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Abstract—Solar panel mapping from high resolution aerial
images is becoming increasingly crucial to grid planning and
operation, where weakly supervised approach has been explored.
To cope with the noisy nature of pseudo labels (PLs) generated
by weakly supervised object localization, we propose an effective
uncertainty-aware forward correction (UA-FC) method to learn
clean predictions from the noisy PLs. The proposed method
consists of two steps: heteroscedastic uncertainty estimation and
forward correction procedure. The purpose of the first step is to
produce uncertainty as an indicator for the instance-dependent
noise. The second step includes a target mapping network to
produce clean predictions and a transition function to model
the relationship between clean predictions and noisy PLs. As
estimating every probability of one class flipped into another
is difficult and time-consuming, we introduce heteroscedastic
uncertainty as a measurement and propose an uncertainty-based
transformation function to map clean predictions into noisy ones.
By minimizing the errors between the noisy predictions and
noisy labels, the target mapping network is able to offer clean
predictions close to the actual objects. Extensive experiments on
an aerial data set reveal that the proposed method outperforms
other state-of-the-art methods by a large margin, especially in
recovering the boundary of the objects.

Index Terms—Remote sensing, solar panel mapping, weakly
supervised learning, uncertainty estimation, forward correction

I. INTRODUCTION

UE to the rapid and continual growth in global solar

deployment, collecting detailed information about the
distributed solar photovoltaic (PV) systems is becoming in-
creasingly crucial to grid planning and operation [1]. In recent
years, the availability of frequently updated high-resolution
aerial images (ground sampling distance less than 50 cm)
makes it possible to inspect solar panels with the aid of
machine learning techniques.

The goal of automatic solar panel mapping is to provide
the label for each pixel in an image, thereby identifying pixels
belonging to solar panels and the background. Traditionally,
works on this topic construct a classification system [2], by
resorting to hand-crafted features, and classical classifiers. For
the past few years, convolutional neural networks (CNNs) have
become a popular solution to many tasks in the community of
computer vision and remote sensing. Concerning solar panel
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mapping, most existing CNN-based methods are carried out in
a fully supervised manner [3-5], which require a large num-
ber of training samples with manually annotated pixel-wise
ground-truth. The performance of the methods aforementioned
mainly depends on a large number of accurate pixel-wise
annotations, which requires expert knowledge and is inevitably
time-consuming.

To reduce the labeling workload, weakly supervised learn-
ing (WSL) has been introduced to extract objects of interest
[6]. Instead of relying heavily on accurate pixel-wise an-
notations, weakly supervised learning makes use of labels
in weaker forms such as image-level labels, and scribbles
to provide supervision. Learning with weak labels, however,
generally suffer from performance degradation. To minimize
the performance gap, a broad range of strategies have been
proposed. For example, self-training scheme [7, 8] is one of the
most popular and effective strategies in WSL, which generates
pseudo labels (PLs) to construct predictive models. Popu-
lar methods to obtain PLs include class activation mapping
(CAM) [9], and gradient-weighted class activation mapping
(Grad-CAM) [10]. Despite the improvement achieved, the self-
training scheme has difficulties in giving complete regions
with precise edges, which can be attributed to the inherent
and noisy nature of PLs. With such identification, the idea of
learning with noisy labels has recently drawn lots of attention.
Label-noise-based models aim to reduce negative effects of the
label noise by optionally modeling its distribution [11, 12].

For weakly supervised solar panel mapping (WS-SPM),
recent efforts consider challenges brought by misleading de-
tails from high-resolution remote sensing images [13, 14], e.g.
intricate spatial details and ambiguities caused by shadows and
occlusion. To date, most studies are developed with the self-
training scheme [15-17], with label correction strategy and
regularizer terms utilized to further boost the performance.

