the network to focus more on the most relevant
part of the input information. RS scene images comprise
multiple subclasses, which together constitute a single-labeled
scene. Thus, using attention networks in conjugation with
CNNs is often less effective as it captures the global scene,
leaving out these subtle important local constructs. In addi-
tion, CNN’s with attention requires many hyperparameters
to be tuned, making the training task challenging. Despite
this, Velickovi¢ et al. [6] applied attention mechanism on
a graph-theoretic framework and performed attention within
each subregions of the image. This helped to highlight each
node’s most essential features that contribute to the overall
classification accuracy.

While node attention helps us highlight the vital node
features, it is also essential to realize the contribution of
the interaction of each neighborhood region in describing the
overall scene. For instance, in an RS application, to describe an
airport scene, the presence of airplanes near a runway would
be more relevant than the possibility of finding a water body
or a bush near the runway. In such a case, we would like
to highlight the former adjacency more than the latter one.
It is commonly referred to as a link prediction problem in
network theory [7]. Although link prediction is frequently used
in network theory, it has not been used in conjunction with
GCNs for RS and computer vision (CV) applications to the
best of our knowledge.

Inspired by several sources of knowledge reviewed above,
we propose a context-attended GCN, wherein we attend over
nodes and the edges. The distinct context embedding vec-
tor is a nonlinear combination of all node-attended features
and their corresponding nearest most important neighboring
regions. We enforce the model to learn from the most crucial
features within each node and highlight the critical neigh-
bors for describing the particular scene. Since we exploit
the regional interactions to highlight the actual node fea-
tures, we refer to this as context-attention. We establish its
efficacy in RS aerial image retrieval from our studies and
experiments.

Our present contributions are as follows.
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1) We perform a simple linear iterative clustering (SLIC)
superpixel-based image segmentation. It produces high-
quality superpixels at low computational complexity.

2) We construct a region-adjacency graph (RAG) from
these images. Here, each segment acts like a graph node,
and their neighborhood serves as the adjacency matrix.

3) We use discriminative learning of the embedding space
features from an irregular and non-Euclidean spatial
distribution of regions (i.e., graphs) by using GCNs.

4) Finally, we append the above framework using the
context-attended attention framework and present its
performance for RS aerial image retrieval. We perform
our experiments on the benchmarked UC-Merced [8]
and the PatternNet [9] datasets.

II. METHODOLOGY

Let us consider y = {x;,y;}}_, as a very high resolu-
tion (VHR) image training dataset comprising of n images
from Y different categories. We aim to learn a retrieval
framework from y, for any given query image x, from a test
dataset x;; without any label information.

A. Region Adjacency Graphs

To convert the images into graphs in a non-Euclidean space,
we first perform a SLIC superpixel-based segmentation of the
images. Each segment acts as a node of a graph, and their
nearest neighbors provide the adjacency information. Thus we
construct RAG from each image by performing superpixel
segmentation. We construct the graph representation for the
ith image as g; = (E;, A;) where E; represents the weighted
graph adjacency matrix created from the RAG of x;, and A;
represents the node level attributes.

1) Node Features A;: To build node attributes, we compute
features for each segmented region. As image segmentation
leads to irregular regions, extracting CNN-based data-driven
features is challenging. Also, since SLIC leads to homo-
geneous regions, simple handcrafted features can perform
nearly as good as deep features. This essentially comprises
shape features, color features, and texture features [10]. The
shape features comprise Fourier descriptors and counter-based
features, such as area, perimeter, solidity, eccentricity, ori-
entation, bounding boxes, Euler number, and convex-area.
The color features comprise normalized color histograms
and color moments. Similarly, the texture features constitute
spectral histograms, horizontal and vertical Sobel filter output,
entropy, local binary patterns, and local phase quantization-
based features. We concatenate all these features into a vector
of dimensions 359. These node attributes are row-stacked to
create the overall feature matrix A; € R?*3° where p; is the
pth segment in the ith image.

