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Abstract— Vegetation canopy height (CH) is one of the impor- 
tant remote-sensing parameters related to forests’ structure, and 
it can be related to the biomass and the carbon stock. Global 
navigation satellite system-reflectometry (GNSS-R) has proved 
capable to retrieve vegetation information at a moderate 
resolution from space (20–65 km) using L1 C/A signals. In this 
study, data retrieved by the airborne microwave interferometric 
reflectometer (MIR) GNSS-R instrument at L1 and L5 are 
compared to the Global Forest CH product, with a spatial 
resolution of 30 m. This work analyzes the waveforms (WFs) 
measured at both bands, and the correlation of the waveform 
width and the reflectivity values to the CH product. A neural 
network algorithm is used for the retrieval, showing that the 
combination of the reflectivity and the waveform width allows to 
estimate the CH information at a very high resolution, with a root-
mean-square error (RMSE) of 4.25 and 4.07 m at L1 and L5, 
respectively, which is an error about 14% of the actual CH. 

Index Terms— Airborne, artificial neural network (ANN), canopy 
height (CH), global navigation satellite system- reflectometry 
(GNSS-R), L1 and L5, vegetation. 

 
I. INTRODUCTION 

LOBAL navigation satellite system-reflectometry 
(GNSS-R) is a relatively new and valuable technique 

to remotely sense several essential climate variables (ECVs) 
[1], [2]. In the past years, L1 GNSS-R data over land has been 
analyzed to retrieve soil moisture [3]–[5], above-ground 
biomass (AGB) [6], [7], or canopy height (CH) [7], showing 
promising results in all three cases. 
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GNSS-R using L1 C/A signals has been widely studied 
from both low-altitude (i.e., airplane or balloon) or high- 
altitude (i.e., satellite) platforms to retrieve vegetation-related 
parameters. As it is shown in [8], the presence of dense 
vegetation is linked to a decrease in the GNSS-R signal-to- 
noise ratio (SNR), showing that the reflectivity can be linked to 
vegetation information. The same correlation is studied in [9], 
where the GNSS-R reflectivity and SNR have a certain degree 
of correlation with the leaf area index and the CH. Other 
studies show that polarimetric GNSS-R from a high-altitude 
balloon could be used to infer AGB [10]. In [7], it is shown 
that GNSS-R data collected by the U.K. TechDemoSat-1 
(TDS-1) mission and the cyclone GNSS (CyGNSS) mission 
have a certain degree of correlation to the soil moisture active 
passive (SMAP) vegetation optical depth (VOD). This last 
work proposes an artificial neural network (ANN) algorithm 
to retrieve both AGB and CH using CyGNSS reflectivity 
measurements. Aggregating different data points into a regular 
grid of 5 5 km2, a root-mean-square error (RMSE) of 
6.5 m is achieved. However, the actual single-pass resolution 
of GNSS-R for vegetation monitoring is larger than 5 
5 km2. In [6], it is shown that the trailing edge of the GNSS-
R L1 C/A waveform over land collected by CyGNSS has a 

strong correlation with both SMAP VOD at a spatial resolution 
of 20 km. As the GNSS-R reflection is dominated by incoherent 
scattering, mostly when long integration times are used, the 
spatial resolution is given by the large glistening zone [11]–
[13]. 

The widening of the trailing edge shown in [6] is a direct 
consequence of the signal wavefront of a mixture of the volume 
scattering produced in the vegetation canopy, and the bare soil 
reflection, which is then incoherently averaged in the receiver 
[1], [14]. The received signal for a bi-static radar configuration 
is a combination of the volume scattering pro- duced at the 
vegetation canopy, and the bare soil, as sketched in Fig. 1. 

For narrow bandwidth signals, such as the GPS L1 C/A 
signal, the volume scattering produces a widening of the L1 
C/A auto-correlation function (ACF) (ACF width 300 m). 
However, this phenomenon has been never studied for GPS L5 
signals, where the signal bandwidth is ten times larger (the 
spatial resolution is    30 m). In such case, other stud- ies [15], 
[16] with wide-band radars show that the retrieved waveform 
could exhibit multiple peaks due to reflections in different 
layers (e.g., soil reflection, soil-trunk reflection, and soil-
volume scattering, etc.). 
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Fig. 1. Sketch of the GNSS-R scattering geometry of over rain-forest 
vegetation. The GNSS transmitted signal suffers volume scattering in the 
vegetation canopy. 

