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Abstract— Previous studies have shown that the decrease
of temporal interferometric synthetic aperture radar (InSAR)
coherence could be exploited to detect the appearance of flood-
water in urban areas. However, as of today, approaches based
on this principle only make use of single co-polarization images
for identifying the presence of floodwater in the double-bounce
feature. In this study, we take advantage of both co- and
cross-polarization images to detect significant decreases of the
multitemporal InSAR coherence in order to enhance the mapping
of floodwater in urban areas. We consider that not only double-
bounce scattering, but also multiple-bounce may occur in urban
areas depending on how the building facades are oriented with
respect to the synthetic aperture radar (SAR) sensor’s line of
sight. The Sentinel-1 (S-1) mission is particularly well suited
for applying and testing this kind of approach due to the
systematic availability of dual-polarization data. Using as a test
case, the widespread flooding in the city of Houston, USA, caused
by Hurricane Harvey in 2017, we demonstrate that the proposed
methodology leads to an increase of the accuracy of the urban
flood maps from 75.2% when only using the VV polarization,
to 82.9% when using the dual polarization information.

Index Terms— Change detection, dual-polarization, flood
maps, interferometric synthetic aperture radar (InSAR) coher-
ence, synthetic aperture radar (SAR), urban areas.

I. INTRODUCTION

NATURAL disasters due to hydrogeometeorological risks
take place across the globe and affect different land

classes, including urban areas, coastal zones, or agricultural
lands. Urban flooding, in particular, represents a frequent and
high-impact natural disaster, and one of its major causes are
environmental changes such as sea level rise and more frequent
extreme weather events [1]. To ensure an evidence-based and
timely emergency response and damage assessment, flood
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extent maps are of paramount importance for disaster respon-
ders. Nowadays, the exploitation of an increasing availability
of satellite earth observation (EO) data and the progress
achieved in remote-sensing instruments enables a more accu-
rate and efficient mapping of urban floods [2], [3]. SAR
sensors occupy a privileged place among EO sensors due to
their quasi-all-weather and day/night observation capabilities.
Different studies propose algorithms enabling the detection of
floods in urban areas from SAR observations [3]–[9].

In principle, due to the double-bounce scattering mech-
anism, the appearance of floodwater on roads in front of
buildings becomes detectable when considering the increase
of the SAR backscattering in the co-polarization channel [5].
However, when the building facades are not orthogonal to the
satellite sensor’s line of sight (LoS), the recorded increase of
the SAR backscattering may not be sufficient for enabling
the detection of floodwater. In order to overcome this limita-
tion, Chini et al. and Pulvirenti et al. [4], [6] have proposed
to take advantage of the interferometric synthetic aperture
radar (InSAR) coherence feature in order to complement the
SAR intensity. The underlying hypothesis of their proposed
method is that the decrease of the co-event InSAR coherence
with respect to the pre-event one reveals the appearance of
floodwater in urban areas. Successful applications based on
very high-resolution (VHR) COSMO-SkyMed images have
shown the high potential of exploring observations of the
InSAR coherence in addition to SAR intensity. InSAR coher-
ence [10] and interferometric phase statistics [11] derived
from VHR L-band SAR imagery acquired by the ALOS-
2 satellite mission have also been used for urban flood-
water monitoring. A fully automated algorithm capable of
mapping urban floodwater by using C-band SAR data with
decametric spatial resolution from the S-1 satellite mission
has been introduced in [3]. The study exploits the short
temporal and perpendicular baselines of the S-1 image pairs,
thereby demonstrating their suitability for an effective InSAR
coherence-based flood detection. Recently, research studies
have proposed machine learning methods for the delineation
of floodwater in urban areas. In [8], an unsupervised approach
has been proposed by making use of SAR intensity and InSAR
coherence under a Bayesian network fusion framework using
S-1 data. In [12], an active self-learning convolution neural
network (CNN) exploits SAR intensity and InSAR coherence
extracted from TerraSAR-X data, while Rudner et al. [13]
presented a CNN approach that performs a rapid segmentation
of buildings by fusing multiresolution, multisensor, and mul-
titemporal satellite imagery including S-1 InSAR coherence
data.

All the above-mentioned SAR-based urban flood mapping
approaches rely on single polarization images, namely the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-4313-3116
https://orcid.org/0000-0002-9094-0367
https://orcid.org/0000-0002-8109-6010
https://orcid.org/0000-0002-1232-5377
https://orcid.org/0000-0001-8483-1490


4018405 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 19, 2022

Fig. 1. Distributions of the InSAR coherence difference.

co-polarization channel. Indeed, urban areas tend to be highly
complex where, depending on the orientation of the buildings
with respect to the SAR LoS, the backscattering intensity
can be recorded differently in the co- and cross-polarization
channels. To evaluate the contribution of both polarizations in
detecting the presence of floodwater in urbanized areas, the
S-1 mission is particularly well suited since it systematically
acquires dual-polarization data in the VV-VH configurations.

