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Abstract—Self-supervised contrastive learning (SSCL) is a
potential learning paradigm for learning remote sensing image
(RSD-invariant features through the label-free method. The exist-
ing SSCL of RSI is built based on constructing positive and neg-
ative sample pairs. However, due to the richness of RSI ground
objects and the complexity of the RSI contextual semantics, the
same RSI patches have the coexistence and imbalance of positive
and negative samples, which causing the SSCL pushing negative
samples far away while pushing positive samples far away, and
vice versa. We call this the sample confounding issue (SCI).
To solve this problem, we propose a False negAtive sampLes
aware contraStive 1Earning model (FALSE) for the semantic
segmentation of high-resolution RSIs. Since the SSCL pretraining
is unsupervised, the lack of definable criteria for false negative
sample (FNS) leads to theoretical undecidability, we designed two
steps to implement the FNS approximation determination: coarse
determination of FNS and precise calibration of FNS. We achieve
coarse determination of FNS by the FNS self-determination
(FNSD) strategy and achieve calibration of FNS by the FNS
confidence calibration (FNCC) loss function. Experimental results
on three RSI semantic segmentation datasets demonstrated that
the FALSE effectively improves the accuracy of the downstream
RSI semantic segmentation task compared with the current three
models, which represent three different types of SSCL models.
The mean Intersection-over-Union on ISPRS Potsdam dataset
is improved by 0.7% on average; on CVPR DGLC dataset
is improved by 12.28% on average; and on Xiangtan dataset
this is improved by 1.17% on average. This indicates that the
SSCL model has the ability to self-differentiate FNS and that the
FALSE effectively mitigates the SCI in self-supervised contrastive
learning.

Index Terms—Self-supervised contrastive learning (SSCL),
false-negative sample (FNS), remote sensing image (RSI), seman-
tic segmentation.

I. INTRODUCTION

EEP neural networks (DNNs) trained in a supervised

learning manner have made remarkable progress in re-
mote sensing image (RSI) scene classification [1]], target detec-
tion [2]], and semantic segmentation [3]], [4]. The dependence
of this approach on massive, high-quality labeled samples
has become a bottleneck for wide-scale application [5]-[7].
The promise of self-supervised contrastive learning (SSCL)
has made it possible to learn the RSI invariant features from
massive unlabeled data [8[]-[11]].

This work was supported by the National Natural Science Founda-
tion of China(41871364, 41861048)and by the High Performance Com-
puting Platform of Central South University. Corresponding author: li-
haifeng@csu.edu.cn.

Z.Zhang, X. Wang, X. Mei, C. Tao, H. Li is with the School of Geosciences
and Info-Physics, Central South University.

ample -, (--- Anchor -

- Label Legend

Sample Confounding

Fig. 1. Example of false negative sample (FNS) and sample confounding issue
(SCI) in SSCL for semantic segmentation of high-resolution RSI. SCI will
arise when model pushes negative sample image patch that contains positive
samples far away.

The core idea of SSCL is to cleverly obtain copies of the
same image patches as positive samples and other different
images as negative samples by data augmentation methods of
spatial and spectral transformations such as rotation, scaling,
random color distortion, and Gaussian blur [12f], and to con-
struct self-supervised signals by pulling the positive samples
closer while pushing the negative samples farther away. This is
done instead of manually labeling them as supervised signals,
thus forcing DNNs to obtain spatial and spectral invariant
representations [11]], [13]-[15].

However, due to scene complexity, ground object richness,
and unbalanced distribution of samples of RSI, there is a
phenomenon in which positive and negative samples coexist
in the same patch and are highly unbalanced. As shown in Fig
1, the false negative samples for the selected anchor sample in
the last two columns contain the same ground features as the
positive sample, causing the SSCL pushing negative samples
far away while pushing positive samples far away, and vice
versa. We call this the sample confounding issue (SCI). The
performance loss of the model due to SCI is called the sample
confounding effect (SCE), while the negative sample image
patch containing positive samples is called the false negative
sample (FNS) because it gives the wrong feedback signal to
the model.