 
 

This work presents several algorithms to retrieve CH over 
land, and it compares the performance between the GPS L1 C/A 
and the GPS L5 signals, for the first time. The letter is 
organized as follows: Section II presents the region where the 
study has been conducted, and the dataset used. Section III 
presents the methodology, detailing the correlation between the 
CH and different GNSS-R observable at L1 C/A and L5. Then, 
Section IV presents an ANN algorithm proposed to estimate 
CH from airborne GNSS-R observables, providing a higher 
resolution than actual GNSS-R products. Finally, Section V 
discusses the conclusions of the letter. 

 

II. DATA DESCRIPTION AND STUDY REGION 

The microwave interferometric reflectometer (MIR) [17] is a 
dual-band and dual-constellation (L1/E1 and L5/E5a) airborne 
GNSS-R receiver. The MIR instrument flew over the Bass 
Strait, Australia, in June 2018. Although the objective of the 
flight was mainly to acquire GNSS-R data over the ocean, 
it also entered into the mainland. In particular, the airplane flew 
over the “Croajingolong National Park,” which is entirely 
covered by rainforest. Fig. 2 presents two selected GNSS-R 
tracks at L1 and L5 over the rainforest area. As shown in 
Chapter 11 (pp. 282–283) from [18], the topography of the area 
varies from 0 m near the coastline up to 120 m, but with low-
moderate gradients ( 6-m height per second of flight time). 

In order to maximize the GNSS-R spatial resolution, the 
GNSS-R data is incoherently averaged with a relatively short 
integration time of 100 ms, preventing waveform blurring [19]. 
As the plane velocity is vplane 75 m/s, and the size of the 
first Fresnel zone at an altitude of h   1500 m is    30 m [20], the 
selected incoherent integration time prevents that multiple 
Fresnel zones are integrated within a single observation, max- 
imizing the spatial resolution, notably at L5, where the ACF 
width is 30 m. 

Fig. 2.    L1 and L5 MIR specular reflection point location overlaid by the 
CH map retrieved from GFCH [21]. 

 

 
The vegetation information in Fig. 2 is from the global forest 

canopy height (GFCH) [21] product. This product provides 
a very fine spatial resolution of 30 m, and it is generated from 
the combination of LIDAR and multi-spectral data. Note that 
the CH information is linked to the VOD product, as it is 
shown in Fig. 3 from [22]. Thus, this high-resolution product 
has been selected to assess the capabilities of GNSS-R to 
retrieve a high-resolution vegetation product. The GFCH 
product is 2-D linearly interpolated into the specular point 
positions, providing a total amount of 981 co-located CH 
measurements for the L1 case, and 1655 co-located CH 
measurements for the L5 case. 

 
III. METHODOLOGY 

The interaction with different layers of the canopy produces 
two phenomena. First, the amplitude of the reflected signal is 
attenuated. As shown in the studies of [23], the attenuation of 
the reflected signal depends on the local incidence angle and 
the VOD. Second, due to scattering the leading and trailing 
edges of the GNSS-R waveforms (WFs) widen, which can be 
correlated with the CH, and as shown in [6], it can also be 
indirectly linked to the AGB. 

 
A. Waveform Analysis 

Fig. 3 presents two examples of GPS L1 C/A WFs retrieved 
by MIR over the Australian rainforest. As it can be seen, the 
width of the two WFs varies. Waveform 1 in Fig. 3, where the 
CH in the surrounding area is   13.2 m, presents a WF width of 
280 m, while for Waveform 2 from Fig. 3, the CH is 30.8 m, 
and its WF width is 397 m. In this case, the WF width is 
measured by the distance between the 1/e amplitude (0.3678), 
measured after WF normalization, as sketched in Fig. 3. To 
have a better precision estimating the actual width, the WFs are 
re-sampled to 128 MS/s (2.3-m delay-bin size) from the initial 
32 MS/s (9.4-m delay-bin size) value using a Fourier optimum 
interpolation method [24]. 
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Fig. 3. GPS L1 C/A waveform examples. Waveform 1 (in blue) with a ground-
truth CH of ∼13.2 m, producing a WF width of 280 m, and Waveform 2 (in red) 
with a ground-truth CH of ∼30.8 m, producing a WF width of 
∼397 m. 

