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Abstract—This study proposes the spectrum analysis of the
scattering-type parameter, θFP, to characterize different land
cover targets. Many orthonormal projections of the scattering
information onto distinct polarization bases have been proposed
in the literature. However, these conventional orthonormal basis
projection techniques often provide various target characteri-
zation ambiguities and classification. In this work, we propose
projecting the target coherency matrix onto several random
realizations of the normalized scattering configuration without
restriction to the orthogonality constraint. This unique approach
helps enhanced target characterization from polarimetric SAR
data. We show the efficacy of our proposed technique over
different land cover types using the C-band RADARSAT-2 data
over SF and the L-band ALOS-2 data over Mumbai.

Index Terms—SAR, Scattering type parameter, Polarimetry,
Spectrum analysis, Radar

I. INTRODUCTION

In radar polarimetry, target characterization using an invari-
ant descriptor is essential in identifying diverse land cover
types. In this regard, one could characterize targets using: a co-
herent scattering matrix, the Stokes reflection or Muller matrix,
and incoherent target coherency (or covariance) matrix [1]. In-
coherent target characterization can be represented as the sum
of the average scattering mechanisms from each independent
target within a radar resolution cell. Huynen [2] introduced the
phenomenological concept of radar target characterization.

Later, Cloude pointed out that the phenomenological theory
does not provide global invariance if Huynen’s restriction
on roll-invariance is removed. Hence, Cloude and Pottier
proposed an eigen-decomposition based scattering-type pa-
rameter in the linear H–V basis to overcome the parameter
proliferation problem [1]. Since then, this eigen-decomposition
technique has been the most used approach for characteriz-
ing natural target scattering. The characteristic decomposition
of the coherency matrix (in linear H–V basis) produces a
scattering-type parameter, α.

Although the scattering-type parameter α is effective in
characterizing diverse targets, it remains ambiguous between
a helix and a dihedral target. Hence, Corr and Rodrigues [3]
projected the scattering information onto another orthonormal
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basis composed of a sphere and a pair of left- and right-handed
helices, thereby resolving the scattering ambiguity.

Furthermore, concerning the ambiguities of α and the issues
presented in [3], Touzi [4] proposed a new scattering vector
model by projecting the Kennaugh-Huynen scattering matrix
condiagonalization into the Pauli basis. This unique proposal
provided a complete polarization basis invariant scattering-
type parameter, αs.

Recently, Dey et al. [5], [6] proposed a new target charac-
terization parameter, θFP in the linear H–V basis. Nonetheless,
θFP also remains ambiguous in characterizing the helix and the
dihedral targets.

Overall, one can witness from the literature that project-
ing the scattering information onto a specific orthonormal
basis could resolve certain issues of target characterization
ambiguities. Nevertheless, certain other types of ambiguities
can emerge for target characterization. Therefore, there is a
need to assess the entire spectrum (i.e., all possible values) of
θFP, obtained by randomly varying the scattering bases. The
number of elements in any orthonormal basis is restricted by
the dimension of the incoherent scattering covariance matrix.
Hence, using only those bases, it might not be possible to
characterize the complete set of scattering mechanisms of a
target in a radar resolution cell.

This study proposes the spectrum analysis of θFP by project-
ing the incoherent coherency matrix onto different scattering
mechanism bases. This projection essentially produces com-
plete information about the target within the whole scattering
spectrum. We further utilize the spectrum of θFP to classify
important land cover types over two different SAR images of
C- and L-bands, respectively.

II. METHODOLOGY

A. The Scattering-Type Parameter

In full-polarimetric (FP) SAR, the 2 × 2 complex scatter-
ing matrix S encompasses complete polarimetric information
about backscattering from targets for each pixel. It is expressed
in the backscatter alignment (BSA) convention in the linear
horizontal (H) and linear vertical (V) polarization basis as,

S =

[
SHH SHV
SVH SVV

]
⇒ k⃗ = V ([S]) =

1

2
Tr(SΨ) (1)

where V (·) is the vectorization operator on the scattering
matrix, Ψ are the corresponding Pauli basis matrices, and Tr
is the sum of the diagonal elements of the matrix. The second-
order scattering information in terms of the 3 × 3 coherency
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matrix T, can be obtained as the ensemble average ⟨·⟩ of the
outer product of the scattering vector k⃗ with its conjugate
transpose k⃗∗T as T = ⟨k⃗ k⃗∗T ⟩, which in general is a rank-3
matrix.