Current methods to solve the SCE problem in SSCL are
mainly considered from the perspective of samples and can
be divided into two categories. One category aims to improve
the quality of negative sample construction by attaching other
unsupervised methods to the original SSCL and using the
additional unsupervised results to guide the self-supervised
model to construct higher-quality positive and negative sample
pairs [[16]-[18]. However, it is often difficult to improve the
construction quality of positive and negative sample pairs in
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RSI processing by using additional unsupervised clustering
methods. Nevertheless, this may introduce defects of related
unsupervised methods because the ground objects in RSI
often have problems such as sample imbalance, intraclass
differences, and interclass similarity, leading to the ineffec-
tiveness of unsupervised clustering methods [19]. The second
category considers abandoning the construction of negative
samples [20]—[22]], which means that the model’s performance
will depend only on the construction of positive samples.
Considering that the FNS is essentially positive samples in the
dataset, this type of approach completely avoids the generation
of FNS. Nevertheless, it also means that the model will not
use the positive samples that already exist in the dataset,
which may reduce the model’s ability to extract RSI invariant
features.

Unlike the above methods, our observation is as follows:
the SSCL of the RSI model itself can distinguish between true
and false negative samples. This ability comes from the correct
self-supervised signals given to the model by the true positive
and true negative samples. This ability is potentially reinforced
continuously as the model is trained. We refer to this as
the ability of FNS self-determination (FSD). This observation
motivates us to rethink the SCE problem from the perspective
of the model rather than directly from the perspective of the
sample.

The fundamental difficulty of using FSD to determine
the FNS is that self-supervised pretraining is essentially an
unsupervised process. The lack of definable criteria for the
FNS leads to theoretical undecidability, so we can only approx-
imately determine the FNS by some strategy. Approximate
determination of FNS can be divided into two steps in terms of
process: coarse determination of FNS and precise calibration
of FNS. The former is the initial screening of FNS to ensure
completeness, and the latter is the precise selection based on
the former to ensure accuracy.

We propose the False negAtive samplLe aware contraStive
IEarning model (FALSE), which achieves the coarse determi-
nation of FNS through the FNS self-determination (FNSD)
strategy and achieves the precise calibration of FNS by de-
signing the FNS confidence calibration (FNCC) loss function.
In the FNSD strategy, the anchor sample in the closer positive
sample pair in the embedding space is used as the benchmark,
and the negative sample with the highest similarity to the
anchor sample is determined as the possible FNS. The FNCC
loss function is designed to improve the contribution of the
possible FNS to the positive sample term of the original
contrastive loss function [23]] and reduce its contribution to
the negative sample term of the loss function to mitigate SCE
in the SSCL model. The contributions in this letter are as
follows:

1) We propose a False negAtive sampLe aware contraStive
IEarning model (FALSE) for the semantic segmentation
of high-resolution RSIs. FALSE determines the approx-
imate determination of FNS in SSCL from the perspec-
tive of the model rather than samples and mitigates the
SCI in the SSCL of RSIs.

2) We designed the FNS confidence calibration (FNCC)
loss function quantitatively rather than qualitatively to

characterize the strength of the ability of FNS self-
determination (FSD) in the form of confidence weights.

3) The experimental results on three semantic segmentation

datasets show that FALSE relative to SimCLR, PCL, and
Barlow twins improves mean Intersection-over-Union
(mlIoU) on ISPRS Potsdam dataset by 0.7% on average
on ISPRS Potsdam dataset, improves mloU by 12.28%
on average on CVPR DGLC dataset, and improves mloU
by 1.17% on averzi\%e on Xiangtan dataset.

II. METHODOLOGY

In the SSCL of RSI, the presence of true positive sample
(TPS, blue dots in Fig[2) and true negative sample (TNS, red
dots in Fig [2) will give the model a correct self-supervised
signal about the RSI invariant features. In contrast, false
negative sample (FNS, pink dots in Fig. in the negative
sample set will give the model an incorrect signal about the
RSI invariant features, creating the SCI in SSCL.

Since SSCL pretraining is essentially an unsupervised pro-
cess, the lack of definable criteria for FNS leads to theoretical
undecidability, so we can only approximately determine the
FNS by some strategies. The approximate determination of
FNS can be divided into two steps: 1) coarse determination
of FNS and 2) precise calibration of FNS. The former is the
initial screening of FNS to ensure the completeness of FNS;
the latter is precise on the former to ensure the accuracy of
FNS selection.