2) Edge Adjacency E;: In the segmented image, an edge
Ei(r], rl-k) is said to exist between two segments, if they are
spatial neighbors. To create the weighted adjacency matrix,
we calculate the distance between the centroids of two seg-
ments ¢; and c.x. We also find the orientation angle 6,
between them by calculating the angle between the horizontal
axis and the major axis of the best fit eclipse of the segment.
The orientation angle is bounded between 6§ € [—90°, 90°]) as
they can generalize well for any angle in the Cartesian space.
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Fig. 1. SGCN framework exploiting the proposed context-attended attention.
The following equation helps us assigning the weights of the
adjacency matrix Ej;:

zzj(r{,rf) ::‘ )

if r,k € N(r, j), where N represents neighbor and 1 is a
hyperparameter. Depending on the superpixel segmentation
algorithm, different images will result in a variable number
of segments. Therefore, it requires a mapping of all these
irregular-sized graphs into one common comparable latent
space. For this purpose, we use the spatial graph convolution
approach proposed in [2]. Previous studies have established
the effectiveness of this approach [3], [4]. Here, we instead
propose a context-based attention framework for spatial GCN.
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B. Siamese Graph Convolution Network

We use a Siamese graph convolution framework to train our
overall framework, as shown in Fig. 1. A Siamese architecture
requires a pair of graphs as input to the framework. We use a
node attention layer for each of the Siamese branches, which
brings the features to a 256-dimensional output (F = 359,
and F' = 256). An edge attention layer then follows this
process. The remaining framework prevails the same as given
in [4], wherein we use a graph convolution of 128 dimensions,
followed by a graph embedding layer to have 64 nodes.
Finally, we use a dropout layer with probability 0.5, followed
by two fully-connected (FC) layers of 256 and C dimensions,
where C is the number of classes in the concerning dataset.
A target variable #;; is defined here that learns either O or 1 if
either pair of the input graphs belong to the same target class
or from different classes. We minimize a contrastive loss to
train the Siamese network as defined in the following equation:

N

L=

n=1
X (tnij{max(O, m— (X — %n)%) }
+ (1 = tij) Fni — Xj) >+ 21 (1% 2+ 1%0s12) + ,12|¢>|2).
(2)

Here, m defines the margin across which we want to push
a different class graph embedding in the latent space. The
contrastive loss is a ranking loss function. Our system uses
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Fig. 2. Illustration of the attention mechanism a(W, p;, W, p;) employed
by our model, applying a LeakyReLU activation.
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Fig. 3. Illustration of the overall working of node attention. The attention
weights learns the most essential features in each node.
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pairs to form an inherent ranking order. The training batches
take advantage of the distance between the graph embedding
vectors to mine complex negative samples for a given anchor
class. This implies that graphs from different classes with
smaller distances in the feature space will have a higher
probability of being used during training.

We add a /; norm on the final features and the final layer
learnable weights (¢) to help stabilize the loss function [4].
When we get two same class graphs as the input, the target
tij is assigned 0. This procedure makes the second term
of the loss £¥ to zero, and hence, we only minimize the
distance between the embeddings of the two graphs in the
latent space. Therefore, the intraclass distances are reduced in
the embedding space. Similarly, when we have two different
class graph pairs as the input, the target #;; is assigned 1. This
procedure makes the first term of the loss L* zero. Therefore,
we push the two indifferent class features further apart by
at least a margin of m in the embedding space. In effect,
this increases the interclass embedding feature distances. Here,
we experimentally choose the model hyperparameters A; and
A>. We append this Siamese GCN (SGCN) framework with
node attention [6] and the novel edge attention mechanism to
highlight the important constructs of the image. The following
sub-sections elaborate on the formulation of these attentions.

