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Abstract— In remote-sensing image (RSI) semantic segmen-
tation, the dependence on large-scale and pixel-level annotated
data has been a critical factor restricting its development.
In this letter, we propose an unsupervised semantic segmentation
network embedded with geometry consistency (UGCNet) for
RSIs, which imports the adversarial-generative learning strategy
into a semantic segmentation network. The proposed UGCNet
can be trained on a source-domain dataset and achieve accu-
rate segmentation results on a different target-domain dataset.
Furthermore, for refining the remote-sensing target geometric
representation such as densely distributed buildings, we propose
a geometry-consistency (GC) constraint that can be embedded
in both image-domain adaptation process and semantic seg-
mentation network. Therefore, our model could achieve cross-
domain semantic segmentation with target geometric property
preservation. The experimental results on Massachusetts and
Inria buildings datasets prove that the proposed unsupervised
UGCNet could achieve a very comparable segmentation accuracy
with the fully supervised model, which validates the effectiveness
of the proposed method.

Index Terms— Generative-adversarial learning, geometry con-
sistency (GC), remote-sensing images (RSIs), semantic segmen-
tation, unsupervised.

I. INTRODUCTION

SEMANTIC segmentation aims to assign a label to every
single pixel in the image. Due to the rapid development of

deep learning in recent years, numerous semantic segmentation
algorithms like [1], [2] for remote-sensing images (RSIs)
are proposed. However, most of them extremely rely on
large-scale pixel-level annotated datasets, which leads to a
narrow application situation. During the last couple of years,
a number of domain-adaptation methods are applied in image-
to-image (I2I) translation [3]–[5] and semantic segmenta-
tion [6]–[11], providing a board prospect for unsupervised
semantic segmentation.

Based on previous research, one rational strategy for unsu-
pervised semantic segmentation task is to utilize image domain
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adaptation. In line with generative adversarial learning, the
image domain adaptation aims at transferring the model
learned on a labeled source domain to a target domain.
For example, [6], [7], [9] propose to decouple the image to
pixel level and representation level and conduct the transla-
tion. Luo et al. [10] design a category-level adversaries for
semantic-consistent domain adaptation. Recently, [11], [12]
introduces self-supervision strategy to the domain-adaptation
phase and [13] designs an entropy loss to penalize low-
confident predictions on target domain. Lv et al. [14]
emphasize domain-invariant features by constructing pivot
information. However, the above-mentioned methods tried to
optimize the adaptation from pixel or representation level
but ignored the image-level features. In RSIs, a very com-
mon phenomenon is that the objects have distinct geomet-
ric properties, and simple geometric transformations do not
change the images’ semantic structure. Here, the semantic
structure refers to the information that distinguishes different
staff/object classes, which can be easily perceived by humans
regardless of trivial geometric transformations such as vertical
flipping and rotation. In this letter, we propose an unsupervised
semantic segmentation network embedded with geometry con-
sistency (UGCNet) for RSIs that preserves image geometric
structures during the adaptation process.

The UGCNet can be decomposed into a cross-domain
adaptation network (CAN) and a geometry-consistent segmen-
tation network (GSN). In the CAN, the goal is to learn a
mapping function that only changes the image style without
distorting the semantic structures. In the GSN, a pixel-level
segmentation network is trained on the transferred source-
domain images, and its model can be applied on the target-
domain images. Compared with fully supervised semantic
segmentation models, the UGCNet alleviates the challenge
of obtaining sufficient training data. While different from
unsupervised approaches like [6], [7], our UGCNet pays
more attention on the target geometric structures. For densely
distributed buildings with various scales, the proposed method
could maintain clear boundary of independent targets. Our
contributions are summarized as follows.

1) Through the adaptation between source-domain images
and target-domain images, we propose a novel UGCNet
for RSIs. Our model achieves very comparable segmen-
tation accuracy with the fully-supervised approach on
the building extraction task.

2) We propose a geometry-consistency (GC) constraint
that could be embedded in both image translation and
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Fig. 1. Pipeline of the proposed UGCNet. It consists of two in-line modules: the CAN and the GSN. The geometry-consistency (GC) constraint is embedded
in both CAN and GSN. In the training phase, both the CAN and GSN are trained. While in the testing stage, the target-domain’s input only goes through the
trained GSN model to output segmentation map.

semantic segmentation networks, which simultaneously
preserves semantic structures of source-domain images
and improves semantic segmentation performance on
target domain.