A. Coarse determination of FNS

1) Determination benchmark: Since the goal of the SSCL
model is to bring positive samples closer and push negative
samples farther, if the model projects a positive sample pair
to a closer location in the embedding space, then the model
is currently better at learning invariant features about that
positive sample pair. Based on this, the anchor sample of the
closer positive sample pair in the embedding space is selected
as the benchmark for determination, maximizing the use of
the feature extraction information that the model has learned,
thus minimizing the model’s misjudgment.

Suppose the benchmark anchor sample is denoted as 0j.cy,
its corresponding positive sample is denoted as p, and sim(-, -)
denotes the calculation of the feature similarity between the
two samples. Then, o, satisfies the condition that

sim (Ogey, p) > T (D

In Eq. (1), T denotes the positive sample pair similarity
threshold, which controls the proximity of positive sample
pairs in the embedding space.

2) Determination condition: Based on the determination
benchmark satisfying Eq. [I} we calculate the similarity be-
tween all negative samples and the benchmark anchor sample
Okey in the embedding space and determine the negative
sample with the highest similarity to the benchmark anchor
sample oy, as the possible FNS. Suppose n is used to
denote the negative samples to be judged, and n,; denotes
the possible FNS, the above determination condition can be
simply described as:

|53 (Okey, Npf) — SiM(Okey, P)l

— min |$im(0key, n) — S9M(Okey, P)|

2
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Fig. 2. Overview of FALSE model. Blue square represents FALSE model’s FSD module in coarse dermination of FNS

3) Possible FNS analysis: Influenced by the SCI, the
possible FNS obtained by the FSD is not all FNS but also
contains TNS. Nevertheless, since oy, represents the best
level of the current model’s ability to extract image features,
it is difficult to use the model’s FSD ability to eliminate this
part of the TNS from the set of possible FNS. Noting that the
indistinguishability of such negative samples is for the model,
we refer to this part of the TNS among the possible FNS 7, as
the model-dependent hard negative sample (MD-HNS, brown
dots in Fig |Z[) in the SSCL. Suppose ny is used to denote the
FNS and ny, to denote the MD-HNS, the composition of the
possible FNS obtained can be simply described as:

Npf = nyf +np 3)

B. Precise calibration of FNS

1) FNS confidence calibration (FNCC) loss function: To
calibrate the obtained possible FNS and mitigate the impact
of MD-HNS on the model performance, we design the FNCC
loss function by introducing confidence weights « to calibrate
the possible FNS (n,,) as positive samples.

The original loss function of the SSCL of the RSI model
mainly consist of two parts [23|): positive sample term esim(o:p)
and negative sample term va esim(on’)

And the FNCC multiply the similarity of possible FNS by
the confidence weight « to get Sgp (see Eq. @), and add it
to the original positive sample term of SSCL loss, increases
the influence of n,; on the positive sample term of the loss to
enhance the correct signal, multiply the similarity of possible
FNS by 1 — « to get Swn (see Eq. (3), and replace the
similarity corresponding to the possible FNS in the original
negative sample term with Sy, n, reduces the influence of 7,y
on the negative sample term of the loss to weaken the incorrect
signal.

When the number of negative samples corresponding to an
anchor sample is N, the number of possible FNS determined
to be obtained is N, r(Nps < IN), the FNCC loss function is
defined by Eq. (6).

Nps .
Spp=a)_ e momy) )
J
pr .
Swy = (1—a) Y esm(om) (5)

J

. _ esmr) 4 S§pp
FNCC = —log— N—Npy _sim(on
6szm(o,p) + SEP + Zz e ’

s Swn
(6)

In particular, when there is no possible FNS, NV,,; = 0, and
Eq. (B) degenerates to original loss function and becomes the
original SSCL model.

2) Meaning of confidence weights: The confidence weight
o represents the degree of confidence in the model’s FSD
ability. When o = 0, the positive sample signal enhancement
term and the FNS signal weakening term of the FNCC loss
are both 0. The model is the original SSCL model, and the
FNSD strategy is not used. When o = 1, it means that FALSE
fully trusts the possible FNS obtained from the model FSD and
adjusts all possible FNS to the positive sample, eliminating the
contribution of these possible FNS to the negative sample term
of the FNCC. When « takes any value less than 1 and greater
than 0, it means that the model increases the contribution of
possible FNS to the positive sample term of the FNCC from
0 to o times the original contribution to the negative sample
term, and weakens its contribution to the negative sample term
to 1 — « times the original contribution.