C. Node Attention

Let us consider an image having p; x F node features,
where F = 359 is the input feature dimension in this case.
The set of node features can then be presented as p =
{p1, P2, - .., Pr}, where R is the number of nodes. When this
input is fed to the attention layer, we obtain a new learned
node feature matrix with different cardinality F’. This yields
an output node matrix of p’ = {py/, p2/, ..., pr’}. To learn an
attention on this node matrix a : R x R — R, we train
a learnable weight matrix w, € RF*F, for every node. The
importance [6] of a node j’s features to node i is then given
by

Cij :a(wapi»wapj)- (3)

This helps in allowing every node to attend on every other
node features. Let us represent the nodes in the neighborhood
of node i as Z;. Further, to get the attention heads compa-
rable across different nodes, Velickovi¢ et al. [6] propose

Non
linearity
S %

RAG Attended Edges
Fig. 4. Illustration of the overall working of the proposed edge attention.
The attention weights learn the essential edges around each node. The overall

mechanism then combines both node and edge attentions.
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normalizing the learned coefficients using a softmax layer as
(exp(ei))/ (D _iez, expleir))-

We consider the attention layer as a FC feed-forward
neural network, activated with a nonlinearity LeakyReLU(-).
The learned layer features are concatenated with the input
features and back-propagated to learn the attention network.
The LeakyReLU function provides a soft attention mechanism
on the input node features and prevents learning up a binary
0/1 matrix. The overall node attention module is illustrated
in Fig. 2. Expanding out the above softmax layer, the general
effective attention layer looks like

_ _ exp(LeakyRelu(@[Wapi || Wap;1))
> ez exp(LeakyRelu(a[W, p;i || Wap;])’

Effectively, this layer assigns higher importance to the most
important features within each node and a lower priority on
the less important node features. When concatenated with the
original node feature matrix, we obtain highlighted important
constructs within the input node features, as shown in Fig. 3.

“)

Qij

D. Edge Attention

For each image consisting of p; nodes, we have a corre-
sponding weighted-adjacency matrix of dimension p; X p;.
To learn an attention on this edge matrix b : R” x R” —» R,
we propose a novel learnable weight matrix w, € RP > P,
applied to each image. The importance of jth edge to ith
edge is then given by

hij :b(wepia Wepj)- (5)

This helps in allowing each edge to attend on every other
edge weight. Further, to get the attention heads comparable
across different edges, we perform a normalization operation
on the learned coefficients similar to the node attention, using
a softmax function. The edge attention layer is also employed
as a feed-forward neural network, activated with a nonlinearity
LeakyReLU(:). The learned layer weighted-adjacencies are
concatenated with the input weighted-adjacency matrix and
back-propagated to learn the edge-attention network. The
overall attention layer is

exp(LeakyRelu(2[W.p; | W.p;]))
> icr exp(LeakyRelu(h[W.p; || W.p;1))’

Effectively, this layer assigns higher importance on the most
important edges within each image and a lower priority on
the less important edges. When concatenated with the original
input adjacency matrix, we obtain a highlighted important
neighborhoods within the input images, as shown in Fig. 4.

We train the above framework by using a stochastic gradient
descent optimizer, using mini-batches for minimizing L.
Posttraining this context-attended architecture, we use a simple

Bij =

(6)
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TABLE I

PERFORMANCE OF DIFFERENT MODELS ON UC-MERCED AND PATTERNNET DATASET. LOWER VALUES OF ANMRR AND HIGHER VALUES OF
P@10 AND MAP DENOTES BETTER MODEL PERFORMANCE [9], [11]