II. METHODOLOGY

Generally, buildings have different orientation angles with
respect to the SAR looking direction and, as a result, their
corresponding backscattering signature is influenced by the
polarimetric configuration of the radar [14]. For instance,
the double-bounce scattering for an illumination orthogonal
to the building alignment is caused by right-angled structures
formed by building walls and roads, resulting in high and
low backscattering values in the case of co-polarization and
cross-polarization channels, respectively. Conversely, if the
LoS and the building facades are not orthogonal, they create
oblique angles, so that the contribution from cross-polarization
becomes higher compared to the co-polarization one. For
oblique incidence angles, the cross-polarized component is
the result of multiple scattering from these man-made struc-
tures [15]. In this context, we assume that only using the
co-polarization data could underestimate the extent of flooding
in built up areas and, therefore, we propose to improve the
floodwater detection by exploiting the multitemporal InSAR
coherence from the cross-polarization channel. The novelty
of this letter lies in using the InSAR coherence extracted
from both the co- and cross-polarization channels for a more
comprehensive delineation of floodwater in urban areas. The
proposed methodology makes use of the findings from our
previous study [3], demonstrating that the decrease of the
InSAR multitemporal coherence indicates the appearance of
floodwater in urban areas which are usually considered coher-
ent targets. In order to detect the InSAR coherence drop-off,
we propose a fully automatic and unsupervised classification
approach. A prerequisite of the InSAR-based methodology is
the SAR-based building map (BM). To this end, we make use
of the approach proposed in [16] that employs S-1 multitem-
poral data for extracting the BM.

As previously mentioned, in order to detect buildings sur-
rounded by floodwater, we use the InSAR coherence which
measures the degree of correlation between two complex
(phase and amplitude) images. S-1 is a well-suited mis-
sion for using InSAR coherence as an indicator of changes
because the coherence degradation due to both spatial and
temporal baselines is very low. Indeed, S-1 has a small and

Fig. 2. Flowchart of the proposed algorithm.

well-controlled orbital tube radius of 50 m, resulting in a small
spatial baseline between image pairs. Moreover, the two S-1
satellites have a temporal baseline as short as six days. These
two characteristics help containing the risk of an undesired
coherence decrease over areas such as urban settlements which
are supposed to be stable in time. In order to detect the
coherence drop off caused by the appearance of floodwater in
urban areas we propose to use: 1) an interferometric image pair
composed of two images taken before the onset of the flood
inundation from which we derive ρpre and 2) a pair constituted
of one image taken before and another one acquired during the
flood inundation from which we derive the coherence denoted
ρco. In this framework, we make the following assumption:
urban areas affected by a flood have ρpre > ρco. Fig. 1
illustrates the distribution of the coherence difference maps
corresponding to the S-1 BM and computed for the flood case,
that is, ρpre − ρco (red curves). The distributions computed
for the case of two image pairs acquired before the flood,
ρpre ′−ρpre is also shown (blue curves). The latter are composed
of values close to 0 since the temporal InSAR coherence over
building areas is generally stable, while the flood coherence
difference, ρpre−ρco, presents an important number of samples
with values greater than 0 indicating that ρco is decreasing.
The InSAR coherence difference characteristics can be noticed
for both polarization channels despite the different absolute
values of InSAR coherence, that is, the cross-pol coherence
is lower than the co-pol coherence at the same acquisition
geometry. Therefore, we hypothesize that the flood InSAR
coherence difference map is composed of two classes, that
is, one corresponding to the flood areas with values greater
than 0 and one corresponding to nonflooded areas with values
close to 0. Histogram thresholding or parametric approaches
are commonly used to separate such distributions. However,
the classification accuracy depends on the proportions of
classes within the image and the overlap between the two
classes, respectively. To overcome this limitation, we make
use of a hierarchical split-based approach (HSBA) [17] that
separates the classes of a bimodal distribution by identifying
image tiles where the two distributions can be fit more reliably
and accurately. The ρpre − ρco distributions corresponding to
the identified HSBA bimodal tiles, shown in Fig. 1 (green
curves), depict the bimodal distributions that are classified by
making use of a thresholding and region growing procedure.

The decrease of coherence is mapped from the double-
and multiple-bounce features using VV and VH polarizations,
respectively. Next, the two resulting maps are merged by using
a logical OR function in the final map, denoted hereafter urban
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TABLE I

CHARACTERISTICS OF THE INPUT DATASETS

Fig. 3. Experimental dataset overview, Houston (USA). (a) DG VHR imagery
and crowdsourcing points. (b) S-1 UFM.

flood map (UFM). The entire procedure summarized in the
flowchart given in Fig. 2 consists of the following main steps
applied to both polarization channels:

1) BM detection (double and multiple bounces);
2) computation of ρpre − ρco;
3) HSBA detection of the InSAR coherence drop-off.