In this paper, we are inspired by the state-of-the-art per-
formance of learning with noisy labels and develop an
uncertainty-aware forward correction (UA-FC) model to disen-
tangle a clean prediction from noisy PLs. The proposed model
consists of two parts: heteroscedastic uncertainty estimation
to approximate the uncertainty level and forward correction
procedure to produce clean predictions from noisy labels. Our
contribution is twofold:

o We assume that the samples where the model may fail to
give confident predictions are more likely to be affected
by a higher noise rate. With this assumption, we propose
to use the heteroscedastic uncertainty to indicate the
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Fig. 1. The flowchart of the proposed uncertainty-aware forward correction method. The red broken line represents the calculation of loss functions and the
training phase. Each noisy pseudo label § is represented as the clean prediction y transformed by a transition function 7'(x). The heteroscedastic uncertainty is
produced by the uncertainty estimation network (UEN) as a measurement of the instance-dependent noise for each pixel in an image. After the clean prediction
y is transformed by a newly proposed mapping function, the target mapping network is trained by minimizing the error between the noisy prediction 3 and

noisy pseudo labels .

noise level varying with the observation data rather than
estimating every probability of one class flipped into
another accurately.

o We propose an effective transformation function to ap-
proximate the instance-dependent transition with the es-
timated uncertainty and then develop a forward correction
procedure to train a target mapping network under noisy
labels.

II. METHODOLOGY

To tackle WS-SPM from a label noise perspective, we
propose an uncertainty-aware forward correction model to
separate clean prediction from noisy labels. The proposed
method first estimates instance-dependent uncertainty and then
develops an uncertainty-based transition function to implement
a forward correction procedure. The flowchart of the proposed
method is shown in Fig.1.

A. Preliminaries

We formulate the weakly supervised solar panel mapping by
considering the noise in the PLs. In supervised C-class clas-
sification, let D be the noisy joint distribution of two random
variables X and Y. We have (X,Y) € X' x)), where X C R,
y = {1,2, ...,C’}. Suppose that x is a data point sampled
from X, the goal of learning with noisy labels is to find a
distribution ®y (x) := P(Y | X = x) over the the latent clean
label Y. Assume there is an instance-dependent transition
matrix T'(x) = (T ;(x))¢;_, € [0,1]%9, P(Y =j | X =x)
over Y can be expressed as

c

PY =j|X=x)=) T;(x)-P(Y=i|X=x), (1)
=1

T;(x)=P(Y =j|Y =i,X =x),i,j = {1,..,C} .

With the input sample X, the transition matrix 7T; ;(x)
indicates the probability of class 7 being flipped into class j.
For object segmentation and mapping tasks, it is noteworthy

that the instance dependence rises the difficulty of estimating
T(x): if the input image has the size of w x h, T(x) is
characterized by C? x w x h functions.

To approximate the clean distribution P(Y | X), we try
to train a predictor f with the parameter set W*, which is
required to satisfy the following equation:

T(x)- f(x; W*) =~ P(Y | X). 3)

As the noisy posterior P(Y | X) can be easily estimated
by training a noisy predictor, herein lies two crucial steps: the
first is how to estimate transition matrix 7'(x) and then how
to train the predictor f.

B. Heteroscedastic Uncertainty Estimation

In general, estimating an instance-dependent transition ma-
trix is intractable. In our work, we propose to alleviate this
issue by measuring heteroscedastic uncertainty in the noisy
PLs. Uncertainty of a deep model refers to the case where the
prediction results given by the model are potentially inaccurate
and cannot be trusted blindly. Although it is crucial to know
when the model is unable to make confident decisions, quan-
tifying uncertainty is not an easy task. Bayesian deep learning
offers a solution to this issue by assuming the parameters of
deep models obeying a prior distribution such as a Gaussian
distribution [18], i.e., W ~ N(0,I). By doing that, the
uncertainty of the model can be quantitatively measured by
approaching P(W|X,Y). According to the Bayesian model-
ing, heteroscedastic uncertainty is decided by the observation
data and is supposed to change with input potentially having
varying degrees of noise.

Motivated by these properties, we assume that the samples
where the model may fail to give confident predictions are
more likely to be affected by higher noise rates. With this as-
sumption, we propose to use the heteroscedastic uncertainty to
indicate the noise level varying with the observation data and
develop an uncertainty-aware measurement for the transition
function.
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Given the input sample x € R**"  we denote the uncer-
tainty predictor as g. In Bayesian modeling, the logit vector
of the model output ¢ is supposed to follow a Gaussian
distribution:

glx ~ N (g% (x),0% (x)%). €))

This means the predictive output y is produced with the
prediction g% (x) € RE*®*" corrupted by an error follow-
ing the normalized Gaussian distribution (as Eq.(5) shows).
oW (x)?2 € RE*wxh jg the variance, which represents the
uncertainty level regarding the sample x.

g = softmaz(gWV (x) + oW (x)-€), e~N(0,I). (5)

We can expect that the predictor g can not only minimise
the predicative errors (as Eq.(6) shows), but also give the
uncertainty level for the input.