Next, let us define an arbitrary 3× 1 complex vector ω⃗ as,

ω⃗ =

Aeiϕ1

Beiϕ2

Ceiϕ3

 (2)

where, A, B and C are the magnitudes of each component and
ϕ1, ϕ2 and ϕ3 are their phases, respectively. We then project
the normalized complex vector ω⃗n = ω⃗/|ω⃗| by the coherency
matrix T as,

ω⃗s = Tω⃗n. (3)

Thus, ω⃗s allows us to project the data (i.e., T), onto any
arbitrary scattering basis (by varying ω⃗n). Since T is positive
semi-definite, ⟨ω⃗∗

nω⃗s⟩ ≥ 0. This intuitively also suggests that
ω⃗s, in general, points to the same direction as ω⃗n (i.e., the
angle between ω⃗n and ω⃗s is less than π/2). One can note that
ω⃗s = ω⃗n only when T represents the coherency matrix of
a canonical target (e.g., dihedral, trihedral, helix, etc.) or any
rank-1 matrix.

We utilize this projected vector ω⃗s to obtain a rank-1 higher-
order coherency matrix, Ts, as the ensemble average of the
outer product of the projected vector ω⃗s with its conjugate
transpose ω⃗∗T

s ,
Ts = ⟨ω⃗sω⃗

∗T
s ⟩ (4)

where Ts is Hermitian and positive semi-definite. Since Ts

contains higher-order covariance information, we convert it
to a second-order covariance structure using the following
theorem.

Theorem 1: Let A be a positive semi-definite matrix (real
or complex). Then, there is exactly one positive semi-definite
(and hence symmetric) matrix B such that A = B∗B.

Therefore, using the above theorem we can express Ts =
T∗

pTp. The Schur factorization method is used to compute
the matrix square root. The matrix Tp is unique and is called
the principal square root matrix. Moreover, since T is defined
as the outer product of the scattering vector represented in the
Pauli matrix basis, one can inherently relate Tp to a canonical
target representation on the same basis. Therefore, Tp can be
utilized to characterize different physical properties of targets.

We then derive the scattering-type parameter, θpFP from the
elements of Tp as proposed by Dey et al., [5] as,

tan θpFP =
mFP Span (T11 − T22 − T33)

T11 (T22 + T33) +m2
FP Span2

(5)

where, mFP is the 3D Barakat degree of polarization [7] and
T11, T22 and T33 are the diagonal elements of Tp with Span =
T11 + T22 + T33.

Similar to the conventional degree of polarization m, the 3D
Barakat degree of polarization mFP also characterizes the state
of polarization (or purity) of an EM wave. For a completely
polarized EM wave, m = 1 and for a completely unpolarized
EM wave, m = 0. The EM wave is said to be partially
polarized between these two extreme cases, 0 < m < 1.

However, one can note that for Tp, which is a rank-1 matrix,
mFP = 1.

θpFP varies within the range: [−45°, 45°]. For a pure dihedral
target, θpFP = −45°, and for a pure trihedral target, θpFP = 45°.
We generate the spectrum of θpFP by arbitrarily varying ω⃗n.
Each realization of ω⃗n can be considered as a representative
scattering mechanism.

In the following section, we demonstrate the characteristics
of the θpFP spectrum over different standard coherent and
incoherent targets.

B. Analysis over Different Scatterers
The histogram of the spectrum of θpFP for different targets is

shown in Fig. 1. It includes different coherent (viz., trihedral
and dihedral) and incoherent (viz., random volume [8] and
volume of horizontal dipole [9]) targets, as well as different
land cover targets, such as waterbodies, urban, oriented urban,
and vegetation.

