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Abstract—Scene classification in remote sensing (RS) images is a 

challenging task due to the lack of well labeled data. Recently, deep 
transfer learning (DTL) has been proposed to handle this task. 
However, most DTL methods cannot effectively deal with ambiguous 
features on class boundaries and multi-modal structures of RS data, 
so their performance is unsatisfactory. To handle the challenges, this 
letter presents a novel dropout-based adversarial training network 
for RS scene classification. Specifically, a dropout-based label 
classifier module is designed to reduce the selection of ambiguous 
features. Then, a dropout-based domain discriminator module is 
constructed to capture multi-modal structures of RS images so as to 
achieve fine-grained alignment between cross-domain distributions. 
Third, a joint distribution of features and labels is built to further 
enhance the performance. Experiments on seven public RS data sets 
show that our model outperforms several state-of-the-arts under 
different conditions. The code of our method is publicly available at: 
https://github.com/WangXin81/DATN-Submitted-to-IEEE-GRSL   

Index Terms—Remote sensing, scene classification, deep 
transfer learning, adversarial training, dropout. 

I. INTRODUCTION 
ITH the advances of remote sensing (RS) technologies, 
massive high-resolution RS (HRRS) data has been 
available, providing abundant valuable information for 

RS image interpretation. As one key task, scene classification, 
aiming at classifying different RS scenes into various semantic 
classes, has played a significant role in the RS community [1]. 

In recent years, various methods have been proposed for RS 
scene classification, among which deep learning (DL) methods 
have attracted increasing interests due to their capabilities of 
semantic-level feature extraction [2]. To ensure favorable 
classification performance, DL methods requires complex 
network architectures and huge labeled samples. However, 
collecting and annotating massive RS scene data is not only 
time-consuming, but also extremely expensive. Recently, 
leveraging knowledge from a labeled source domain to support 
an unlabeled target domain has become feasible. Under this 
umbrella, many deep transfer learning (DTL) methods that fuse 
DL and transfer learning (TL) together have emerged and 
brought promising outcomes in image classification [3].  
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Fig. 1. Feature distributions adapted by different methods. Left: before 
adaptation. Middle: adaptation by DTL methods which do not consider 
ambiguous features on class boundaries. Right: adaptation by our method. 

Although remarkable progress has been achieved in current 
researches, there still exist several challenges for HRRS scene 
classification. First, ground objects in HRRS images have close 
relationship to adjacent objects and surrounding environments. 
Various objects form diverse semantic scenes through different 
spatial distributions. Hence, HRRS scenes usually have large 
intra-class variations and low inter-class dissimilarities. 
However, features extracted in most DTL methods seem to be 
domain-dependent, with weak discriminative abilities. As 
shown in Fig. 1, feature points from DTL methods may be very 
close to or sit on the class boundary, resulting in wrong 
classification results. Second, due to different imaging 
conditions, such as seasons, weathers, clouds, etc., the radiation 
intensity and color of scenes belonging to the same category 
may look different, as shown in Fig. 2. In other words, these 
scenes have complex multi-modal structures. However, most 
existing adversarial learning models generally adopt a single 
domain discriminator, and thus cannot identify such 
multi-modal information. In this case, data distributions on the 
source and target domains are confusing. Third, many domain 
adaptation methods attempt to align feature distributions of the 
source and target domains without taking label information of 
samples into consideration [4]. Nevertheless, when the target 
domain lacks label information, the label information in the 
source domain becomes extremely critical.  

To overcome the above challenges, in this letter, we propose 
a novel dropout-based adversarial training network (DATN). 
First, to solve the challenge of ambiguous features, our idea is 
to generate more discriminative features. Considering that 
ambiguous features may increase the uncertainty of 
classification, and ensemble learning [5], as a famous theory in 
machine learning, has indicated that integrating multiple 
learners instead of a single learner can achieve better 
generalization performance, we address to fuse two label 
classifiers together to reduce the classification uncertainty. 
However, directly fusing two separate classifiers that do not 
share weights with each other may greatly increase the network 
cost. Hence, we embed the idea of dropout into the two label 
classifiers, so as to reduce the ambiguous features and at the 
same time maintain the network cost. Second, for the challenge 
of multi-modal structures, inspired by generative adversarial 
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Fig. 2. Multi-modal structures of scenes due to different imaging conditions. 