II. METHODOLOGY

The architecture of the proposed UGCNet is shown in
Fig. 1. It can be decomposed into two main components,
of which the CAN is for image domain adaptation and
the GSN is for pixel-level segmentation. Given the source
domain images with pixel-level annotations and unlabeled
target domain images, the CAN transfers images from the
source domain to the target domain in an adversarial manner.
The GSN is trained on the transferred source-domain data
and could be applied on the target domain. The proposed GC
constraint module is embedded in both CAN and GSN by
inserting specific loss components, respectively.

A. Geometry-Consistency Constraint

To start with, let X and Y be two domains with unpaired
training examples {xi}N

i=1 and {yi}N
i=1, where xi and yi are

drawn from the marginal distributions PX and PY , where X
and Y are two random variables associated with X and Y ,
respectively. F(·) is a predefined transformation function.
X̂ and Ŷ are obtained by applying F(·) on X and Y ,
respectively. G XY and G X̂Ŷ are the translators which target
the adaptation tasks from X to Y and X̂ to Ŷ . DY and DŶ
are two adversarial discriminators in domains Y and Ŷ .

Here, we first take a review of the cycle consistency [3].
Through the translators G XY ◦ GY X : X → Y → X and
GY X ◦ G XY : Y → X → Y , the examples x and y in
domains X and Y should satisfy x ≈ GY X (G XY (x)) and
y ≈ G XY (GY X (y)). Cycle consistency is implemented by
a bidirectional reconstruction process that requires G XY and
GY X to be jointly learned. Motivated by [5], the implemen-
tation of our GC constraint is based on a fact that image

Fig. 2. GC constraint.

semantic structures can be preserved even after simple geomet-
ric transformations. Fig. 2 illustrates how the GC constraint
applied in the CAN/GSN. For example, in the CAN, given a
F(·), the GC constraint can be expressed as F(G XY (x)) ≈
G X̂Ŷ (F(x)) and F−1(G X̂Ŷ (F(x))) ≈ G XY (x), where F−1(·)
is the inverse function of F(·). Similarly, in the GSN, the
GC constraint can be expressed as F(Seg(x)) ≈ Seg(F(x))
and F−1(Seg(F(x))) ≈ Seg(x), where Seg(·) represents a
segmenter. In this letter, we employ two representative geo-
metric transformations, that is, vertical flipping (vf ) and 90◦
clockwise rotation (rot), to execute the GC constraint.

B. Cross-Domain Adaptation Network (CAN)

The CAN transfers the images from one domain to another
to change appearance while preserving source semantic con-
tent as much as possible. It contains the following compo-
nents: G XY , G X̂Ŷ , DY , DŶ , and geometric translator F(·).
Assuming that X represents the source-domain dataset and
Y is the target-domain dataset, then xi ∈ X and yi ∈ Y .
The CAN aims to learn two mappings G XY (x) and G X̂Ŷ (x̂),
where x̂ = F(x). As shown in Fig. 2, given a predefined
F(·), we feed the images x ∈ X and x̂ = F(x) into the
G XY and G X̂Ŷ , respectively. Following the GC constraint, the
outputs y ′ = G XY (x) and ŷ ′ = G X̂Ŷ (x̂) ought to satisfy
ŷ ′ ≈ F(y ′) and y ′ ≈ F−1(ŷ ′). Considering both F(·) and
the inverse geometric transformation function F−1(·), the GC
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loss Lgeo(G XY , G X̂Ŷ , X, Y ) in the CAN is defined as

Lgeo
(
G XY , G X̂ Ŷ , X, Y

)
= Ex∼PX

[∣∣∣∣G XY (x) − F−1
(
G X̂Ŷ (F(x̂))

)∣∣∣∣
1

]
+Ex∼PX

[∣∣∣∣G X̂Ŷ (F(x̂)) − F(G XY (x))
∣∣∣∣

1

]
. (1)