To generate the histograms of θpFP, we have considered 1000
realizations of the normalized scattering configuration, ω⃗n. We
then computed the median value of θpFP as the mean over 20
iterations. We have also compared the values of the Cloude
average scattering-type parameter α [1]. However, to provide
its interpretation similar to θFP, we express α̂ = 45°−α (i.e.,
α̂ ∈ [−45°, 45°]).

It can be seen from Fig. 1a and Fig. 1b that the distribution
of the spectrum of θpFP represents a Dirac-delta function at
45° and −45°, corresponding to the trihedral (odd-bounce)
and dihedral (even-bounce) targets, respectively.

Incoherent targets, i.e., random volume in Fig. 1c and
volume of horizontal dipoles in Fig. 1d, exhibit the existence
of all θpFP values in the spectrum. In both cases, the median
value of the θpFP spectrum lies around 4°, whereas α̂ varies
around 0°. Thus, the median values indicate a certain amount
of regular scattering mechanisms from the volume targets.

Over the land cover targets, i.e., waterbody, urban, oriented
urban, and vegetation, we observe distinct histograms of the
θpFP spectrum. Over the waterbody, the median value of θpFP
is 43.49° ± 0.04°, while α̂ ≈ 35°. This high median value
is due to the dominating odd-bounce scattering mechanism.
Generally, when the ocean surface is smooth, co-polarized
backscatter signatures show a low coefficient of variation. As
a result, the width of the histogram is small over such a target.

Over the urban target, we observe that the median value
of θpFP is −27.24° ± 0.72°, whereas α̂ ≈ −15°. Besides, the
histogram of the spectrum of θpFP is right-tailed. This indicates
the presence of a small orientation of the urban target to
the radar line of sight. Moreover, the θpFP values indicate the
presence of the even-bounce scattering characteristics of the
target. An interesting shift in the median value, as well as
in the characteristics of the histogram, can be seen over the
obliquely oriented urban targets in Fig. 1g. This orientation
contributes to a strong cross-polarization component [10]
which, in turn, reduces the median value of the spectrum
to −14.03° ± 0.41°. In this case, α̂ ≈ −6°. Primarily, one
can note that for both urban and oriented urban targets, the
standard deviations of the spectrum increase with respect to
the waterbody case.
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(a) Trihedral (b) Dihedral (c) Random volume (d) Volume of horizontal dipole

(e) Waterbody (f) Urban (g) Oriented urban (h) Vegetation

Fig. 1: Histogram of θpFP (in degrees) for different canonical targets: (a) Trihedral, and (b) Dihedral, different volume targets:
(c) Random volume, (d) Horizontal oriented volume, and different land cover targets: (e) Waterbody, (f) Urban, (g) Oriented
urban, and (h) Vegetation using full-pol RADARSAT-2 C-band data. The red bounding curve represents the kernel-density
estimate using the Gaussian kernels. The vertical blue line represents α̂ = 45° − α value.

Over the vegetation target, we observe similar character-
istics as those in the random volume and volume of the
horizontal dipole. The median value of the histogram of the
θFP spectrum is 2.4° ± 0.32°, and α̂ is centered around 0°.

III. RESULTS AND DISCUSSION

We used two FP SAR images over San Francisco (SF),
USA, and Mumbai, India, as shown in Fig. 2a and Fig. 5a,
respectively. The C-band RS-2 SF scene has near- and far-
range incidence angles of 28.02° and 29.81°, respectively. The
single look complex (SLC) image is multilooked by a factor
of 2 in the range direction and 4 in the azimuth direction to
generate a 20m2 ground pixel. The L-band ALOS-2 Mumbai
scene has a center incidence angle of 33°, as shown in Fig. 5a.
The image is multilooked by a factor of 3 in the range direction
and 5 in the azimuth direction to generate 15m2 pixels.

For both images, the ground truth data is generated using
Google Earth images, as shown in Fig. 2a and Fig. 5a, respec-
tively. Here, we have used the K-means unsupervised cluster-
ing algorithm with three classes, as represented in Fig. 2b and
Fig. 5b: urban areas in red, vegetation in green, and waterbody
in blue. We have compared the clustering results between(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
and the θFP spectrum.