networks [6] that use multiple discriminators for enhancing 
distribution matching, we design multiple domain 
discriminators to capture different modes. By combining 
multi-adversarial domain discriminators together, the cross 
domain data distributions under multi-modal structures can be 
matched to the greatest extent, and the misalignment under 
different modes can be well reduced. Nevertheless, with the 
increase of the number of discriminators, the model parameters 
and complexity will increase, and the network becomes 
difficult to train. Therefore, the idea of dropout is also 
introduced into the multiple domain discriminators to help 
mitigating the multi-modal structure problem without 
increasing the network cost. Third, to better minimize the 
discrepancy of source and target domains, it is necessary to 
utilize the image features and labels simultaneously for domain 
adaptation. With this aim, we employ the Kronecker product [7] 
to exploit the joint distributions of features and labels for the 
source and target domains alignment.  

The main contributions can be summarized as follows. 
1) A dropout-based label classifier (DLC) is proposed in 

DATN, and by combining such two classifiers together, the 
ambiguous features on class boundaries can be reduced 
without increasing any network cost. 

2) A dropout-based domain discriminator (DDD) is designed 
based on the idea of multi-adversarial domain adaptation to 
capture multi-modal structures of RS data. Meanwhile, it 
incorporates dropout into domain discriminators, efficiently 
aligning the cross-domain data distributions whilst ensuring 
the applicability of our model. 

3) Instead of using a single feature distribution, DATN adopts 
the Kronecker product to produce the joint distribution of 
features and labels. Minimizing the joint distribution of 
features and labels can help to learn domain invariant 
features with stronger discrimination. 

II. PROPOSED METHOD 
Fig. 3 shows the overall architecture of our proposed DATN, 

which mainly consists of three modules: FG, DLC and DDD. 
A. Feature Generator (FG) 

Suppose 1{( , )} sNs s
s i i iy ==D x  is the source domain containing 

sN  RS images s
ix  with class labels s

iy , and 1{ } tNt
t i i==D x  is the 

target domain with tN  unlabeled RS samples t
ix . The goal of 

DATN is to predict the labels ty  of images from tD . 
In DATN, the first step is to extract semantically meaningful 

features from RS data, where ResNet-50 [8] is experimentally 
chosen as the feature generator due to its relatively low number 
number of parameters and a good capability of tackling 
gradient vanishing problems. As shown in Fig. 3, there are total 
five stages in ResNet-50, and the highest-level features 
obtained from the last stage (‘Conv 5-3’) are used as the deep 
features for RS data. Mathematically, for a sample s

ix  from the 
source domain, this process can be viewed as: 

 
Fig. 3.  Architecture of the proposed DATN. 

1 1( ; )s s C
i f i fG × ×= ∈f x θ                              (1) 

where fG is the feature generator parameterized by fθ ; s
if  is 

the extracted feature vector with  C  dimensions. Similarly, by 
feeding t

ix  into fG , we can get 1 1( ; )t t C
i f i fG × ×= ∈f x θ . 

B. Dropout-based Label Classifier (DLC) 
With FG, we have collected high-level features. Next, DLC 

is constructed to predict labels of samples from both domains 
using the learned features. In Fig. 3, the block ‘C’ in DLC 
actually corresponds to two drop-based label classifiers, named 

1C  and 2C . In each classifier, dropout is adopted to randomly 
select neurons from an exponential number of networks during 
training to enhance performance whilst preventing over-fitting. 

First, to suppress ambiguous features and simultaneously 
enhance the discriminative abilities of features, we feed s

if  and 
t
if  learned from the source and target domains respectively into 

1C  and 2C  parameterized by yθ . The outputs of the two 
classifiers are written as: 

,ˆ ( ; ),  1, 2s s
i j j i yy C j= =f θ            (2) 

,ˆ ( ; ),  1, 2t t
i j j i yy C j= =f θ         (3) 

where ,ˆ s
i jy  and ,ˆ t

i jy denote the labels predicted by the -thj  label 
classifier on the source and target domains, respectively. 

