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SSN: Stockwell Scattering Network for SAR Image
Change Detection

Gong Chen, Yanan Zhao, Yi Wang and Kim-Hui Yap

Abstract—Recently, synthetic aperture radar (SAR) image
change detection has become an interesting yet challenging
direction due to the presence of speckle noise. Although both
traditional and modern learning-driven methods attempted to
overcome this challenge, deep convolutional neural networks
(DCNNs)-based methods are still hindered by the lack of in-
terpretability and the requirement of large computation power.
To overcome this drawback, wavelet scattering network (WSN)
and Fourier scattering network (FSN) are proposed. Combining
respective merits of WSN and FSN, we propose Stockwell
scattering network (SSN) based on Stockwell transform which
is widely applied against noisy signals and shows advantageous
characteristics in speckle reduction. The proposed SSN provides
noise-resilient feature representation and obtains state-of-art
performance in SAR image change detection as well as high
computational efficiency. Experimental results on three real SAR
image datasets demonstrate the effectiveness of the proposed
method.

Index Terms—Stockwell scattering network, image change
detection, noise-robust, low computation power.

I. INTRODUCTION

THE past decade has witnessed a widespread growth
of interest in image change detection [1] due to its

innumerable applications in diverse disciplines including video
surveillance [2], medical diagnosis [3], and remote sensing
[4], [5], in which change detection in synthetic aperture radar
(SAR) has attracted increasing attention in remote sensing
communities [6], [7]. However, change detection using SAR
images is still a challenging task due to the existence of
speckle noise [8]. Therefore, it is essential to develop a robust
change detection technique against the speckle noise.

Some pioneering efforts have been made to tackle this
issue. Traditionally, the popular methods usually generate a
difference image (DI) by comparing multi-temporal images
and further analyze the DI to obtain the change map [9],
[10]. Although some pixel-wise changed information can be
captured, it is hard for these methods to exploit the rich feature
representations from the original data adaptively. Recently,
with the remarkable revolution of deep neural networks, un-
precedented performance gains of sensing image change detec-
tion methods have been obtained. Wang et al. [11] presented
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a general end-to-end convolutional neural network (CNN)
framework for image change detection. Li et al. [12] proposed
a well-designed CNN to learn the spatial characteristics from
original images. Gao et al. [13] investigated the application of
CWNNs in the sea ice change detection, in which the wavelet
constrained pooling layer plays an essential role to suppress
the speckle noise.

The above mentioned deep convolutional neural networks
(DCNNs)-based methods have achieved great success by ex-
ploiting deep feature representations. However, future devel-
opment and practical deployment of those methods is hindered
by the lack of interpretability and the requirement for massive
amounts of training data to deliver the promised perfor-
mance. To address this issue, the wavelet scattering network
(WSN) has been proposed [14]. WSN inherits the hierarchical
structure of DCNNs, but replace data-driven linear filters
with predefined fixed multi-scale wavelet filters. WSN has
attracted enormous attention both theoretically and practically.
In theory, WSN provides a mathematical understanding of
DCNNs [15] as well as noise-resilient feature representations
[16]. In practice, it offers the state-of-the-art performance
in various classification tasks, including handwritten digit
recognition [16], texture discrimination [17], hyperspectral
image classification [18] , especially when the training size
is small.

However, WSN suffers from a major drawback due to
that of wavelet transform: it might not achieve a remarkable
performance as expectation because of the rigid multi-scale
or algebraic structure as well as the difficulty of choosing
appropriate wavelet functions. To solve this problem, Fourier
scattering network was proposed by replacing the wavelet
basis functions with Gabor ones [19] which is consistent with
simple cells in the mammalian visual cortex biologically and
learned filters in neural networks [20], and Fourier scattering
network (FSN) outperforms WSN in some applications, such
as hyperspectral image classification [21]. Although FSN over-
comes the drawback of WSN by using Gabor functions instead
of wavelets, it also loses the property of multi-resolution. A
natural idea is: why not combine respective merits of FSN
and WSN together? A simple solution is to use Stockwell
transform to construct the Stockwell scattering network (SSN),
since Stockwell transform essentially bridges the gap between
short-time Fourier transform and wavelet transform with the
multi-resolution in the frequency domain, and it is useful
for SAR image despeckling [22]. Besides, SSN inherits the
architecture of scattering network which has the property of
noise robustness [14], [16]. Therefore, the objective of this
paper is to develop Stockwell scattering network based on
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Stockwell transform for SAR image change detection. The
main contributions of the paper are listed as follows:
1) We propose the Stockwell scattering network based on

three-parameter Stockwell transform, which combines re-
spective advantages of WSN and FSN. SSN provides noise-
resilient feature representation and has more flexibility
compared with that of WSN and FSN, so that it suppresses
speckle noise more efficiently.