In the CAN, we employ the same discriminator and gener-
ator as CycleGAN [3]. The generator is a standard encoder–
decoder, where the encoder contains two convolutional layers
with stride 2 and 9 residual blocks. The decoder contains two
deconvolutional layers also with stride 2. The discriminator
distinguishes images at the patch level following [15]. And
for parameter reduction, G XY and G X̂Ŷ share all the para-
meters. In the transformed domains X̂ and Ŷ , the adver-
sarial loss Lgan(G X̂Ŷ , DŶ , X̂ , Ŷ ) has the same form with
Lgan(G XY , DY , X, Y ). By combining the GC constraint with
the standard adversarial constraint and cycle constraint [3], the
full objective for CAN has the following form:
LCAN = Lgan(G XY , DY , X, Y ) + Lgan

(
G X̂Ŷ , DŶ , X̂ , Ŷ

)
+γ

[Lcyc(G XY , GY X , X, Y )+Lcyc
(
G X̂Ŷ , GŶ X̂ , X̂ , Ŷ

)]
+λLgeo

(
G XY , G X̂Ŷ , X, Y

)
(2)

where γ and λ are to weigh the contribution of Lcyc and Lgeo

during the training process, respectively.

C. Geometry-Consistent Segmentation Network (GSN)

The purpose of the GSN is to train a segmentation model
on the transferred source domain which can be applied on
the unlabeled target domain. Closely connected with CAN,
the GSN consists of an encoder that contains an fully con-
volutional network (FCN), atrous spatial pyramid pooling
(ASPP) [16], and a decoder. Functionally, the encoder captures
multi-level image features, and the decoder recovers the spatial
information from low-resolution feature map and output the
segmentation map.

However, FCN usually has poor performance when multi-
scale objects coexist. Previous researches [1], [17] have
demonstrated that multi-scale feature fusion is of great benefit
to improve segmentation efficiency. Here, we extend ASPP to
perform multi-rate dilated convolutions for extracting multi-
scale features in spatial pyramid form. As the input of the
GSN, the transferred source-domain images are first put in
the encoder to extract the features computed by deep residual
networks. We set output stride as 16 as the ratio of input
image spatial resolution to the final output resolution. In the
decoder, we first use a 1 × 1 convolution to reduce channels,
after which the encoder features are bilinearly upsampled by
4×. Then the features are concatenated with the corresponding
low-level features from the network backbone that have the
same spatial resolution. We use a few 3 × 3 convolutions
to refine the concatenate features and use two 2× bilinear
upsamplings after the concatenation to gradually recover the
segmentation map that has the same resolution with the input.

In the GSN, we use cross-entropy (CE) loss and the GC
constraint loss to supervise the network training. Similar to the
CAN, the input images are y ′ and ŷ ′, the segmentation outputs
o = Seg(y ′) and ô = Seg(ŷ ′) should also satisfy o ≈ F−1(ô)

and ô ≈ F(o). Hence, the GC loss Lgeo(o, ô) in the GSN is
set as

Lgeo(o, ô) = smoothL1
(
o, F−1(ô)

) + smoothL1(ô, F(o)) (3)

where

smoothL1(x) =
{

0.5x2, if x ≥ 0

|x | − 0.5, otherwise

is less sensitive to outliers than L2 loss and can pre-
vent exploding gradients. x is the element-wise discrepancy
between the prediction and ground truth. The full objective
for the GSN is defined as

LGSN = β1LCE
(
o, xgt

) + β2LCE
(
ô, x̂gt

) + δLgeo(o, ô) (4)

where xgt represents the ground truth of source-domain images
and x̂gt is the geometric transformations of xgt . β1 and β2 are
two constant coefficients. δ is a trade-off hyperparameter to
weigh the contribution of the GC constraint.

D. Joint Training

The proposed UGCNet supports joint training. Given a
labeled source-domain dataset and an unlabeled target-domain
dataset, the CAN first transfers the source-domain images with
generative-adversarial learning manner. Then the transferred
source-domain images are used as the input of the GSN to
train the segmentation model and its model could be performed
on the target-domain images. Comprehensively, the final loss
for the UGCNet is

LUGC = α1LCAN + α2LGSN (5)

where α1 and α2 are two coefficients. The pseudocode of our
algorithm is shown in Algorithm 1.

