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Ground Photon Extraction From Photon-Counting
LiDAR Data Using Adaptive Cloth
Simulation With Terrain Index

Guoping Zhang™, Shuai Xing, Qing Xu™, Pengcheng Li, Dandi Wang

Abstract—Photon-counting light detection and ranging
(LiDAR) Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2)
enables the drafting of global elevation maps. However, vegetation
cover, terrain undulation, and residual noise in signal photons
substantially reduce the accuracy of ground photon extraction.
Existing ground photon extraction algorithms do not consider the
factors influencing photon extraction, and the threshold setting
lacks a theoretical basis. This study proposed a photon-extraction
algorithm with scenario adaptability. First, the cloth simulation
(CS) was adapted with a terrain index (TI) to extract ground
photons; based on this, the cloth breakage concept was proposed
to remove residual noise. We tested the algorithm in Denali
National Park and compared its results with those of other
extraction algorithms. The results showed that the TI was robust
and consistent with the actual terrain; the adaptive CS achieved
the best accuracy and precision under different canopy heights
and terrains. The mean absolute error (MAE) and root mean
square error (RMSE) of extracted photons were 0.95 and 3.41
m, respectively. This study provides a solution to estimate ground
elevation using photon-counting LiDAR data.

Index Terms— Cloth simulation (CS), Ice, Cloud, and Land
Elevation Satellite-2 (ICESat-2), photon classification, photon-
counting light detection and ranging (LiDAR).

I. INTRODUCTION

IGH-PRECISION ground elevation data are crucial to
understand unprecedented changes in the environment.
Light detection and ranging (LiDAR) is able to directly obtain
the vertical structure of targets; as such, it has been used
widely in topographic mapping. Spaceborne laser altimeters
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are applied for wide-ranging observations and significantly
improve the environmental monitoring ability [1].

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2)
is the new generation of photon-counting LiDAR launched
in 2018. The onboard Advanced Topographic Laser Altimeter
System (ATLAS) observes the ground with a 10-kHz laser
repetition rate; the footprints obtained were approximately
17 m in diameter and sequentially spaced 0.7 m along
track [2]. However, this high-sensitivity LiDAR could be
easily triggered by solar radiation, atmospheric scattering [3].
The ubiquitous noise photons are intermixed with the signal
photons reflected from the ground targets. To extract ground
photons, the photon-counting LiDAR data must be denoised
and classified. ICESat-2 ATLO3 data provides a metric that
assists analysts with signal photon identification; however, the
accuracy of ground photon extraction from signal photons
requires further study.

Researchers have employed several techniques to try to
identify ground in the ATLO3 signal photon data stream.
A direct ground photon extraction algorithm was used to mark
the photons with the lowest elevation as ground photons [4]
and densify them using a progressive irregular triangular
network [5]. Although this algorithm was feasible, it was
susceptible to residual noise photons, which are mislabeled as
signal photons, but most likely noise photons. To reduce the
influence of noise, a moving window and elevation quantile
were introduced into the ground photon extraction. Different
elevation quantile ranges were used to extract the ground
photons according to the difference in land cover and acquired
time [6]. This algorithm reduced the influence of noise but
lacked terrain considerations. Therefore, a framework contain-
ing empirical mode decomposition (EMD) [7] was used to
extract the ground photons; however, the extracted results of
steep areas were always missing. The classification effect must
be improved when dealing with complex terrain data.

As opposed to the algorithms discussed directly above, cloth
simulation (CS) [8] is a surface-based classification algorithm
in which cloth hardness directly affects the results. The cloth
hardness is user-provided, and the original CS cannot satisfy
the need for automatic processing of extensive, dense ICESat-
2 data. This study utilized CS and adapted it to identify
ground photons more accurately in the ATLO3 signal photon
data stream. CS software control features were developed
which automatically, quantitatively describe and adjust for
local terrain features. The terrain index (TI) was defined as the
ratio of the elevation range of signal photons among different
along-track distances and was used to replace cloth hardness.
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Fig. 1. Study area in the Denali National Park, in inland Alaska, with the
track of ICESat-2 data.

In addition, cloth breakage was proposed to avoid the residual
noise effect. The performance of the algorithm was evaluated
using ICESat-2 data from the Denali National Park. The results
show that adaptive CS may accurately and robustly extract
ground photons.