III. EXPERIMENTAL
A. Datasets
The experiments were selected from the public RSI se-
mantic segmentation dataset ISPRS Potsdam [24]], competition
dataset CVPR DGLC [25]], and Xiangtan dataset [10] from
the Gaofen-2 satellite covering Xiangtan, China. The spatial
resolution and number of ground object types of the three

datasets are shown in TABLE [I
TABLE I
DATASETS INTRODUCTION

Dataset Name Spatial Resolution Class Num

ISPRS Potsdam 0.05m 6
CVPR DGLC 0.5m 7
Xiangtan 2m 8

B. Experimental setup

The experiments follow the general paradigm of SSL mod-
els [9], [11]], [13] and are divided into two main steps:
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(a) ISPRS Potsdam Dataset

(b) CVPR DGLC Dataset

(c) Xiangtan Dataset
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Fig. 3. mloU (%) of 3 datasets when five different o are selected. Each confidence weight experiment was repeated five times.

self-supervised pretraining and supervised fine-tuning. Self-
supervised pretraining uses all unlabeled training set data,
pretrained for 200 epochs with the batch size set to 256. Next,
the entire model encoder is frozen, and a small amount of
labeled data is used to fine-tune and train the decoder, with
the labeled data selected as 1% of the pretrained unlabeled
data. The decoder is finally used to obtain the RSI semantic
segmentation results.

To quantitatively explore the FSD of the FALSE, we con-
ducted several experiments using the introduced confidence
weights o, with the positive sample pair similarity threshold
T set to 0.9. The results are presented in Experiment 1.

On this basis, we selected SimCLR, which represents the
original SSCL model; PCL, which represents the SSCL model
that joins clusters; and the Barlow twins, which represent the
SSCL model without constructing negative samples. These are
used as the baseline tested on the ISPRS Potsdam, CVPR
DGLC, and Xiangtan datasets, which are then compared with
the FALSE model having a confidence weight of 1. The results
are presented in Experiment II.

TABLE II
SEMANTIC SEGMENTATION 10U (%) OF 6 CLASSES OF GROUND OBJECTS
IN POTSDAM DATASET WHEN 5 DIFFERENT o« ARE SELECTED

@ 0 0.3 0.5 0.7 1
Imp. Surface 4787 47.87 48.08 47.82 48.16
Building 47.15 4772 46.15 4742 46.83
Low Veg. 4122 42,07 4206 4222 4238
Tree 2794 2737 3031 28.05 30.75
Car 2822 2486 2642 2705 28.29
Clutter/background  4.74 5.26 4.85 4.93 5.26

TABLE III

SEMANTIC SEGMENTATION 10U (%) OF 7 CLASSES OF GROUND OBJECTS
IN DGLC DATASET WHEN 5 DIFFERENT ov ARE SELECTED

a 0 0.3 0.5 0.7 1

Urban 6245  61.69  63.39 62.3 64.27
Agriculture  78.75  78.88 7845  78.61 78.94
Rangeland 20.92 19.38 18.91 19.67  19.99
Forest 61.56 63.86 6136 6156  63.09
Water 57.21 58.15 57.78 6041  61.69
Barren 46.43 43,56 4352 4443 4539
Unknow 96.12 9554 9512  96.02  95.63

TABLE IV
SEMANTIC SEGMENTATION IOU (%) OF 8 CLASSES OF GROUND OBJECTS
IN XIANGTAN DATASET WHEN 5 DIFFERENT & ARE SELECTED

e 0 0.3 0.5 0.7 1

Farmland 63.82  64.10 6382 6406  64.45
Urban 0.00 0.31 0.53 2.75 0.96
Rural areas 16.62 17.16  17.23  18.25 14.92
Water 3897 4130 4094 4042  43.01
Woodland 7827 7849  78.11 78.12  78.36
Grassland 1.95 1.86 1.91 1.70 2.26
Roads 21.52 2130  21.01  21.68 21.58
Background ~ 97.56  98.08  98.09 98.2 98.23

C. Experimental results and analysis

1) Experiment I, Analysis of confidence weight: We se-
lected five values that were uniformly distributed in the interval
from O to 1: 0, 0.3, 0.5, 0.7, and 1. The experiments were
repeated five times for each confidence weight while keeping
the other parameters consistent.