—10gE N (g:gW (x),0W (x)2) () (6)

C. The Forward Correction Procedure

To approximate the conditional distribution of clean label
P(Y | X), we consider the target mapping network f
transforming training sample x into a clean prediction y, and
assume that corresponding noisy predictive logit vector 3 can
be written as :

c

Uy =P =j|X =x)=> T,;(x)y, ()
i=1

yi = fi(x), ¥

where g; is the noisy prediction with respect to the j** class.
y; is the clean prediction produced by f for the i'" class.
By minimising the loss between noisy prediction y and PLs,
the predictor f will be capable of giving parameters separating
clean prediction y from noisy labels y. This is also called the
forward correction procedure [12]. Taking cross-entropy as an
example, the corrected loss function is shown as follows:

C
L — ,Z] {gi = 1} -log(y;)
= 3 9)
= —Zl {yl = 1} : lOg(ZTs,i(x) : fs(x))7

s=1
where 1 {yi = 1} denotes indicator function.

From the definition of heteroscedastic uncertainty, we can
know that a higher ¢ means the model is much more
likely to give a wrong prediction, and vice versa. For a multi-
classification problem, there is still a gap between the level of
uncertainty and the transition functions, as every probability
of one class flipped into another is required to be estimated.
For a binary case, however, the situation would be easier to
cope with. We only need to find a mapping function to mimic
the rules aforementioned, rather than estimate every T”(x)
That is, with a large o, the clean prediction of the target
mapping network y should be shifted towards the opposite
direction, which may lead to a flip into the other class.

Following these rules, a simple but effective transformation
function is developed:

7=(y—o"(x)> (10)
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Fig. 2. Examples of results from the uncertainty-aware forward correction.
First row: aerial images. Second row: mapping results from the UEN. Third
row: uncertainty (o) from UEN. Fourth row: final mapping results.

III. EXPERIMENTS

A. Experimental Setup

1) Data Set: From Google Static Map API, the GMS-
ACT data set was collected over the city, Canberra, ACT,
Australia, with the spatial resolution varying from 0.15m to
0.3m. Each image has RGB bands with the size of 256 x 256
pixels. The training set contains 437 positive samples and 414
negative samples while the testing set consists of 98 positive
samples and 92 negative samples. The image-level annotations
are made manually.

2) Implementation Details: The proposed method contains
three networks: classification network to generate PLs via
Grad-CAM, uncertainty estimation network as the uncertainty
predictor, and target mapping network to produce the clean
predictions. For the classification network, image-level anno-
tations are utilized in the training phase, which reflect the
existence of solar panels in images. The configuration of the
network is the same as that in [17]. For uncertainty estimation
network and target mapping network, we take RAN [16] as the
backbone. Regarding the uncertainty estimation network, PLs
generated by the former classification network are regarded
as noisy pixel-wise labels. Two branches, which compute the
output and uncertainty, respectively, are constructed based on
the basic network architecture of RAN. The cross-entropy loss
function is used to train RAN with the Adam optimizer. For
both networks, weights of all trainable layers are randomly
initialized with a truncated normal distribution. The batch size
is 8. The initial learning rate is 10~3 and decreased by a factor
of 0.9 after every epoch. The learning rate remains unchanged
after it reaches 10~%.

The proposed method was developed with PyTorch and
executed on NVIDIA Tesla V100 GPU with 32GB memory.

3) Evaluation Metrics: To evaluate the proposed method
quantitatively, we calculate five metrics [14], i.e., Accuracy
(AC), Precision (P), Recall (R), Fy score and IoU score.
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Fig. 3. Examples of mapping results on the GMS-ACT data set. Red pixels, yellow pixels,and green pixels represent the false negative, true positive and
false positive. (a) Aerial image. (b) Grad-CAM. (c) WS-SOD. (d) HWSL. (e) PSL. (f) DeepSolar. (g) PS-CNNLC. (h) UA-FC (Ours).
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Fig. 4. PRCs of the different mapping methods. (a) Ablation study. (b)
Comparison with the state of the art.

Notably, higher Accuracy, Fy score and IoU score suggest
superior overall performance. We also use the precision-recall
curve (PRC) to compare the quantitative performance.

B. Ablation Study

To reveal the validation of the uncertainty estimation and
the forward correction procedure, we performed ablation study
and obtained both visual and quantitative results (see Fig.4 (a),
and Table I).