Second, we compute the source classification losses of the 
two classifiers as follows: 

, ,1
ˆ= 1 log , 1,2sN s s

Y j s i i ji
L N y y j

=
− =∑          (4) 

Then, the joint source classification loss can be obtained by: 

,1 ,2 ,1 ,21 1
ˆ ˆ1 log 1 logs sN Ns s s s

Y Y Y s i i s i ii i
L L L N y y N y y

= =
= + = − −∑ ∑   (5) 

Ideally, the prediction results of the two classifiers should be 
the same. However, ambiguous features may lead to the 
inconsistency of the prediction results. To overcome it, we 
build a novel objective function to minimize the differences 
between the predicted label distributions of the two classifiers 
on the target domain, which we call the inconsistency loss: 

,1 ,21 1
ˆ ˆ1 tN t t

t t i ii
L N y y

=
= −∑        (6) 

where 1
⋅  represents the 1  distance. 

C. Dropout-based Domain Discriminator (DDD) 
To capture multi-modal structures of RS scenes, we design a 

dropout-based domain discriminator module. 
First, before feeding the features extracted by FG into DDD, 

we integrate the extracted features and the corresponding label 
information together via the Kronecker product, so as to obtain 
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TABLE I 
DATA SETS USED FOR OUR EXPERIMENTS. 

Data 
source Data set Number of 

classes 
Image 

number 
Image 
size 

Spatial 
resolution(m) Year 

 NWPU 45 31500 256×256 0.2~30 2016 
 AID 30 10000 600×600 0.5~8 2017 
※ UCM 21 2100 256×256 0.3 2010 
□ PatternNet  38 30400 256×256 0.062~4.693 2018 
* VA 38 59071 256×256 0.07~19.11 2020 
☆ VB 38 58944 256×256 0.07~38.22 2020 
□ VG 38 59404 256×256 0.075~9.555 2019 

: Google Earth ※: USGS □: Google Map *: ArcGIS World Imagery ☆: Bing World Imagery 
the joint distribution of features and labels. Let ⊗  denote the 
Kronecker product, P  be a u v×  matrix, and Q  be a l k×  
matrix. The Kronecker product ⊗P Q  can be defined as: 

11 1

1

v

u uv

p p

p p

 
 ⊗ =  
 
 

Q Q
P Q

Q Q
  





           (7) 

where uvp  is the element in the -thu row and -thv column of P . 
For the source domain, since its labels are known, the joint 

distribution of its feature s
if  and label s

iy  can be calculated as 
s s s
i i iy⊗z = f . For the target domain, since its true labels are 

unknown, we use the predicted labels ,1ˆ t
iy  and ,2ˆ t

iy  to produce 
the pseudo label information. We express this process as: 

,1 ,2ˆ ˆ ˆ( ) 2t t t
i i iy y y= +         (8) 

Then, the joint distribution of target domain feature t
if  and 

pseudo label ˆ t
iy  can be obtained by ˆt t t

i i iy= ⊗z f .  
Second, we design a gradient reversal layer (GRL) [9] before 

the dropout-based domain discriminators are deployed. With 
GRL, the network parameters can be updated through the 
standard back propagation.  

Third, we construct n  dropout-based domain discriminators, 
and feed the joint distributions s

iz  and t
iz  from both of the 

source and target domains into these domain discriminators 
separately. The outputs of the -thq ( 1, 2,..., )q n=  domain 
discriminator ,d qG  parameterized by dθ  can be expressed as: 

, , ,
ˆ ( ( ); ) ( ( ); )s s s s

i q d q i d d q i i dd G G yζ ζ= = ⊗z fθ θ         (9) 

, , ,
ˆ ( ( ); ) ( ( ); )t t t t

i q d q i d d q i i dd G G yζ ζ= = ⊗z fθ θ             (10) 

where ,
ˆ s

i qd  and ,
ˆ t

i qd  are the predicted labels by ,d qG  on source 
and target domains, respectively. ζ  denotes the GRL function. 