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
are

the three scattering mechanisms obtained from the elements of
the three rank-1 coherency matrices corresponding to the three
orthogonal eigen-polarization states obtained from the eigen-
decomposition of the T matrix. We generated 100 random
realizations of θpFP for the classification purpose.

The unsupervised classification maps over the SF area
using RADARSAT-2 data are shown in Fig. 4. We have
considered three main land cover types, i.e., urban, vegetation

(a) Pauli RGB (b) Labelled classes

Fig. 2: RADARSAT-2 SAR data over the SF area. (a) Pauli
RGB. (b) Labelled classes.

and waterbody, defined in Fig. 2b. The median values of
different target scattering type parameters are computed using
randomly selected pixels from each land cover target. Over the
waterbody, we observe the median value of θpFP is, approxi-
mately, 41°± 0.2°, while the median value of θ(1)FP ≈ 43°, and
the median values of θ(2)FP and θ

(3)
FP are both around −37°.

Over the urban region, we observe a median value of
θpFP ≈ −22° ± 2.1°. The median value of θ

(1)
FP ranges from

around −28° to −37°, and the median values of θ
(2)
FP and

θ
(3)
FP are around −4° to 36°. These values of the scattering-

type parameters characterize urban targets (corresponding to
dihedral scatterers).

Similarly, over the vegetation region, the median value of
θpFP ≈ 4.3° ± 1.4°. The median value of θ(1)FP ranges from 12°
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(a) θpFP spectrum (b)
(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
Fig. 3: t-SNE plot for (a) θpFP spectrum and (b)(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
correspond to the RADARSAT-2 data over

SF. Points in Red: urban, Green: vegetation, Blue: waterbody.

to 30°, approximately, and the mean values of θ
(2)
FP and θ

(3)
FP

are around 2° to −29°. Therefore, a similarity in the θ
(1)
FP , θ(2)FP

and θ
(3)
FP values can be noticed among these three land cover

types. Hence, to evaluate the efficacy of the θpFP spectrum over
θ
(1)
FP , θ(2)FP and θ

(3)
FP , quantitative accuracy results are shown in

Table I and Table II, respectively.

(a)
(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
(b) θpFP spectrum

Fig. 4: Unsupervised classified maps using the K-means clas-
sifier with (a)

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
and (b) θpFP spectrum for the

RADARSAT-2 SAR data over SF.

From Table I and Table II, it can be seen that the overall
accuracy using θ

(1)
FP , θ(2)FP and θ

(3)
FP is 56.60%, while using the

θpFP spectrum it is 77.49%. This means that an increase of
around 20% overall classification accuracy is observed when
using the θpFP spectrum. Moreover, very low User’s Accuracy

TABLE I: Accuracy scores over different land cover targets
using

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
for the RADARSAT-2 data over SF.

Urban Vegetation Waterbody Overall accuracy Kappa score

UA 30.19% 5.84% 95.39% 56.60% 0.31PA 91.31% 5.71% 61.03%

(UA) and Producer’s Accuracy (PA) are observed over the
vegetation area using

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
. These low UA and

PA are primarily due to the confusion between vegetation and

waterbody targets. This confusion can also be seen from the t-
distributed Stochastic Neighbor Embedding (t-SNE) plot [11]
in Fig. 3. It can be observed that distinct clusters exist for
waterbody, vegetation and urban areas using the θpFP spectrum,
while such clusters are not as prominent in the case of(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
.

TABLE II: Accuracy scores over different land cover targets
using the θpFP spectrum for the RADARSAT-2 data over SF.

Urban Vegetation Waterbody Overall accuracy Kappa score

UA 62.72% 86.23% 88.61% 77.49% 0.66PA 87.48% 42.34% 98.19%

One can also find similar results over the Mumbai region
using ALOS-2 data. However, a slight variation in the targets
response is observed according to the L-band wavelength when
exploiting these data.

(a) Pauli RGB (b) Labelled classes

Fig. 5: ALOS-2 SAR data over the Mumbai area. (a) Pauli
RGB. (b) Labelled classes.

