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Sparse Subspace Clustering Friendly Deep
Dictionary Learning for Hyperspectral
Image Classification

Anurag Goel

Abstract— Subspace clustering techniques have shown promise
in hyperspectral image segmentation. The fundamental assump-
tion in subspace clustering is that the samples belonging to
different clusters/segments lie in separable subspaces. What if
this condition does not hold? We surmise that even if the
condition does not hold in the original space, the data may be
nonlinearly transformed to a space where it will be separable
into subspaces. In this work, we propose a transformation based
on the tenets of deep dictionary learning (DDL). In particular,
we incorporate the sparse subspace clustering (SSC) loss in
the DDL formulation. Here DDL nonlinearly transforms the
data such that the transformed representation (of the data) is
separable into subspaces. We show that the proposed formulation
improves over the state-of-the-art deep learning techniques in
hyperspectral image clustering.

Index Terms— Clustering,
unsupervised learning.

deep learning, hyperspectral,

I. INTRODUCTION

NCE a hyperspectral image is acquired, the task is to

label each pixel. However, before such an inference is
carried out, the image typically undergoes some preprocessing
like denoising, band selection, and so on. There are two
approaches for labeling pixels — classification and clustering.
Pedagogically there are more studies on classification com-
pared to clustering; even though the latter is more pragmatic.
This is because, in the classification-based approach, experts
need to manually label a subset of the pixel’s values. The
labeled pixels are used to train a classifier; once trained,
the classifier is used to label the remaining (unlabeled) pixels.
The clustering-based approach does not need any manual
labeling and is a completely automatic process.

In this work, we address the aforesaid problem, that is, given
the image and the number of clusters, we want to automatically
label every pixel of the image. Note that clustering is also used
in hyperspectral image analysis for band selection [1], [2]; we
do not intend to achieve that.

One can find many letters on deep learning-based classifi-
cation of hyperspectral images but there are only a handful
of letters on deep clustering techniques [3]—[8]. All of these
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studies use an autoencoder (AE) framework for clustering. Let-
ters [3]-[6] use stacked AEs (SAEs) where the representation
from the bottleneck layer is input to subspace clustering. In [7],
a convolutional AE is used where the representation from the
deepest layer is input to K-means clustering with Student’s
t-distribution as the distance metric. All of these stud-
ies [3]-[7] have the clustering loss in-built into the network.
Another work [8] proposes a recurrent neural network-based
AE for feature extraction; this study does not incorporate
any clustering loss, rather it is an unsupervised represen-
tation learning network. The learned representation is input
separately to a separate clustering algorithm. These are the
only studies on the topic of deep learning-based hyperspectral
clustering that we were able to garner from journals published
in the last few years. In recent times, variants of classical
clustering approaches have also been proposed for the said
task. Given the limited scope of this letter, we are unable to
discuss them.

One can note that almost all the prior studies are based
on the AE/SAE framework. This is because AE and SAE are
unsupervised and are amenable to mathematical manipulations
which make incorporating the clustering loss a straightforward
task. The resulting cost functions are easily solved using
gradient descent/backpropagation.

Just like AE/SAE, restricted Boltzmann machine (RBM)
or its deep version, the deep Boltzmann machine (DBM)
is unsupervised. Theoretically, RBMs and DBMs are more
optimal than AEs and SAEs since the former needs to learn
only half the number of parameters compared to the latter.
Unfortunately, in practice, RBM and DBM cost functions are
cumbersome to solve; its training via contrastive divergence
does not have the same flexibility as that of backpropagation.

The AE/SAE framework although mathematically flexi-
ble is prone to overfitting since one needs to learn the
decoder portion along with the encoder. Arguably one can
use tied weights, but it has been empirically seen that tied
encoder—decoder weights yield poorer results compared to
independent encoder and decoder weights. This is the reason
that the AE framework tends to overfit in limited data scenar-
ios. In hyperspectral images, if one takes a typical case, e.g.,
Indian Pines, the number of data points is 145 x 145 — of
the order of 10°%. For deep learning, this is not a very large
dataset.