Fourth, we define the true domain label 1s
id =  for the 

source domain, while the true domain label 0t
id =  for the 

target domain. Then, the loss function of these domain 
discriminators based on the cross-entropy loss is defined as: 

, ,
1 1 1 1

1 1ˆ ˆlog (1 ) log(1 )
s tN Nn n

s s t t
D i i q i i q

i q i qs t

L d d d d
N N= = = =

= − − − −∑∑ ∑∑ (11) 

At last, based on Eqs. (5), (6), and (11), the overall objective 
loss function of our proposed DATN is given as: 

+Y t DL L L L= +α β         (12) 
where α  and β are the trade-off parameters. The ultimate goal 
of network training is to find the optimal values of *

fθ ,  *
yθ , and 

*
dθ for FG, DLC and DDD, by minimizing Eq. (12). 

 

Fig. 4.  CM of our method for the first transfer task-N_A → UCM. 

To summarize, the whole network training process is 
equivalent to a two player game, in which one player is DDD 
used to distinguish whether the sample image comes from the 
source domain or the target domain, and the other player is FG 
used to confuse DDD to make DDD hardly distinguish between 
the source domain and the target domain so as to achieve the 
purpose of extracting domain invariant features. Ultimately, 
through continuous optimization for DDD and FG, the whole 
network becomes ‘adversarial’. 

III. EXPERIMENTS AND ANALYSIS 
A. Data Sets 

To evaluate the proposed DATN, we design eight transfer 
experiments on seven famous RS scene data sets: NWPU- 
RESISC45 (NWPU) [10], Aerial Image Data Set (AID) [11], 
UCMerced_LandUse (UCM) [12], PatternNet [13], VArcGIS 
(VA) [14], VBing (VB) [14], and VGoogle (VG) [15]. The 
detailed information of these data sets are given in Table I.  

First, we combine NWPU and AID to construct a merged 
data set (called N_A) with 55 categories. There are 19 identical 
classes between N_A and UCM. We select these categories in 
N_A as the source domain, while use the 19 identical classes in 
UCM as the target domain. Thus, we get the first transfer task: 
N_A → UCM. For convenience, here we directly combine 
NWPU and AID. In future work, we will construct a merged 
source domain by other more effective strategies [16], [17].  

Second, there are 22 same categories between PatternNet and 
N_A. We choose these classes in N_A as the source domain, 
while using the 22 identical classes in PatternNet as the target 
domain. Thus, we get the second task: N_A →  PatternNet. 

Third, as the newly proposed data sets, VA, VB and VG have 
38 identical classes. We use either of them as the source or 
target domains, and then carry out six transfer tasks: VA → VB, 
VA → VG, VB → VA, VB → VG, VG → VA, and VG → VB. 
B. Implement Details 

All experiments are conducted on NVIDIA GeForce RTX 
2080Ti GPU with Pytorch. The development environment is 
Pycharm on Ubuntu 18.04.1 system. Optimization is performed 
using Adam with the weight decay penalty of 10-4 and a batch 
size of 64. The learning rate is 3×10-4 and the total training 
epoch number is 600. All image samples are resized to 
256×256 pixels. The trade-off parameters α  and β are 
empirically set to 0.8 and 1. The evaluation metrics are overall 
accuracy (OA), confusion matrix (CM), and  -distance. 
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Fig. 5.  Per-class classification comparison of different methods. Left: task 
N_A → UCM. Right: task N_A → PatternNet.  

 
Fig. 6.  Accuracy comparison after convergence of different methods. Left: task 
N_A → UCM. Right: task N_A → PatternNet.  

C. Comparative Study 
To measure the classification performance of the proposed 

method, we take the first task, i.e., N_A → UCM, for example, 
and give the classification accuracy for each class in Fig. 4. It 
can be seen that our method yields over 90% classification 
accuracy for most scene categories.  