II. STUDY AREA AND DATA
A. Study Area

The study area was Denali National Park (62.29°N-—
64.07°N, 148.78°W-152.88°W), located in inland Alaska,
covering an area of 9492 km?. The elevation difference of the
national park was 6120 m. Cover types vary from spruce bogs
to upland spruce-hardwood forests, low shrubs, tundra, and
ultimately bare land and snowfields at the highest elevations.

B. ICESat-2 ATLO3 Data

ICESat-2 offers 21 data products (ATLO0O-ATL21). The
ATLO3 (global geolocated photons) provides the time, lon-
gitude, latitude, height, and signal confidence label of each
photon, and is the only photon information source required
by land-vegetation along-track product and other advanced
products [2]. Fig. 1 shows that 16 data pieces were collected in
May and June 2019 (https://search.earthdata.nasa.gov/search).
Photons with signal confidence labels exceeding two were
marked as signals.

C. Reference Data

In Situ data were acquired using Goddard’s LiDAR, hyper-
spectral, and thermal imager (G-LiHT); an airborne mea-
surement system. Using Rigel’s VQ-480 LiDAR, G-LiHT
generated a 1 m resolution digital terrain model (DTM)
and canopy height model (CHM) [9]. As the G-LiHT data
acquired in July and August 2014, and July 2018, coin-
cided with ICESat-2 data, 22 datasets were downloaded
(https://glihtdata.gsfc.nasa.gov/) and used as a reference.
As the study area was inaccessible, the time interval between
G-LiHT and ICESat-2 did not create obvious terrain changes.

IIT1. PHOTON-EXTRACTION METHOD

When the cloth covers the inverted point cloud, its shape is a
DTM. The simulated cloth is composed of a group of particles
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Fig. 2. Typical measurement scenarios of ICESat-2. (a) Flat area. (b) Steep
area.

and springs, and the simulation was conducted by iterating the
particle positions. In each iteration, the cloth particles first fall
under gravity and then bounce back under elasticity.

The rebound distance is determined by the user-provided
cloth hardness [8], as shown in (1), which decreases with an
increase in terrain undulation

1
RD = EDpuricte * (1 - ZhT) M

where RD is the rebound distance; and EDjqicte is the ele-
vation difference between particles. The greater the hardness,
the smaller the rebound of particles and the lower the change
in cloth shape. When hardness values were 1, 2, and 3, the
moving distances were 1/2, 3/4, and 7/8 of the elevation
difference between the cloth particles, respectively.

A. Adaptive CS With TI

The CS is suitable for processing ICESat-2 data, wherein
photons are distributed in the plane along the track direction.
However, the user-provided cloth hardness in CS cannot meet
the demands of vast data automatic processing. As such, the
TI was designed to automatically adjust the rebound ratio of
cloth particles.

The elevation difference was composed of terrain and
ground objects (see Fig. 2), in particular: 1) the elevation
difference in flat areas was mainly contributed by ground
objects, while the elevation difference in steep areas was
mainly caused by terrain and 2) the elevation difference over a
short distance was mainly caused by ground objects, whereas
the elevation difference over a long distance was mainly
caused by terrain.

Thus, comparing the elevation difference at different dis-
tances may reflect terrain undulation, although the elevation
difference of ground objects is difficult to obtain in advance.
Therefore, the ICESat-2 data were divided into the short and
long segments, respectively, and the TI [10] was defined as
described in the following:

_ ED, —ED;
~ ED,

where EDjy is the elevation difference of the short segment;
and EDj is the elevation difference of the long segment.

The TI was positively correlated with cloth hardness. With
an increase in terrain undulation, the cloth hardness and TI
decrease, and the simulated cloth becomes softer.

TI 2)
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Fig. 3. Illustration of residual noise and cloth damage.

Therefore, TI was used to calculate the rebound distance of
cloth particles, as shown in the following:

RD = EDyaricle * TIL 3)

B. Cloth Damage and Residual Noise Detection

When a cloth covers a needle, the gravity of the cloth
particles distorts the cloth, rather than describing the exact
shape of the needle tip. Similarly, as shown in Fig. 3, when
the simulated cloth covers the residual noise (i.e., a noise
photon incorrectly identified as signal) far from the local signal
photons, it suggests that the cloth is damaged. On this basis,
the cloth damage is proposed to detect and remove the residual
noise photons.

As residual noise can cause mutations in cloth particle
elevation, we calculated the elevation difference between the
particles and their average () and variance (¢2). According
to the 3¢ principle, when the elevation difference between
particles exceeds i 430, the cloth will be damaged. Therefore,
the photons at the breakage position were marked as noise
photons, removed, and the positions of the cloth particles were
recalculated.