 

Fig. 4.    Four GPS L5 WFs example for different CH: 17.63, 23.86, 30.61, and 
30.81 m for WFs 1–4, respectively. 

 
For the GPS L5 case, as the ACF is ten times narrower than 

in L1 C/A, the retrieved waveform presents either multiple 
peaks or a peak widening, similar to the L1 C/A case. Multiple 
peaks appear in 20% of the retrieved WFs over vegetated areas. 
Fig. 4 shows four different WFs detected by MIR for different 
CHs. Waveform 1 corresponds to a CH of 17.63 m, Waveform 
2 to a CH of 23.86 m, and WFs 3 and 4 to a CH of 30.61 and 
30.81 m, respectively. In this case, the waveform widths at 1/e 
are 36.62, 41.19, 54.93, and 96.13 m for WFs 1–4, respectively. 
Note that the larger the CH, the larger the WF width, but when 
two peaks appear, as in Waveform 4, the measured WF width 
is largely increased. In the L5 case, due to the presence of 
multiple peaks, the 1/e criterion cannot be used to measure the 
WF width, as some WFs are contaminated by nearby peaks. In 
this case, and only for L5, the WF width is computed at half its 
maximum (0.5) instead of being measured at 1/e. 

 
B. WF Width and Reflectivity Correlations With CH 

The WF width and the reflectivity at L1 and L5 are retrieved 
for the points presented in Fig. 2. The CH information, which 
is gridded at 30 m, is 2-D linearly interpolated on top of the 
specular point location. As seen in Fig. 5, the CH and the 
reflectivity do correlate to the CH. The variable that correlates 
less is the WF width at L5. The Pearson correlation coefficient 
( R) with respect to the CH information is 0.26 for the WF width 
at L1, and 0.26 for the reflectivity at L1. At L5, the WF width 
present a similar correlation    0.20, and the reflectivity at L5 
has a correlation coefficient of 0.46. In addition, the correlation 
coefficient between the reflection incidence angle 

 
 
 
 
 

Fig. 5. Scatter plots and line-fit for (a) L1 WF width and CH, (b) L1 reflectivity 
(Г) and CH, (c) L5 WF width and CH, and (d) L5 reflectivity (Г) and CH. 

 
 

and the CH is lower than 0.05 at both bands, showing that there 
is not a direct correlation between these magnitudes. 

Even though the correlation coefficient is very low, the 
combination of WF width, reflectivity, and local incidence 
angle can provide additional information. Notwithstanding that 
the incidence angle is uncorrelated with the CH, the vegeta- tion 
attenuation of the reflected signal depends on the local 
incidence angle. Multi-regression analysis is sometimes used to 
perform a first investigation of a multivariate problem [25]. In 
this case, a canonical correlation algorithm has been used to 
minimize the error between a three-column matrix and one- 
column output (WF width, reflectivity, and incidence angle, 
versus the ground-truth CH data) by multiplying the terms by 
a canonical vector. The algorithm uses singular value 
decomposition (SVD) and reduces the three-column matrix into 
a “U” vector, and the one-column matrix into a “V” vector, which 
are a linearly dependent of the WF width, reflectivity, and 
incidence angle, and of the CH one-column matrix. The results 
of the canonical correlation are shown in Fig. 6. As it can be 
seen, the correlation coefficient between the U and V vectors is 
0.48 at L1 and 0.51 at L5. This increase in the correlation 
coefficient with respect to the pair-wise case is showing that 
just a linear combination of these three variables allows to 
retrieve CH information with a moderate correlation, slightly 
higher at L5. The canonical vectors that linearly combine the 
three-column inputs (i.e., the WF width, reflec- tivity, and 
incidence angle inputs) into the “U” vectors are a     0.035, 
0.134, 0.125 , and b   0.046, 0.187, 0.070 , 
respectively, for L1 and L5. The scaling coefficient for the 
output vector (the one mapping the CH to a “V” vector) is 
−0.132 for L1 and 0.162 for L5. 