In particular, for L-band ALOS-2 data we observe that
the median value of the θpFP spectrum is 37° ± 1.01°. This
low median value, as compared to that of RADARSAT-2
data, is due to the different interaction of the longer L-band
wavelength with respect to the C-band wavelength. In addition,
the existence of the mangrove region within the coastal extent
increases the standard deviation of the θpFP spectrum. We
observe a similar decrease of 6° in the median θ

(1)
FP value over

the waterbody. On the other hand, median values of θ
(2)
FP and

θ
(3)
FP vary from 2° to −41°.

Over the urban area, we observe a drastic decrease in the
median value of the θpFP spectrum. The median value decreases
by 8° compared to the urban area in the RADARSAT-2 data.
Alongside this, the standard deviation of the θpFP spectrum also
increases by 2°. This anomaly in the values of the θpFP spectrum
is due to the existence of differently oriented urban areas
within the scene. In this context, less urban density falls under
the orthogonal urban area to the radar line of sight category.
On the contrary, some very high θpFP values are outliers due to
several ships in the ocean.

Similar characteristics are seen over the vegetation surface
for both ALOS-2 and RADARSAT-2 data. The median value
of the θpFP spectrum is around 2.3° ± 2.4°. The median value
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(a) θpFP spectrum (b)
(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
Fig. 6: t-SNE plot for (a) θpFP spectrum and (b)(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
correspond to the ALOS-2 data over Mum-

bai. Points in Red: urban, Green: vegetation, Blue: waterbody.

(a)
(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
(b) θpFP spectrum

Fig. 7: Unsupervised classified maps using K-means classifier
with (a)

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
and (b) θpFP spectrum for the ALOS-

2 SAR data over Mumbai.

of θ
(1)
FP ranges from −6° to 32°, and the median values

of θ
(2)
FP and θ

(3)
FP are around −14° to −24°, respectively. A

slightly high mixed dihedral component is observed from
the vegetation, possibly due to the subsurface canopy and
underneath waterbody interaction of the SAR waves in the
mangrove region.

TABLE III: Accuracy scores over different land cover targets
using

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
for the ALOS-2 data over Mumbai.

Urban Vegetation Waterbody Overall accuracy Kappa score

UA 81.18% 14.36% 65.01% 62.20% 0.32PA 43.49% 8.31% 92.26%

TABLE IV: Accuracy scores over different land cover targets
using the θpFP spectrum for the ALOS-2 data over Mumbai.

Urban Vegetation Waterbody Overall accuracy Kappa score

UA 79.60% 45.20% 92.03% 74.47% 0.60PA 64.09% 76.46% 79.78%

Accuracy classification results exploiting ALOS-2 data are
shown in Table III and Table IV. The overall classification

accuracy is around 12% higher for the θpFP spectrum than when
using

(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
. Similar to the RADARSAT-2 data, a

high confusion between vegetation and waterbody is observed.
However, the UA and PA over the vegetation targets using(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
are slightly higher than in the SF image. This

situation might be due to the enhanced information about the
urban characteristics using the L-band SAR thanks to a larger
penetration depth than at C-band. Nevertheless, the overall
accuracy of the θpFP spectrum using L-band data decreases
by 3% as compared to the C-band data. One can intuitively
perceive this decrease in the overall classification accuracy
from the t-SNE plot in Fig. 6. Interestingly, the vegetation
and urban clusters in Fig. 6a are more mixed with the ocean
cluster than in Fig. 3a.

IV. CONCLUSION

We propose a spectrum analysis of the target scattering
type parameter θFP by projecting the coherency matrix onto
different non-orthogonal scattering mechanism bases. This
information essentially helps us distinguish among different
scattering targets by exploiting only one particular type of
physical parameter instead of using several statistical and
physical parameters, i.e., α and entropy. We have shown
the efficacy of the θpFP spectrum by comparing the target
classification accuracy over different land cover types with
scattering mechanisms at different eigen-polarization states,(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
. The classification results for the θpFP spec-

trum outperforms those with
(
θ
(1)
FP , θ

(2)
FP , θ

(3)
FP

)
. One can uti-

lize this technique in several applications, like soil moisture
retrieval, ship detection, and agricultural crop monitoring.
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