Ideally one would prefer a framework that is mathematically
flexible and does not need to learn twice the number of
parameters. Deep dictionary learning (DDL) [9] satisfies these.
DDL has been successfully used in data constrained scenarios
for supervised learning [10]-[14]; it has been successfully
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used for hyperspectral image classification [13], [14] where
the number of labeled samples is very small. DDL has not
been used for clustering before. This would be the first work
that incorporates a clustering loss into the DDL framework.
Given the success of subspace clustering in the SAE-based
deep learning framework [3]-[6], we will incorporate sparse
subspace clustering (SSC) [15] into DDL.

SSC assumes that the samples belonging to different clusters
are separable into subspaces. This may not always hold on to
the raw data. We postulate that by learning a representation (of
the data) via DDL, it may be possible to separate the learned
representation into subspaces.

II. PROPOSED APPROACH

In a regular feedforward deep neural network (assum-
ing two-layers), the data X is projected by the network
weights W, and W, to a representation Z via some nonlinear
activation ¢; the relationship between the output and the
representation is

p(Wap(Wi X)) = Z. (1)

One can see that solving (1) via backpropagation leads to
the trivial solution Wiy = 0, W, = 0, and Z = 0.

The situation does not change when an unsupervised clus-
tering loss is incorporated into the solution. For example,
let us consider the SSC formulation [15]. In this, it is
assumed that the representations belonging to the same cluster
lie in the same subspace. The formulation for SSC is as
follows:

Dz = Zicaills + Alleilly Viin {1,...,m}.  (2)
i

Assuming m samples, z; is the representation for the ith
sample, Z;c represents all the other representations barring
the ith one, and ¢;(e R™!) corresponds to the sparse codes
that represent coefficients in Z;c belonging to the same cluster
as z;. The I;-norm imposes sparsity on the codes. The sparsity
is important because it ensures that the ith sample is only
represented by the samples of the same cluster; without the
[1-norm the ¢; is dense and would imply that the ith sample
is represented by all the remaining samples; this would not
allow for further clustering.

Incorporating the SSC cost into a two-layer neural network
will lead to

1Z — p(Wap (W1 X)) 1%
Neural Network

+u >z = Ziecil3 + Alcilly ¥ioin {1, m}. (3)

min
Wi,W2,Z,(ci);

SSC

The trivial solution of (3) would be Wi = 0, W, = 0,
Z =0, and ¢; = 0, Vi. The symbols have already been defined.
To avoid the trivial solution, prior studies preferred incor-
porating clustering losses into the AE framework. When one
incorporates a clustering loss into an SAE the cost function
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turns out to be

min | X — Wio (Wé(ﬂ(Wz(ﬂ(WlX)))Hfv

Wi, Wa, W, W (ci);

Stacked Autoencoder

+u > Nz = Ziecil3 + Allcilly ¥ioin {1, m). (4)

SSC

Here W{ and W} are decoders corresponding to the encoders
Wi and W,. One can see that the SSC incorporated AE (4)
does not end up in a trivial solution. This is the reason all
prior studies [3]-[8] based their formulations on the SAE
architecture.

Note that in a regular neural network one needs to learn
half the number of weights (only encoder) compared to AEs
(both encoder and decoder). The necessity to learn more
weights may lead to overfitting which in turn can hamper
the generalization ability of the solution. As mentioned in the
introduction, one could ideally incorporate clustering loss into
the RBM or DBM, but there would be issues in minimizing
the resulting cost function.

Owing to the limitations of traditional deep learning archi-
tectures, we propose to formulate our solution on DDL. The
basic model for two-layer DDL is

X = Dip(D,2). )

Here D; and D, represent two layers of dictionaries, X is
the data, and Z is the corresponding representation. Note that
in DDL, there is no activation in the final layer. This is because
the data are real-valued and hence, squashing the output of the
network would not map to the real-valued data.