C. ANN for Multivariate Analysis 

As shown in the canonical correlation analysis, the WF width 
and the reflectivity are correlated with the CH mag- nitude. 
However, the correlation could be further improved using other 
data-driven techniques. ANNs are one type of data-driven 
algorithms that have been broadly used to retrieve different 
ECV using GNSS-R data. 
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Fig. 6. Scatter plot of the canonical correlation vectors (U and V) at (a) L1 
and (b) L5. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7. Scatter plots between the ANN output and the CH ground truth for 
(a) L1 and (b) L5. 

 
To address the retrieval of CH using GNSS-R information, 

an ANN is proposed for each band (L1 and L5). The network 
topology selected is very simple, using a two-layer network 
with seven neurons per layer (total of 14 neurons). All neurons 
use the sigmoid transfer function. The dataset is split into 50% 
for training, 15% for validation, and finally 35% for testing. In 
order to prevent over-fitting and to provide a generalized 
output, the Bayesian regularization method [26] is used. 
Furthermore, the networks are pruned after training to prevent 
over-fitting [27]. 

 
IV. RESULTS 

Fig. 7 presents the results of the ANN, and the data retrieved 
is compared to the ground-truth CH from GFCH. For the 
L1 case, the Pearson correlation coefficient is R     0.82, and for 
the L5 case, R 0.75, and the RMSE is 4.25 m at L1 and 
4.07 m at L5. As it can be seen in Fig. 8, most of the 
discrepancies are found when transitioning from the rainforest 
into non-vegetated areas (i.e., sand dunes). In these transition 
cases, the errors are larger, notably at L5, where in some low- 
vegetation areas, there is almost no error (e.g., sample count 
213 and 576), but some areas (e.g., sample counts 664 and 726) 
present a very large error with respect to the ground- truth data. 
In the first two low-vegetated areas, even though the canopy has 
decreased, it is around 2.5 and 6 m, respectively. However, in 
the other two cases, the reflection is occurring in the bare soil, 
where the ground-truth data is showing a vegetation height 
below the meter. As it can be seen in Fig. 9, the dune-vegetation 
transition is showing a large error. Two phenomena can drive 
this error: first, the reflectivity of dry bare soil (e.g., sand) is 
very low, and the ACF can also 

Fig. 8. CH evolution with flight time, comparison between the GFCH ground 
truth and the ANN estimation. (a) L1. (b) L5. 

 
 

 
Fig. 9. Map detail of a dune-vegetation transition, where a large error is present 
in the retrieval algorithm. 

 

 
contain different peaks due to reflections in nearby canopy (30–
100 m from the specular point, similar to [20]) or other nearby 
elements in the reflection scenario. 

 
V. CONCLUSION 

This study has analyzed the correlation between the CH to 
airborne L1 and L5 GNSS-R data. It is presented that some L5 
WFs exhibit multiple peaks. It has been shown that both the WF 
width data and the reflectivity data are correlated with the CH 
data and that ANN algorithms can “merge” these datasets to 
retrieve CH. A first evaluation has been performed using the 
canonical correlation method and then two ANNs have been 
implemented (one per each band). The result shows similar 
performances at L1 and L5, with an RMSE of 4.25 m at L1 and 



 

 

4.07 m at L5. Furthermore, dune-vegetation transitions have 
been discussed, where multiple reflections in nearby dunes or 
vegetated areas may distort the recovery algorithm. 

GNSS-R is able to estimate CH with a relatively good 
agreement with the GFCH product. It is worth to mention that 
other approaches to retrieve CH, such as the Polarimetric SAR 
that will be used in ESA’s BIOMASS mission [28], are 
targeting accuracies on the order of 30% of the CH for CH 
values CH larger than 10 m (i.e., 9 m for a CH of 30 m, 3 
m for a CH of 10 m), similar to the performances shown by 
MIR. 
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