We also compare the proposed method with a number of 
state-of-the-arts (SOTAs). All SOTAs in our experiments use 
ResNet-50 pre-trained on ImageNet as their backbone. The 
results are given in Figs. 5 and 6. Fig. 5 shows the per-class 
classification comparison of different methods on the first two 
tasks. As can be seen, our method has the highest accuracy for 
most classes. Fig. 6 illustrates the accuracy comparison after 
convergence of different methods. As can be seen, our method 
is not only more accurate, but also more stable. 

The quantitative comparison results are presented in Tables 
II and III. It can be seen from Table II that, for the task N_A →
UCM, our DATN yields 14.83%~1.14% higher accuracy 
compared to the competing methods. Regarding the task N_A
→ PatternNet, DATN also achieves outstanding performance 
with the highest overall accuracy. In particular, compared to 
MSDA, which has the best performance in the baselines, our 
DATN obtains 1.34% higher accuracy. 

In Table III, there are totally six transfer tasks. As can be 
seen, our method has the best results in most circumstances. 
With regard to the average accuracy (Avg) of the six tasks, our 
method exceeds the best baseline (MCD) by 0.55%, while for 
VA → VB, the accuracy of ours is higher than MCD, by 1.27%. 

At last, in Tables II and III, we can also find that, the first and 
second groups of experiments have better results than the third 
~ eighth ones, indicating that VA, VB and VG have big 
differences in RS data distributions. Moreover, for the first two 
groups of experiments, they have the same source domain but 
different target domains, and the performance of the second one 
is slightly better than that of the first one, indicating the 
distribution difference between N_A and PatternNet is less than 
that between N_A and UCM. 
D. Ablation Study 

To show the effect of each innovations on DATN, a set of 
ablation experiments are conducted with different variants.  

TABLE II 
OVERALL ACCURACY (%) OF DIFFERENT METHODS ON TWO TASKS 

 (THE BEST RESULT IS IN BOLD, WHICH IS SIMILAR TO THE FOLLOWING TABLES). 
Type Method N_A → UCM N_A → PatternNet 

 

ResNet50 [8] 76.43 85.82 
SAN [3] 88.43 91.70 
IDDA [18] 88.91 91.64 
DSAN [4] 89.87 91.92 
CoGAN [9] 89.10 91.96 
LPJT [19] 89.84 91.95 
MSDA [20] 90.05 92.23 
MCD [21] 90.12 92.16 

★ DATN(Ours) 91.26 93.57 
: State-of-the-art Method      ★: Proposed Method 

TABLE III 
OVERALL ACCURACY (%) OF DIFFERENT METHODS ON OTHER SIX TASKS. 

Method 
VA
→
VB 

VA
→
VG 

VB
→
VA 

VB
→
VG 

VG
→
VA 

VG
→
VB 

Avg 

ResNet50  82.41 78.32 77.33 76.04 76.92 78.31 78.22 
SAN 88.82 87.01 86.09 83.13 86.24 87.37 86.44 
IDDA  88.79 86.94 86.82 83.35 86.31 87.65 86.64 
DSAN 89.30 87.04 88.01 83.82 86.70 88.17 87.17 
CoGAN 89.55 87.02 87.07 83.79 86.87 89.00 87.22 
LPJT 90.20 88.86 87.71 84.85 86.81 88.96 87.90 
MSDA 90.13 89.23 88.20 85.65 86.98 89.74 88.32 
MCD 90.25 89.19 88.28 85.91 87.76 90.07 88.58 
DATN 91.52 90.08 88.34 85.87 88.85 90.10 89.13 

TABLE IV 
ABLATION STUDY ABOUT OVERALL ACCURACY (%) ON TWO TASKS AND 

COMPUTATIONAL COST. (↓DENOTE THE SMALL IS BETTER). 