DDL is mathematically flexible which allowed us to inte-
grate SSC into it. This leads to our proposed formulation

L X = DiDyDsZ|;
DDL
1Y llzi = Ziecil3 + Alleilly Vi in {1,...,m)
i

min
Dy,D,,Ds,Z,

ssc
s.t. D,D3Z>0,D3Z>0,Z>0. (6)
ReLU activation
Note that we have used rectified linear unit (ReLU) acti-
vation here. This is largely owing to two reasons. First, for
its ease of solution. Second, for its function approximation
ability [16], [17].
We solve (6) using alternating minimization. This leads to
the following subproblems:

D, « r%in||X — D\D,D;Z|%
1

D]1( = XZI, WhereZl = D12‘_1D3Z]<—1 (7)
D, « rrll)inllX — DlDzD3Z||%

2
DIZC = (DIIC)TXZ25 Where Z2 = D];*lzkfl (8)
D3 < I%IHHX — DID2D3Z||%-

3

T —1y T

Dy = (DiD3) X(z7) ©)
c,]'( <~ Hgn“Zi — ZirCi”% + Alleilly Vi an

Authorized licensed use limited to: Indraprastha Institute of Information Technology. Downloaded on October 03,2021 at 15:14:47 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GOEL AND MAJUMDAR: SSC FRIENDLY DDL FOR HYPERSPECTRAL IMAGE CLASSIFICATION 3

Algorithm 1 DDL + SSC
Initialize: DY, DY, DY, Z°, C°
Repeat till convergence
DY = XZ], where Z, = D\"1 Dy %!
D% = (DY) 'X2,, where Z, = Di~' Zk!
Dk = (D¢D%) x (z+1)'
Update Z¥ by solving Slyvester equation -
(D\D,D3)" (D1 D2D3)Z + Z(ul — uC) = (D1 D, D3)" X
Solve c¥ using SPGL1: min,, ||z; — Zicc; |3 + Allcily, Vi
End
Compute affinity matrix: A = |C| + |C|"
Use N-cuts to segment A

Here “k” represents the iteration number. One can see
that the dictionary updates are straightforward pseudoinverses.
In the update for the sparse codes c;’s, we use the spectral
projected gradient solver.! For updating Z we take the gradient
of (10) and equate it to O

V(IX = DiD2DsZI7 + ull Z — ZCllz) =0

= (D1D2D3)" (D\DD3)Z + Z(ul — puC)
—(D\D,D3)'X =0

= (D1D2D3)" (D\DyD3)Z+Z(ul — uC)=(D1D1D3)" X.

The solution to Z turns out to be via Sylvester’s equation of
the form AW + WB = E where W = Z, (D;D,D;)"X = C,
(D1DyD3)" (D1 DyD3) = A and (ul — uC) =E.

The algorithm proceeds by iterative solving for the dic-
tionaries using (9)—(11), updating the coefficients by solving
Sylvester’s equation and updating the sparse codes c¢;’s by
SPGL1. The problem (8) is nonconvex. Hence, one can at best
expect to reach a local minimum; however, we do not have
any theoretical guarantees regarding convergence. In practice,
we stop the iterations when the values of ¢;’s do not change
significantly with iterations. We emphasize on ¢;’s since it has
a direct consequence on the clustering performance.

Assuming that there are m pixels in the hyperspectral image,
¢; € R"=1x1: this is because the ith patch has been omitted
while estimating c;. For the sake of uniformity, the correspond-
ing position in ¢;’s must be imputed with 0; the thus obtained
code is & € R™*!. These codes &s are stacked as columns of
a matrix C € R™*. The affinity matrix is computed from C
using

A=|C|+|C| . (12)

The affinity matrix is segmented using normalized cuts for
obtaining the clusters. The complete algorithm is shown in a
succinct fashion below.

1II. EXPERIMENTAL EVALUATION
A. Dataset and Experimental Setup

We evaluate our proposed technique on two benchmark
datasets — Indian Pines? and Pavia University.® The standard

Thttps://www.cs.ubc.ca/~mpf/spgl1/index.html
Zhttps://paperswithcode.com/dataset/indian-pines
3https://paperswithcode.com/dataset/pavia-university

preprocessing steps are performed on these datasets before
classification.

1) The Indian Pines dataset was collected by the Airborne
Visible/Infrared Imaging Spectrometer in Northwestern
Indiana, with a size of 145 x 145 pixels with a spa-
tial resolution of 20 m per pixel and 10-nm spectral
resolution over the range of 400-2500 nm. As is the
usual protocol, the work uses 200 bands, after removing
20 bands affected by atmospheric absorption. There are
16 classes.