1) Effect of the uncertainty estimation: The uncertainty
estimation network ¢ is constructed based on the Bayesian
learning and expected to give predictions as well as their
uncertainty level. Compared with the baseline, RAN, the
uncertainty estimation network helps improve the coverage
of the mapping results significantly at the cost of increasing
false alarms. It also brings slight improvement in the overall
performance ( 0.9% in F} score and 1.2% in IoU score).

TABLE I
ABLATION STUDY ON THE GMS-ACT DATASET

Method AC P R Py ToU

Grad-CAM 09875 0.9036 0.4238 0.5770  0.4055
RAN 0.9900  0.7629  0.7305 0.7463  0.5953
UEN 09896  0.7141  0.8022 0.7556  0.6072
UA-FC (Ours) 09912  0.7929  0.7621  0.7772  0.6356

2) Effect of the forward correction procedure: The benefits
of the forward correction are presented both qualitatively
and quantitatively. In Fig.2, we show a few examples of
mapping results and uncertainty produced by the uncertainty
estimation network, and corresponding clean predictions of
the target mapping network. As can be seen from Fig.2,
the boundary of objects and pixels difficult to distinguish
are marked with high uncertainty levels. After the forward
correction, the final results are much closer to the actual
layout of the object. Numerical results in Table I support
the advantages of the proposed method. We can observe
that UA-FC outperforms the method aforementioned by a
wide margin, especially in improving the completeness of the
objects and reducing the background interference. Compared
with the baseline RAN, the employment of only uncertainty
estimation helps a 7.2% increase in Recall but also leads
to a 4.8% drop in Precision. By taking advantage of both
uncertainty estimation and forward correction simultaneously,
UA-FC offers a further improvement in F; and IoU score.
Fig. 4(a) also shows the superiority of the proposed UA-FC.
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TABLE II
QUANTITATIVE COMPARISON ON THE GMS-ACT DATASET

Method AC P R Fy IoU

Grad-CAM 0.9875 0.9036 0.4238 0.5770  0.4055
WS-SOD 0.9848  0.5864 0.8178 0.6830 0.5186
HWSL 0.9829  0.5688  0.6047 0.5862 0.4146
PSL 0.9796  0.4915 04955 0.4934 0.3275
DeepSolar 0.9856  0.6517  0.6023  0.6260  0.4556
PS-CNNLC 0.9879  0.6568  0.8315 0.7339  0.5796

UA-FC (Ours) 09912 0.7929  0.7621  0.7772  0.6356

C. Comparison with the state of the art

For an extensive evaluation, we compared the proposed
method with six state-of-the-art weakly supervised methods,
i.e., WS-SOD [8], Grad-CAM [10], HWSL [13], PSL [14],
DeepSolar [15] and PS-CNNLC [17].

Fig.3 shows several examples of mapping results produced
by different methods. It can be observed that Grad-CAM can
only highlight the most discriminative part of the objects. WS-
SOD misses several objects with small sizes. HWSL makes
relatively accurate predictions, although it is affected by more
background interference. The performance of PSL is quite
similar to that of HWSL, with less false positives. DeepSolar
misses several objects of interest and offers fewer false alarms,
mainly because it is developed based on class activation
mapping. PS-CNNLC fails to recognize a few objects with
large variations while it offers much better boundary mainte-
nance. By contrast, UA-FC can accurately identify dispersively
distributed objects with sharp edges close to the actual layout.

Quantitative results in Table II and Fig.4(b) show that UA-
FC achieves a better trade-off in Precision and Recall, and
remarkably performs better in overall performance.

IV. CONCLUSION

In this paper, we approached weakly supervised object
extraction from a label noise perspective and proposed an
uncertainty-aware forward correction method for WS-SPM.
The proposed method assumes that each noisy PL can be
transformed from a clean prediction with a transition func-
tion, and contains two effective sub-models: uncertainty es-
timation network and target mapping network. The former
network gives the uncertainty level of each pixel in the image,
which is subsequently combined with a mapping function
to approximate the transition function. With the uncertainty-
aware transition function, a forward-correction procedure is
introduced to minimize the error between the noisy PLs
and the noisy predictions transformed from the clean results
given by the target mapping network. Both ablation study and
comprehensive experiments on an aerial data set suggest that
the proposed method has a superior ability to recognize objects
with large variations as well as providing precise boundaries.
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