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

To validate the performance of the proposed UGCNet,
we test it on Massachusetts buildings dataset (Massachusetts)

Algorithm 1 Training Process of the UGCNet
Input:

Source-domain images X and labels Xgt , Target-domain
images Y ;
Suppose x ∈ X, xgt ∈ Xgt , y ∈ Y ;

Output:
Predicted labels of the target domain Y : Oy ;

1: while iteration is effective:
2: F(x) → x̂ , F(xgt ) → x̂gt {forward prop}
3: G XY (x) → y ′, G X̂Ŷ (x̂) → ŷ ′ {forward prop}
4: DY ({y ′, y}) → DY map, DŶ ({ŷ ′, ŷ}) → DŶ map

{forward prop}
5: Minimize LCAN in (2). {backward prop}

Pair ({y ′, xgt}), ({ŷ ′, x̂gt }) to train the GSN.
6: GSN(y ′) → o, GSN(ŷ ′) → ô {forward prop}
7: Minimize LGSN in (4). {backward prop}
8: end while
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Fig. 3. Visualization results of the proposed UGCNet. The first two columns display the original and transferred source-domain images, respectively. The
third column exhibits the target-domain test images. The fourth column indicates the GSN trains on the original source-domain images and tests on the
target-domain images. The fifth column represents the GSN trains on the transferred source-domain images and tests on the target-domain images. The sixth
column shows the segmentation results by using the GC constraint, which also corresponds with the output segmentation map of the proposed UGCNet.

and Inria aerial image labeling dataset (Inria). Both of them
contain only two categories: buildings and others. Numerically,
the Massachusetts dataset consists of 151 aerial images of the
Boston area, with 1-m resolution and 1500 × 1500 pixels. The
Inria dataset consists of 180 images with 0.3-m resolution and
5000 × 5000 pixels. In comparison, the Inria covers 810 km2

dissimilar urban settlements, ranging from densely populated
areas to alpine towns, while the Massachusetts covers 340 km2.
Perceptually, pixel values of buildings in the Massachusetts are
lower than those in the Inria in the most cases. In addition,
an average omission noise level of 5% is applied in the
Massachusetts as partial areas in some samples are covered
with solid color. While the Inria covers urban areas with no
noisy tags. Considering the GPU capacity, we randomly cut
each sample to several 512 × 512 pixels sub-images and
totally obtain 5010 pieces (4110 for training and 900 for
testing) from the Massachusetts and 3600 pieces (2800 for
training and 800 for testing) from the Inria. We apply pixel
accuracy (PA) and intersection over union (IoU) as the evalu-
ation metrics.

B. Implementation Details

In the CAN, we set the training batch size as 8 and
testing batch size as 1. The learning rate is fixed in the
initial 100 epochs and linearly decays over the following
epochs. In the GSN, the baseline of the encoder is ResNet-101
by removing its fully connected layers. All input samples
are resized to 512 × 512 × 3. In the encoder, the out-
put stride is 16. The initial learning rate is multiplied by
(1−(iter)/((max_iter)))power with power = 0.9. We set γ = 10,
λ = 20, δ = 0.05, β1 = β2 = 0.1, α1 = 1, α2 = 0 at the
first 200 epochs and α1 = α2 = 1 for the following training
stage. All experiments are performed on four NVIDIA 2080Ti
GPUs.

TABLE I

CROSS-DOMAIN SEMANTIC SEGMENTATION PERFORMANCE AND

ABLATION ANALYSIS OF THE PROPOSED UGCNET

C. Performance Analysis and Comparison

To validate the proposed method, we conduct a series of
experiments on building extraction task of RSIs. We test
our model on Inria→Massachusetts (training on transferred
Inria train-set and testing on Massachusetts test-set) and
Massachusetts→Inria, respectively. For reference, we also
show the performance of w/o adaptation (e.g., directly training
Inria train-set and testing on Massachusetts test-set) situation
and the fully-supervised model (e.g., both training and testing
on Inria). As shown in Table I, domain adaptation procedure
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TABLE II

PERFORMANCE COMPARISON IN TERMS OF PER-CLASS IOUS AND
MIOU (%). * INDICATES BOTH THE rot AND vf ARE USED

TABLE III

NETWORK EFFICIENCY OF THE GSN

in the CAN can effectively improve the segmentation per-
formance on the target domain in both directions, for exam-
ple, +3.84% (73.61% versus 69.77%) IoU improvement on
Inria→Massachusetts. On the other hand, the GC constraints
embedded in the GSN also improve the network performance,
for example, +2.93% IoU on Inria→Massachusetts task.
In addition, we present comparison of the UGCNet with
several SOTA approaches including [9], [10] in Table II.
We observe that UGCNet outperforms these models and
achieves the highest mIoU. Fig. 3 displays the visualization
results. The first two columns show the image translation
results from the source domain to the target domain. In the
target domain segmentation task, our model could maintain
internal completeness and boundary of densely distributed
individual target.