Model UC Merced PatternNet
ANMRR mAP@all P@10 ANMRR mAP@all P@10
G-kNN [4] 0.92 07.50 10.12 0.88 12.35 13.24
RAG-ENN [4] 0.75 26.74 24.90 0.69 22.56 37.70
VGG-VDI16 [11] 0.38 53.71 78.34 0.33 59.86 92.04
Attention + VGG-VD16 0.39 54.5 78.54 0.34 60.54 93.87
VGG-VD19 [11] 0.39 53.19 77.60 0.34 57.89 91.13
GoogLeNet [11] 0.39 53.13 80.96 0.29 63.11 93.31
GCN [4] 0.33 64.81 87.12 0.28 73.11 95.53
Context Attended-GCN (Ours) 0.31 66.77 90.08 0.26 75.64 96.87
SGCN [4] 0.30 69.89 93.63 0.21 81.79 97.14
Context Attended-SGCN (Ours) 0.29 73.22 94.62 0.19 84.02 98.37
TABLE I1

k-nearest neighbor (k-NN) metric to find the top-k retrieved
image samples for any given query.

III. EXPERIMENTS AND RESULTS
A. Datasets

To validate our performance of our framework, we exper-
iment on the PatternNet [9] and the UC Merced [8]
dataset. The PatternNet dataset consists of 38 classes, con-
sisting of 800 images each, while the UC Merced consists
of 21 classes and has 100 images per class.

B. Model Architecture

We keep the overall model architecture consistent with [4] to
provide fairness in comparison. We perform the segmentation
of the images using SLIC superpixels with a region size
of 25 for the Merced dataset and 40 for the PatternNet dataset.
Corresponding to each of these segments, we obtained a fea-
ture vector of 359 dimensions. We select the same set of fea-
tures for creating the graphs to keep the backbone framework
the same and not induce any backbone architecture-induced
bias to the overall results. Initially, we trained the GCN net-
work to optimize a cross-entropy loss function to yield feature
embeddings of 256 dimensions. We then feed this optimized
GCN framework to the SGCN network, wherein we minimize
a contrastive loss function and obtain feature embeddings in
128 dimensions. The SGCN uses shared weights for both the
input RAGs.

C. Training and Evaluation Protocol

We use the standard 75:25 to split the data in train:test.
We trained the GCN network with a learning rate of 0.01 and
a batch size of 32. The network converged in about 2500-
3000 iteration for both datasets. The noise margin m in (2)
is set to 1 heuristically. The 1; and the A, parameters were
both set to 0.001, following the sensitivity analysis of critical
parameters in [4]. The same set of query images are used in
the proposed work as the comparative frameworks to maintain
fairness in the evaluation process and avoid bias. For the
evaluation purpose, we use the precision@ 10 (P@10), mean
average precision (mAP), and the average normalized modified
retrieval rank (ANMRR) metrics for comparison that are
consistent with the literature.

For training the SGCN network, we generate the train pairs
during runtime. The closest negative class sample is preferred

PERFORMANCE OF DIFFERENT MODELS ON UC-MERCED DATASET,
IN TERMS OF MAP, ANMRR, AND P@10(%) VALUES

Model UC Merced
ANMRR mAP@all P@10
GCN [4] 0.33 64.81 87.12
Node Attended-GCN 0.32 65.56 88.32
Edge Attended-GCN 0.32 65.85 88.09
Context Attended-GCN 0.31 66.77 90.08
SGCN [4] 0.30 69.89 93.63
Node Attended-SGCN 0.30 70.81 93.86
Edge Attended-SGCN 0.30 71.86 93.89
Context Attended-SGCN 0.29 73.22 94.62

during training as it helps push them apart in the latent feature
space. This process increases the interclass distancing between
the different cluster centers of features of each class. The
SGCN network is a series of three FC layers of 256, 256,
and 128 dimensions. We trained the network using the Adam
optimizer for about 20 epochs and mini-batches of 32 sample
pairs. We set the learning rate to 0.001.