2) This Pavia University dataset is acquired by a reflec-
tive optics system imaging spectrometer (ROSIS). The
image is of 610 x 340 pixels covering the Engineering
School at the University of Pavia, which was col-
lected under the HySens project managed by the Ger-
man Aerospace Agency (DLR). The ROSIS-03 sensor
comprises 115 spectral channels ranging from 430 to
860 nm. In this dataset, 12 noisy channels have been
removed and the remaining 103 spectral channels are
investigated in this letter. The spatial resolution is 1.3 m
per pixel. The available training samples of this dataset
cover nine classes of interest.

We benchmark with four state-of-the-art  deep
clustering techniques — Deep Spatial-Spectral Subspace
Clustering (DS3C) [3], Deep Clustering With Intraclass
Distance (DCID) [4], Self-Supervised Deep Subspace
Clustering (S?DSC) [5], and 3-D Convolutional AEs
(3DCAESs) [7]. These studies have compared with a plethora
of shallow and deep clustering techniques and have shown
to improve over them. Thus, we only compare with these
state-of-the-art clustering methods.

Our proposed technique requires the specification of two
parameters x# and A. The parameter u controls the relative
importance of the dictionary learning and clustering terms.
Since there is no reason to favor one over the other, we keep
i = 1. The parameter 4 determines the sparsity level of the
linear weights; we keep 4 = 1 throughout. Our algorithm
requires the specification of the number of dictionary atoms.
Starting with the input dimensionality dictated by the size of
the features, we reduce the number of atoms by half in every
stage.

In prior studies on DDL-based hyperspectral image analy-
sis [13], [14], it was found that spectral-spatial features gener-
ated by taking principal component analysis (PCA) around the
pixel of interest turn out to be a good input feature for DDL.
Here we do the same. The process is schematically shown in
Fig. 1. Around each pixel, a spatial window is considered;
within this window, all the bands in the spectral direction
are taken. Each such 3-D patch is then vectorized; these are
stacked as columns of a matrix. On this matrix, PCA is run
to reduce the dimensionality. We have tried three different
windows of sizes 3 x 3,5 x 5, and 7 x 7; for each window
size, 10% of the principal components were kept. For example,
in Indian Pines with a 3 x 3 window, the size of the input to
PCA would be 1800 (3 x 3 x 200); after PCA 180 principal
components will be kept.

Two types of metrics are considered. The first two are
generic metrics for clustering where the ground truth is
available — normalized mutual information (NMI), adjusted
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TABLE I
COMPARISON WITH STATE-OF-THE-ART TECHNIQUES
Dataset Metric DS’C DCID | S’DSC | 3DCAE Proposed
3x3 5x5 7x7
Pavia NMI .637 .664 .648 .653 .681 673 .655
University ARI 501 .529 .507 514 550 537 518
Purity .613 .694 .645 .647 .703 .700 .649
Entropy 457 442 451 447 404 419 444
OA .858 .883 .866 875 .897 .888 875
AA .820 .855 .831 .839 .862 .858 .841
Kappa 791 .808 793 .796 .825 814 .798
Indian NMI .604 701 .685 .631 726 11 .696
Pines ARI 490 .523 .508 497 535 531 524
Purity .607 .658 .633 .637 .664 .660 .651
Entropy 433 426 436 423 415 418 430
OA 811 .841 .835 .832 .852 .846 .837
AA 775 .801 796 .790 .823 810 792
Kappa .749 772 770 762 790 783 762
TABLE 11

ABLATION STUDIES

One layer Two layers Three layers Four layers
Joint | Piecemeal | Joint | Piecemeal | Joint | Piecemeal | Joint | Piecemeal
Pavia NMI .633 .627 .654 .636 673 .649 .667 .651
University ARI 515 .509 524 513 537 .520 .533 .523
Purity 611 .605 .662 614 .700 .657 .688 .660
Entropy | .460 468 431 457 419 434 425 432
OA .849 .832 .863 .842 .888 .852 .880 .853
AA .822 .809 .841 .820 .858 .829 851 .832
Kappa 787 768 .802 775 814 784 .809 185
Indian NMI .690 .685 .699 .691 11 .695 706 .697
Pines ARI 511 498 516 .509 531 516 .528 519
Purity 636 .630 .651 .636 .660 .650 .655 .651
Entropy | .429 434 426 428 418 427 421 426
OA .819 810 825 .818 .846 .827 .836 .528
AA 781 775 .790 779 .810 788 .805 790
Kappa 760 751 768 758 783 766 77 167