C. Extraction Method

The major steps of the proposed classification algorithm are

as follows.

1) Signal Photon Segmentation and TI Calculation: Signal
photons were divided into short and long segments and
the TT of each short segment was calculated using (2).

2) Parameter Initialization: In addition to TI, three auxil-
iary parameters [8], [10] were also assigned. The first
auxiliary parameter, the cloth particle spacing, defined
the distance between adjacent cloth particles along track.
The second parameter was the moving distance of parti-
cles under gravity in each iteration, and the third was the
maximum elevation difference between the cloth particle
and the corresponding photon.

3) CS and initial ground photons output.

4) Residual noise detection, cloth breakage, and final
ground photon output.

IV. RESULTS AND DISCUSSION

As different combinations of long and short data segments
directly change TI, it is necessary to compare the consistency
between TI and the actual terrain under different combinations,
investigate the robustness of TI, and identify the best segment
combination for the study area. The effectiveness of the
adaptive CS was qualitatively and quantitatively verified and
compared with classical algorithms. Then, the performances of
the adaptive CS under different slopes and vegetation heights
were analyzed.

7004005

TABLE I
CORRELATION BETWEEN TI AND NORMALIZED G-LiHT DTM

Correlation Short segment (m)
(%) 50 60 70 80 90 100
500 8191 8193 8085 7922 7658 7598
600 90.01 8629 8337 8735 7993  77.05
Long 260 8712 9131 9156 9144 8447 8061
segment

@ 800 81.52 90.90 9528 9255 9161 83.18
900 7498 8835 9142 9258 90.92 87.49
1000 72.13 8347 8770 89.91 9049  86.64

A. Verification of TI

To verify the consistency between TI and the actual terrain,
the correlation between TI and normalized G-LiHT DTM
was determined; based on this, the correlation under different
combinations was calculated to identify the best combination
of segments. The verified range of the long data segment was
500-1000 m, and the interval was 100 m, while the range of
short-distance segment was 50-100 m, and the interval was
10 m; the results are shown in Table I.

Among the results, the correlation of 11 combinations
was >90%, and that of 29 combinations was >80%, which
shows that TI is effective and robust. When the short segment
was 70 m and the long segment was 800 m, the correlation
could best (95.28%) depict the terrain in study area and is
used in subsequent ground photon extractions.

B. Verification of Accuracy

The photons with a signal confidence label >2 were consid-
ered signals and the ground photons from these were extracted
with the adaptive CS. The cloth particle spacing was set to
10 m to extract sufficiently dense ground photons, which could
be used as ground elevation retrieval data. According to [8],
the moving distance of particles under gravity was set to 9.8 m
in each iteration, and the maximum elevation difference was
set to 0.3 m.

The results and its local amplifications are shown in Fig. 4;
the extracted ground photons visually fit the actual terrain.
Specifically, by comparing Fig. 4, the vegetation cover and
terrain were found to have little influence on the adaptive CS
performance, which indicates that CS after adaptation by TI
has terrain perception and adaptation ability. In addition, as the
cloth particle spacing was set in advance, the extracted ground
photons were uniformly distributed, even on steep mountain
tops or valleys. Although there were many residual noise
photons under the ground surface in the signal photons, the
ground photons extracted by adaptive CS do not contain any
of them, indicating that cloth breakage is effective.

However, in Fig. 4(b) and (d), at the positions indicated by
the arrows, the lack of signal photons in steep areas and under
vegetation cover increased the difficulty of ground photon
extraction. The correspondence between the cloth particles and
the signal photons are set based on the distance between them,
cloth particles correspond to the closest signal photons [8].
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Fig. 4. Results of ground photon extraction and its local amplification (a) bare land in steep terrain and (b) its local amplification at 2800-3300 m; (c) vegetated

area in steep terrain and (d) its local amplification at 5200-5700 m.

When signal photons in the vertical direction of the cloth
particles are missing, other corresponding signal photons must
be found. In Fig. 4(b) and (d), we can see that the extracted
photons are closely distributed on both sides of the signal
missing positions, which indicates that these photons instead
correspond to cloth particles. Although these extracted ground
photons are accurate, their distribution is not uniform owing
to the lack of signal photons. Additionally, when faced with
steeper terrain, the cloth particles may correspond to non-
ground photons, such as vegetation photons, thus leading to
erTors.