We compare the performance of the proposed framework
with that of the first principle component for RAG (G-k-NN),
entire RAG (RAG-k-NN), standard CNN using pretrained
VGG-net [12], attention network on CNN (VGG-16), and
GoogLeNet [13]. Also, we compare the proposed method
with a standard GCN and SGCN [4] in Table I. We use
the same RAG to maintain consistency and fairness in the
comparisons for all the graph-based comparisons. Since this
method uses handcrafted features extracted from arbitrarily
shaped segment regions, we stick to similar graph-based
comparative frameworks. We apply our context-attended GCN
on the simple GCN framework, as well as on the SGCN
framework. We observed an increase of about 1%—2% in the
overall P@10 and mAP values for both datasets in the two
cases. This analysis supports us in establishing the efficacy of
the proposed framework in RS images.

D. Ablation Studies

We perform a model ablation by considering each module
of the overall framework individually. We chose the GCN
and the SGCN models as the baseline networks. We report
the ablation results on the UC Merced and the PatternNet
datasets in Tables II and III. The baseline GCN model yields
a P@10 value of 87.12% and 95.53% on the Merced and
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Tllustration of the original and the learned graph. We denote the edges weighing more than 0.1 in black for representation purpose, while the edges
weighing less than 0.1 are represented with red dotted lines. (a) Segmented image. (b) Original edge weights of RAG. (c) Attended edge weights. (d) Attended
edges.

Fig. 5.

TABLE III

PERFORMANCE OF DIFFERENT MODELS ON PATTERNNET DATASET,
IN TERMS OF MAP, ANMRR, AND P@10(%) VALUES

Model PatternNet
ANMRR mAP@all P@10
GCN [4] 0.28 73.11 95.53
Node Attended-GCN 0.27 74.93 96.12
Edge Attended-GCN 0.28 74.68 96.09
Context Attended-GCN 0.26 75.64 96.87
SGCN [4] 0.21 81.79 97.14
Node Attended-SGCN 0.20 83.14 97.76
Edge Attended-SGCN 0.20 82.93 97.71
Context Attended-SGCN 0.19 84.02 98.37

PatternNet datasets, respectively. When we add the node
attention [6] to this, we obtain an increase of ~1% in the
P@10 value in both the dataset. The addition of this prunes
the essential features of each region and highlights them,
thereby boosting overall performance. We also achieve ~1%
increase in the overall performance for all the evaluation
metrics upon using the proposed edge attention. This module
helps in pruning the important neighborhood information in
a scene and assigns more weight to them. We achieve ~2%
increase in the overall performance using all the metrics for
the attention in conjugation to the GCN framework. Likewise,
we use SGCN as the baseline architecture and perform the
above set of ablation studies on both datasets. We can note
here that considering the baseline has already provided a high
performance, even a 2% increase in the performance above
90% can be considered a noteworthy improvement.

Fig. 5(a) shows a sample image from the PatternNet dataset.
We perform a rudimentary segmentation and display its cor-
responding segmentation mask. We enumerate the nodes from
1 to 49. Fig. 5(b) and (c) shows the corresponding initial
edge adjacency matrix and the attended edge adjacency matrix,
respectively. We denote the edges weighing more than 0.1 in
black for representation purposes, while the remaining edges
in red dotted lines. We choose a value of 0.1 on an ad hoc
basis. In Fig. 5(d), we show the attended edges which receive
the maximal importance in the embedding space by connecting
their region centroids with red dotted lines. Please note that
the overall retrieval performance has improved even though the
attended edge graph comprises fewer edges with high weights.
This result implies that emphasizing meaningful neighborhood
interactions by implementing context attention assists in the
overall representability of the image.

(©)

IV. CONCLUSION

We propose a novel context-attention network for GCNs,
which comprises node and edge attentions. In addition to
highlighting essential features within each node, edge atten-
tion enables the network to learn the most critical neigh-
borhood constructs from the RAGs within each target class
image. By learning the local interactions, it preserves the
neighborhood information of the structures and stores the
nonlinearities. Together with node attention, it comprises
the context-attention network for GCNs. We demonstrate
the effectiveness of attention on standard GCN architecture
and the state-of-the-art SGCN architecture and demonstrate
superior CBIR performance in both cases on VHR RS datasets.
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