and 5 x 5. For the larger window size, we perform worse than
DCID. The deterioration in results is probably due to overfit-
ting. With a larger window size, the dimensionality increases,
and with an increase in dimensionality we need to learn more
network weights — this possibly leads to overfitting. Of the
existing techniques, DCID yields the best results. In terms of
methodology, this is the most sophisticated technique. 3DCAE
and S’DSC perform somewhat worse than DCID. DS3C is the
simplest approach and consequently yields results that are not
at par with the rest.

In the next set of experiments, we carry out ablation studies.
We analyze the effect of depth. For each depth, we see how the
metrics change for the proposed joint solution and a piecemeal
solution. By a piecemeal solution, we mean that the features
are generated separately by DDL and the learned features
are input to a separate sparse subspace classifier. The joint
solution is the proposed one where DDL and clustering losses
are intertwined and optimized jointly. The results are shown
in Table II for the 5 x 5 window.

One observes that the results improve from layers one
to three and then dip in layer four for the proposed joint
formulation. This is expected; in deep learning, one can
improve the results by going deeper; however, one cannot

Spatial
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Spectral

™

l_Y_J

Spatio-spectral
Features

&2/

Vectorize

Fig. 1. Spatio-spectral feature extraction.

rand index (ARI), purity, and entropy. Since the number
classes are assumed to be known for each dataset, the purity
and entropy are only computed for those. The second three
are specific for hyperspectral image classification — overall
accuracy (OA), average accuracy (AA), and Kappa coefficient
(K); although these three are more suited for classification,
studies on clustering also compute these [4], [5]. The results
are shown in Table I. For our proposed method, the depth is
kept fixed at 3. The experiments were carried out on a 64 bit
Intel Core 15-8265U CPU at 1.60 GHz, 16 GB RAM running
Ubuntu.

B. Results

One can see that our proposed method yields the best results
in terms of every possible metric for window sizes 3 x 3

go arbitrarily deep since the number of parameters increases
with depth. With limited training data, this leads to overfitting
and one sees deterioration in results. For every layer, one can
see that the joint formulation yields better results than the
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Fig. 2. Empirical convergence plots.

TABLE III
COMPARISON OF RUNTIMES IN SECONDS

Algorithm Pavia University Indian Pines
DS’C 1308 1221

DCID 1276 1195

S?’DSC 1093 1115
3DCAE 593 320
Proposed (1 layer) 482 303
Proposed (2 layer) 507 346
Proposed (3 layer) 691 406
Proposed (4 layer) 984 793

piecemeal one. This too is expected; the proposed formulation
learns projections that are clustering friendly, but this is not
the case for the piecemeal formulation. Overall one can notice
that the results from Pavia University are always better than
that of Indian Pines. This might be because the former has a
considerably higher resolution compared to the latter.

We mentioned before that our formulation is nonconvex
and hence, we do not have any convergence guarantees.
However, we find that in practice the algorithm converges.
The convergence plot for the three-layer 5 x 5 window is
shown in Fig. 2.

The run times for different algorithms are shown
in Table III. The results show that the 3DCAE is the fastest.
This is because the said algorithm uses K-means clustering
internally; K-means is faster than subspace clustering which
all the other algorithms use. Our proposed technique (at three
layers) is slower than 3DCAE but is faster than the rest. Our
algorithm for one layer and two layers is faster than 3DCAE
but does not yield the best results at these depths.

IV. CONCLUSION

This work proposes a new approach for hyperspectral image
clustering based on the framework of DDL. We incorporate
the SSC loss in the DDL framework. Experiments have been
carried out on two popular datasets — Pavia University and

Indian Pines. We have compared with four state-of-the-art deep
learning techniques. Results show that our method is more
accurate than others and is also faster than most.

In the future, we would like to incorporate other clustering
losses into the DDL framework; namely spectral clustering and
K-means clustering. We would like to apply these techniques
for the problem of hyperspectral band selection via clustering.
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