Type Method N_A →
UCM 

N_A →
PatternNet 

#Param 
(↓) 

FLOPs 
(↓) 

† 

DATN-c 88.51 91.76 29.05M 7.5G 
DATN-d 88.42 91.75 29.40M 7.7G 
DATN-j 89.69 92.55 27.98M 6.9G 
DATN-z 91.00 93.24 30.23M 8.0G 

★ DATN(Ours) 91.26 93.57 27.98M 6.9G 
†: Variant Method      ★: Proposed Method 
As shown in Table IV, DATN-c and DATN-d denote the 

variants without using dropout in either label classifiers or 
domain discriminators, respectively; DATN-c only contains 
one label classifier, while DATN-d only has one domain 
discriminator. DATN-j denotes a variant without using the joint 
distribution of features and labels. DATN-z denotes a variant 
without using dropout, but like DATN, it still contains multiple 
label classifiers and domain discriminators. As can be seen, 
compared to DATN, there is a big impact on DATN-d in 
accuracy, which reflects the importance of capturing 
multi-modal structures of RS images for classification. Next, 
DATN-c is also influenced, so it is very important to reduce the 
ambiguous features on class boundaries. Third, since DATN-j 
only relies on the single feature distribution, its accuracy 
decreases by more than 1%. At last, since DATN-z has multiple 
label classifiers and domain discriminators, it achieves better 
performance than DATN-c and DATN-d; but gets lower 
overall accuracy compared to ours, indicating that by using 
dropout, our DATN produces more discriminative features and 
thus obtains superior classification performance. 

In addition, we utilize the total number of trained parameters 
#Param and the floating-point multiplication-adds FLOPs to 
measure the model complexity and the computational cost. The 
results of DATN and its variants on the task N_A → PatternNet 
are given in Table IV. Obviously, the use of dropout in DATN 
can bring a clear benefit for the computational efficiency. 
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Fig. 7.  Comparison -distance  on different tasks. 

 
Fig. 8.  2-D scatterplots of high-dimensional features on the target domain for 
the task N_A → UCM. Left: t-SNE of MCD. Right: t-SNE of our DATN. 

E. Distribution Discrepancy 
To estimate the distribution differences between the source 

and target domains, we compute the -distance  (denoted as 
d ) on the tasks VA → VB, VA → VG , VB → VA, VB → VG, 
VG → VA, and VG → VB with the features extracted by four 
different algorithms. The results are shown in Fig. 7. As can be 
seen d  of DATN is much lower than those of LPJT, MSDA 
and MCD, indicating the joint distribution learned by DATN 
can bridge different domains and reduce the cross-domain gaps 
more effectively. Also, d  of VA → VB is smaller than that of 
VB → VG, reflecting the domains VA and VB are similar. This 
also explains the higher accuracy of VA → VB in Table III. 
F. Feature Visualization 

To verify the advantages of DATN, we visualize the features 
learned on the target domain by t-SNE [19]. Taking N_A →
UCM for example, we show the visualization graphs of our 
DATN and MCD in Fig. 8. As can be seen, MCD, which has 
the best performance in the baselines, cannot clearly distinguish 
several classes due to some overlapping features on class 
boundaries. In contrast, our DATN forms independent semantic 
clusters, in which different classes are separated on a large scale. 
As a result, the class boundaries are evident, the distance 
between classes is larger, and the feature overlaps are less. 
G. The Number of Discriminators 

DATN involves an adjustable parameter n , i.e., the number 
of dropout-based domain discriminators. To determine its 
optimal value, we conduct a set of experiments. We change the 
values of n  from 0 to 200 with the interval of 1. Under each 
value, DATN is trained for classifying UCM and PatternNet, 
respectively. The obtained accuracy curve is plotted in Fig. 9. 
We find that, when the value of n  is close to the number of 
classes, e.g., 19 for UCM or 22 for PatternNet, the accuracy 
reaches the maximum. Hence, n  should be set to the number of 
classes in the target domain, to achieve the best results. 

IV. CONCLUSION 
This letter has presented a novel RS scene classification 

method based on dropout-based adversarial training networks. 
We designed FG to extract high-level semantic information,  

 
Fig. 9.  Performance of DATN with different number of discriminators. 

constructed DLC to suppress ambiguous features, and built 
DDD to capture multi-modal information for RS scene images. 
The proposed DATN was compared with several standard 
models on a number of RS data sets and the results 
demonstrated its effectiveness and superiority.  
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