To quantitatively evaluate the adaptive CS performance,
we compared the elevation of the extracted ground photons
with that of the G-LiHT DTM. As shown in (4)—(6), R%, mean
absolute error (MAE), and root mean square error (RMSE)
were calculated. We used the algorithms proposed by [4],
[6], and [7] as the comparison algorithms and numbered
algorithms II-IV:

n 02
R*=1- nzl':‘ (e nr‘) 5 4)
Dici (ei — > in1 Vi)

1 n
MAE = — =i 5
- 2:1) lei = 7il 5)

[ )

RMSE = \/ - > (ei—r) (©)

where n is the ground photon number; e; is the elevation of
the ith ground photon; and r; is the corresponding G-LiHT
DTM elevation.

Ground photons were extracted by adaptive CS and com-
parison algorithms, and the elevation of the extracted pho-
tons was compared with reference data; the scatter plots are
shown in Fig. 5. As R? exceeded 0.9997, there were strong

consistencies between the extracted photons and reference
ground elevations. In addition, the fitting curves were close to
the 1:1 line, indicating that the adaptive CS and comparison
algorithms were effective.

Specifically, algorithms II and III exhibited the lowest preci-
sion. The results demonstrate that a lack of terrain adaptability
and residual noise detection ability will reduce accuracy. The
accuracy of algorithm IV was only slightly worse than that
of adaptive CS, demonstrating that algorithms have terrain
awareness ability. However, the number of ground photons
extracted by algorithm IV (N = 6952) was significantly
less than that of the adaptive CS algorithm (N = 8946).
A possible explanation is that because of EMD, algorithm IV
extracted fewer ground photons in steep areas. It was clear
that adaptive CS can extract sufficient ground photons and
has better accuracy and precision.

C. Factors Influencing Adaptive CS

Canopy height and terrain undulation were factors that
affected ground-photon extraction [5]. Although adaptive CS
achieved the best accuracy, we determined its performance
under different canopy heights and slopes. Therefore, we cal-
culated the RMSE of the adaptive CS for different scenarios
and constructed boxplots.

The RMSE boxplots for different canopy heights are shown
in Fig. 6. The canopy heights were grouped as 0-5, 5-10,
10-15, 15-20, and >20 m. The median RMSE increased
from 3.24 to 3.62 m with canopy height; the RMSE range
became more concentrated with increased canopy height.
Specifically, when canopy height >20 m, the RMSE range
was <0.8 m. After analysis, adaptive CS was minimally
affected by the canopy because the extraction concept of CS
is to invert the signal photons and place the simulated cloth on
top of the inverted photons. Therefore, the increase in median
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RMSE was more likely to be due to the absence of ground
photons under the high canopy [5], and the adaptive CS was
robust under different canopy heights.

The RMSE boxplots for different slopes are shown in Fig. 7;
slopes were grouped into 0-2, 2-5, 5-15, 15-30, and >30.
In Fig. 7, when the slope was 0-2, the precision of the adaptive
CS was the highest, and the median RMSE was 3.37 m. When
the slope was > 30, the median RMSE, at 3.50 m, was greatest.
With an increase in the slope, the accuracy of the adaptive
CS decreases slightly, which shows that TI is effective, and
it allows the simulated cloth to fit the actual ground terrain
sufficiently. In addition, with an increase in the slope, the
RMSE range also decreased. This demonstrates that cloth
breakage may effectively identify and eliminate residual-noise
photons in steep areas; the adaptive CS was clearly robust with
slope.

V. CONCLUSION

This study proposed a photon-classification algorithm
adapted from CSs. In this algorithm, the automatically set TI
was used to adjust the rebound distance of cloth particles as
opposed to cloth hardness. Cloth breakage was also proposed
to identify and remove residual noise photons.
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Scatterplots of ICESat-2-extracted ground photon elevations and G-LiHT DTM elevations from (a) adaptive CS, (b) algorithm II, (c) algorithm III,

Tests performed in the Denali National Park show that
the accuracy of the adaptive CS was better than that of the
existing ground-photon classification algorithms. Furthermore,
the adaptive CS was robust to canopy height and terrain
undulation. However, the algorithm lacks consideration of the
effects of missing signal photons, which may lead to errors
in extreme cases. Future research should focus on improving
the adaptive CS in this context. Additionally, the performance
of the algorithm in more diversified areas should be tested to
gain a more comprehensive understanding of CS strengths and
limitations.
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