III. EXPERIMENTAL RESULTS

A. Datasets and Feature Extraction

The experimental results are based on an S-1 dataset
acquired in the framework of Hurricane Harvey, which led to
substantial large-scale flooding, affecting the metropolitan area
of Houston, TX, in August and September 2017. In addition
to the S-1 dataset, a GeoEye-1 VHR image was acquired on
August 31, 2017, over Houston and was made available in
the framework of the Digital Globe (DG) open data program.
Thanks to the reduced cloud coverage at the acquisition time,
DG’s Tomnod crowdsourcing team was able to label the
location of affected buildings over the city of Houston through
photo interpretation, thereby providing a pointwise interpre-
tation of these images, where each point depicts a building
surrounded by floodwater. The resulting independent dataset is
suitable for validating any SAR-based product. Fig. 3(a) gives
an overview of the area of interest (AOI) addressed in the
experimental results along with the DG crowdsourcing points.

The S-1 BM was derived from a multitemporal set of
S-1 interferometric wide (IW) swath images spanning over
one year from September 2016 to August 2017. The images
were thus acquired before the landfall of hurricane Harvey.
In order to detect a coherence drop off that can be related
to the presence of floodwater, we made use of S-1 images
acquired over the metropolitan area of Houston on August 30,
2017, when the flooding was still ongoing and close to its
peak, as well as images acquired before the event. The SAR
interferograms were generated from the SLC image pairs for
each polarization channel separately. Table I summarizes the
characteristics of the input data.

Fig. 3(b) gives the resulting UFM along with flooded bare
soil areas mapped using the algorithm proposed in [17].
Fig. 4(d) showcases the contribution of both co- and
cross-polarization channels in the UFM. One can notice that
contributions of the two polarizations are indeed complemen-
tary and depend on the orientations of buildings with respect
to SAR LoS depicted in Fig. 4(a), showing the red, green, and
blue (RGB) composite of the multitemporal SAR intensities.
An analogous behavior of the VV and VH roles is also
demonstrated for the S-1 BM depicted in Fig. 4(b). Fig. 4(c)
illustrates the RGB composite of VV and VH coherence
drop offs corresponding to the flooded buildings. This result
indicates that the contribution of each polarization channel
is in accordance with the trend shown by the SAR intensity
[Fig. 4(a)], that is, red areas are associated with a high decrease
of VV InSAR coherence, blue areas with a high decrease of
VH InSAR coherence, and white areas correspond to a high
decrease for both polarizations. Moreover, one can notice that
both VV and VH contributions to the final UFM from Fig. 4(d)
show an agreement with the DG crowdsourcing points shown
in Fig. 4(e), demonstrating the importance of using both
polarization channels for a comprehensive SAR-based urban
flood detection.

B. Discussion

First, we perform an in-depth qualitative analysis of the
results corresponding to the two AOIs depicted in Fig. 3(a).
In Fig. 5, we showcase the first AOI, a densely urbanized
area as it can be observed from Fig. 5(d) and (e). From
Fig. 5(a), showing the VV polarization SAR intensity as an
RGB composite, one can notice that the presence of floodwater
in urban areas leads to an increase of the backscattering
in the flood image. However, the double-bounce increase is
not sufficiently high to enable the identification of water in
the SAR intensity domain. Therefore, the flooded buildings
have been delineated by making use of the temporal change
of InSAR coherence. Fig. 5(b) and (c) illustrates the multi-
temporal behavior of InSAR coherence over the same area
for the VV and VH polarization channels, with an RGB
composite (R = ρpre, B = G = ρco) image. We notice a
significant change in the ρ values for both the co- and cross-
polarization channels. In the urban areas affected by the flood,
ρ decreases significantly, resulting in the condition ρpre > ρco,
as depicted by areas in red color. We can further notice that
some of the areas where the coherence decreases are the same
for VV and VH. Fig. 5(f) showcases the common VV–VH
flooded buildings depicted in dark blue as well as the flooded
buildings delineated only by VV and only by VH illustrated in
green and pink, respectively. This indicates a synergistic use
of the two polarization channels for mapping urban floods.
The VV–VH merged UFM is illustrated in Fig. 5(e) where
the flooded buildings are depicted in dark blue. One can
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Fig. 4. VV and VH roles in (a) intensity temporal means (R = VV, G = B = VH, (b) S-1 BM). (c) Coherence drop-off (R = ρVV
pre − ρVV

co , G = B =
ρVH

pre − ρVH
co ). (d) VV-VH comparative UFM. (e) DG VHR imagery and flooded buildings crowd sourcing points.