Fig. [3| shows the semantic segmentation mloU results of
the FALSE model on the ISPRS Potsdam, CVPR DGLC, and
Xiangtan datasets with five different confidence weights. The
model performed best when fully trusting the possible FNS
obtained by the model’s FSD (o = 1). Compared with the
original SSCL model, FALSE improves the mloU by 0.72%
on the ISPRS Potsdam dataset, 0.8% on the CVPR DGLC
dataset, and 0.56% on the Xiangtan dataset. Moreover, when
the model partially trusted the possible FNS obtained from
the model’s FSD (0 < a < 1), the semantic segmentation
performance became less stable. Considering that a confidence
weight between 0 and 1 reduces the contribution of possible
FNS to both positive and negative sample terms of the FNCC
loss function, this phenomenon implies that the possible FNS
(including FNS and MD-HNS) affects the stability of the
semantic segmentation performance of the FALSE model.

TABLE [l - TABLE [[V] show the IoU of the FALSE model
for various types of ground objects on the three datasets with
five different confidence weights. Compared with five different
confidence weight models, the FALSE model with confidence
weight is 1 achieved the best mloU for 5 of all 6 types of
ground features on the Potsdam dataset, the best mloU for 3
and the second-ranked mloU for 3 of all 7 types of ground
features on the DGLC dataset, the best mloU for 4 and the
second-ranked mloU for 3 of all 8 types of ground features



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

on the Xiangtan dataset.
TABLE V
SEMANTIC SEGMENTATION RESULT OF 4 DIFFERENT TYPES OF POSITIVE
AND NEGATIVE SAMPLE CONSTRUCTION STRATEGIES SSL. MODELS

Method ISPRS Potsdam CVPR DGLC Xiangtan
OA mloU mAcc OA mloU mAcc OA mloU mAcc
SimCLR  59.63 42.03 54.26 81.10 60.49 70.41 79.20 35.41 41.25
PCL 60.22 4225 54.20 77.36 54.09 62.56 77.85 35.49 41.55
Barlow twins 60.03 41.87 54.06 66.71 32.45 39.28 77.57 33.49 39.33
FALSE(ours) 60.46 42.75 54.77 81.47 61.29 71.43 79.64 35.97 41.60

2) Experiment II, Comparison of 4 types of SSCL models
for semantic segmentation: TABLE [V] shows the semantic
segmentation results of the four different types of positive
and negative sample construction strategy SSL models on the
ISPRS Potsdam, CVPR DGLC, and Xiangtan datasets. The
FALSE model achieves the best semantic segmentation results
on these three datasets. Its Overall Accuracy (OA), mean
Intersection-over-Union (mloU), and mean class Accuracy
(mAcc) outperform SimCLR, which represent the original
SSCL model; PCL, which represents the SSCL model that
joins clusters; and the Barlow twins, which represent the SSL

model Withﬁl}t cgnstructin negative samples.
. ONCLUSION AND FUTURE WORK

In this letter, we proposed the false negative sample aware
contrastive learning model (FALSE) for the semantic seg-
mentation of high-resolution RSIs. Under the restriction that
self-supervised pretrained FNS are theoretically undecidable,
the FALSE model achieves approximate determination of
the FNS by coarse determination and precise calibration of
FNS and quantitatively characterizes the ability of FNS self-
determination (FSD) using confidence weights. Experiments
on three RSI semantic segmentation datasets showed that
FALSE effectively alleviates the SCE caused by SCI in
the original SSCL of RSI. Compared with SimCLR, which
represents the original SSCL model; PCL, which represents
the SSCL model that joins clusters; and the Barlow twins,
which represent the SSL model without constructing negative
samples, FALSE improves mloU by 0.7% on average on
ISPRS Potsdam, improves mloU by 12.28% on average on
DGLC CVPR2018, and improves mloU by 1.17% on average
on Xiangtan.

The current method is only a simple implementation of the
model’s FSD, introducing manually set confidence weights.
Through the experiment, we found that the confidence weight
corresponding to the best segmentation accuracy of different
ground objects is not the same, so how to adjust the confidence
weight adaptively for different ground objects in the dataset
and give full play to the model’s ability of FSD is a further

issue to be considered 1?{]%}%% lglggréiEgor the FALSE model.
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