D. Network Efficiency Analysis of GSN

As shown in Table III, we survey the proposed GSN by
using various widely used and efficient backbones including
ResNet, Xception, and MobileNet. During the training process,
we import the above-mentioned two kinds of GC constraints
along with binary cross entropy as supervision. As a result,
the model using deep residual ResNet-101 with dilated con-
volutions achieves the highest 76.54% mIoU, which is 2.93%
higher than the model training without GC constraint. The
testing results using Xception and MobileNetv2 also validate
the effectiveness of GC constraint.

IV. CONCLUSION

In this letter, we propose an UGCNet for RSIs. By using
generative-adversarial learning strategy, we adapt the source-
domain images to the target-domain format to train the seg-
mentation network for better segmentation accuracy in the

target domain. To preserve object geometric representations in
RSIs, we design a GC constraint for both domain adaptation
and segmentation. Ultimately, we test the proposed UGCNet
on Massachusetts and Inria buildings datasets. The experimen-
tal results demonstrate that the proposed domain adaptation
strategy and the GC constraint could visibly improve the cross-
domain semantic segmentation performance. We will further
extend our model on more kinds of objects in RSIs.

REFERENCES

[1] C. Peng, Y. Li, L. Jiao, Y. Chen, and R. Shang, “Densely based multi-
scale and multi-modal fully convolutional networks for high-resolution
remote-sensing image semantic segmentation,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 12, no. 8, pp. 2612–2626, Aug. 2019.

[2] S. Ji, D. Wang, and M. Luo, “Generative adversarial network-based full-
space domain adaptation for land cover classification from multiple-
source remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 59, no. 5, pp. 3816–3828, May 2021.

[3] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2242–2251.

[4] W. Wu, K. Cao, C. Li, C. Qian, and C. C. Loy, “TransGaGa:
Geometry-aware unsupervised image-to-image translation,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 8004–8013.

[5] H. Fu, M. Gong, C. Wang, K. Batmanghelich, K. Zhang, and
D. Tao, “Geometry-consistent generative adversarial networks for one-
sided unsupervised domain mapping,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 2422–2431.

[6] Y. Zhang, Z. Qiu, T. Yao, D. Liu, and T. Mei, “Fully convolutional
adaptation networks for semantic segmentation,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 6810–6818.

[7] L. Shi, Z. Wang, B. Pan, and Z. Shi, “An end-to-end network for
remote sensing imagery semantic segmentation via joint pixel-and
representation-level domain adaptation,” IEEE Geosci. Remote Sens.
Lett., vol. 18, no. 11, pp. 1896–1900, Nov. 2021.

[8] Y. Luo, P. Liu, T. Guan, J. Yu, and Y. Yang, “Significance-aware infor-
mation bottleneck for domain adaptive semantic segmentation,” in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 6777–6786.

[9] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and
M. Chandraker, “Learning to adapt structured output space for semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 7472–7481.

[10] Y. Luo, L. Zheng, T. Guan, J. Yu, and Y. Yang, “Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain
adaptation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2507–2516.

[11] F. Pan, I. Shin, F. Rameau, S. Lee, and I. S. Kweon, “Unsupervised intra-
domain adaptation for semantic segmentation through self-supervision,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 3764–3773.

[12] Z. Wang et al., “Differential treatment for stuff and things: A simple
unsupervised domain adaptation method for semantic segmentation,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2020, pp. 12632–12641.

[13] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, “ADVENT:
Adversarial entropy minimization for domain adaptation in semantic
segmentation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 2517–2526.

[14] F. Lv, T. Liang, X. Chen, and G. Lin, “Cross-domain semantic seg-
mentation via domain-invariant interactive relation transfer,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 4333–4342.

[15] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967–5976.

[16] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” 2017, arXiv:1706.05587.

[17] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 833–851.