Fig. 5. AOI 1. (a) Intensity RGB composite: R = 24/08/2017, B = G = 30/08/2017. (b) VV and (c) VH InSAR ρ RGB composite: R = ρ
18−24/08/2017
pre ,

B = G = ρ
24−30/08/2017
co . (d) DG VHR imagery (31/08/2017) and crowd sourcing points of flooded buildings. (e) UFM (dark blue), flooded bare soil (light

blue), nonflooded built-up areas (white). (f) VV–VH comparative UFM.

Fig. 6. AOI 2. (a) Intensity RGB composite: R = 24/08/2017, B = G = 30/08/2017. (b) VV and (c) VH InSAR ρ RGB composite: R = ρ
18−24/08/2017
pre ,

B = G = ρ
24−30/08/2017
co . (d) DG VHR imagery (31/08/2017) and crowd sourcing points of flooded buildings. (e) UFM (dark blue), flooded bare soil (light

blue), nonflooded built-up areas (white). (f) VV–VH comparative UFM.

notice that the majority of the crowdsourced points shown
in Fig. 5(d) depict the same areas as those identified by the
coherence-based detection algorithm, as shown in Fig. 5(e).
In addition, we observe from Fig. 5(f) that a significant part

of the S-1-based UFM which is in agreement with the DG
data are identified by VV only or by VH only. This confirms
the necessity to combine the two polarizations in order to
optimally exploit both double-bounce and multiple-bounce
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TABLE II

S-1 AND DG QUANTITATIVE COMPARISON

scattering mechanisms in urban areas. By analyzing the second
AOI illustrated in Fig. 6, we can notice that part of the urban
floodwater is detected by the bare soil flood mapping algorithm
and corresponds to areas where a significant backscattering
drop-off is exhibited [Fig. 6(a)]. Analogous to the AOI 1
analysis, one can observe from Fig. 6(d) and (f) addressing
AOI 2, that a low percentage of the S-1 flooded buildings
validated by the DG dataset corresponds to the intersection of
the VV and VH detections, thereby confirming the potential
of a synergistic use of both polarization channels. In addition,
we can also notice that not all the DG data points show
corresponding detections in the S-1 UFM. A part of the
apparent underdetection and overdetection can be explained
by the difference in terms of spatial resolution between the
S-1 data (20 m) and the DG image (0.46 m). We can also
notice from Figs. 5(f) and 6(f) a slight overdetection of the S-1
flooded buildings resulting from both VV and VH channels
with respect to the DG data points. The difference can be
explained by the receding floodwater in the 24 h following
the data acquisition or by surface changes that are not due to
floodwater, for example, strong wind damages.

To quantitatively analyze the resulting UFMs, first, we have
counted and resampled to the S-1 resolution the pixels
that were labeled as flooded in the DG dataset, that is,
12 426 points. Then, we have counted how many of these
pixels have been mapped as flooded by the proposed algo-
rithm, for example, 6728 points for the merged VV-VH
UFM. When analyzing the contributions of each polarization
channel, one can notice that VV allows to detect a higher
number of flooded buildings, namely 49%, with respect to
VH that is only detecting 22% (Table II, second column). Their
common detections correspond only to 17%, while their union
reaches approximately 54%. This demonstrates the importance
of using both co- and cross-polarizations to maximize the
detection of floodwater presence in urbanized areas. The some-
what reduced number of points detected with the proposed
approach could be explained by different acquisition times of
the images, but also by the difference in spatial resolutions. For
the proposed approach, the S-1 BM is a prerequisite and due to
the lower S-1 spatial resolution, the intersection between DG
points and the S-1 BM is composed of only 8120 points (65%
of the total DG points). Considering only these buildings,
the percentage of detection of flooded building reaches 82.9%
for the merged VV-VH UFM (Table II, third column).

IV. CONCLUSION

An automatic algorithm enabling the mapping of flood-
water in urban areas using 20-m resolution SAR data has
been presented. It exploits the short temporal and spatial
baselines of S-1 image pairs, as well as the intensity and
the InSAR coherence from both VV and VH polarizations.
Results show the added value of using cross-polarizations
in addition to the more commonly used co-polarizations to
detect floodwater in complex urban environments. Indeed,

thanks to both polarizations, it is possible to fully exploit the
InSAR coherence and its decrease in flood conditions where
both double bounce and multiple bounce building returns are
recorded. The algorithm was tested using the images acquired
during the 2017 Atlantic hurricane season, which caused
large-scale flooding in and around the city of Houston, USA.
The obtained floodwater maps are quantitatively evaluated by a
cross-comparison with DG crowdsourcing points, showing that
the exploitation of both polarizations increases the capacity to
detect floodwater around buildings by more than 5% compared
to the exploitation of the co-polarization channel alone.
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