2) To the best of our knowledge, we are the first to introduce
SSN into SAR change detection problem. Theoretically,
scattering network only requires a small amount of real
data obtained in engineering senarios for training. By using
the pixel-wise combination framework instead of patches
centered at the pixel for training, there is only two images
needed for feature extraction in SSN, which is meaningful
for decreasing the running costs and computation burden.

3) Experimental results on three real SAR datasets validate the
effectiveness of our proposed Stockwell scattering network
for SAR image change detection and promising results are
observed.

II. PROPOSED METHOD OF STOCKWELL SCATTERING
NETWORK FOR SAR IMAGES CHANGE DETECTION

In this section, we will introduce Stockwell transform at
first, and then we will illustrate how to construct Stockwell
scattering network by means of Stockwell transform. Finally,
we will further discuss the framework of Stockwell scattering
network for SAR images change detection.

A. Overview of Stockwell transform

The stockwell transform is proposed by Stockwell et al.
[23] to overcome disadvantages of wavelet transform in the
choice of wavelets and rigid multi-scale resolution by a hybrid
of wavelet transform (WT) and short-time Fourier transform
(STFT) with fixed resolution. For the signal h(t) ∈ L2(Rd),
the Stockwell transform (ST) is defined as

S(t, f) = < h(τ), ωt,f (τ) > =

∫
R
h(τ)ω∗t,f (τ)dτ (1)

where the transform kernel is expressed as

ωt,f (τ) = ω(t− τ, f)ej2πf(t−τ) (2)

and ω(t− τ, f) is a window function and is generally chosen
to be a positive and Gaussian function:

ω(t− τ, f) =
|f |√
2π
e−

((t−τ)f)2
2 . (3)

Using the definition of convolution, (1) can be also expressed
as

S(t, f) = h(t) ∗ ωt,f (t). (4)

Moreover, to improve the time-frequency resolution of ST,
the window function can be modified as the three parameters
window function in three parameters ST (TPST) [24]:

ωΛ(t− τ, f) = ωk,b,c(t− τ, f)

=
|kf b + c|√

2π
e−

(t−τ)2(kfb+c)2

2

(5)

where Λ = (k, b, c) is a parameter set, in which k, b and
c are adjustable parameters, k determines the mode of the
window width, b adjusts the changing rate of the window width
and c controls the tradeoff between the ST and STFT. It is
noticed that if k = 1/a, b = 1, c = 0 (a represents the value
of scale), then the TPST reduces to WT, and if k = 0 and
c 6= 0, then TPST reduces to STFT. In order to deal with
multi-dimensional signal h(t) ∈ L2(Rd), multi-dimensional
Stockwell transform with improved window function ωΛ(t, f)
is further defined as

S(t, f) =

∫
Rd
h(τ)ω∗Λ,f (τ)dτ = h(t) ∗ ωΛ,f (t)

=

∫
Rd
h(τ)ωΛ(t− τ, f)e−j2πf

T (t−τ)dτ

(6)

where

ωΛ(t− τ, f) =

d∏
i=1

(
|kf bi + c|√

2π
e−

(ti−τi)
2(kfbi +c)

2

2

)
(7)

B. Stockwell scattering network

In this section, we are going to construct Stockwell scatter-
ing network (SSN) by iterating Stockwell scattering transform
which computes noise-robust representation from Stockwell
transform followed by non-linear modulus operator.

For a signal h(t) ∈ L2(Rd), Stockwell scattering transform
computes ST-modulus coefficients, dubbed Stockwell scatter-
ing propagation coefficients, by iterating Stockwell transforms
and modulus operators. In high dimensional data analysis,
it often needs to distinguish data variations along different
orientation by introducing directional kernels into the ST
in (6). Denote G a finite rotation group with elements rn,
n ∈ {1, 2, ..., N}. It was illustrated in [14] that if d is even,
then G is a subgroup of the special orthogonal group SO(d);
if d is odd, then G is a subgroup of the orthogonal group
O(d). In particular, for 2-D case, rn is a 2-by-2 rotation matrix
rn ,

(
cos θn − sin θn
sin θn cos θn

)
with θn = 2πn

N . Directional kernels are
derived by rotating the window ωΛ(t, f) along angle rn ∈ G
and modulating it with e−j2πf

Trnt:

ωΛ,f,rn = ωΛ(rnt, f)e−j2πf
Trnt

= ωΛ(t, r−1
n f)e−j2π(r−1

n f)Tt
(8)

in which ωΛ,f0 = ωΛ(t, f0)e−j2π(f0)Tt, with f0 =
0 corresponding to low frequency, and ωΛ,fp,rn =

ωΛ(t, r−1
n fp)e

−j2π(r−1
n fp)Tt with high frequencies centered at

fp = p, p ∈ N+. By combining (8) and (6), the coarse
approximation and the fine details of h(t) are filtered by ωΛ,f0

and by ωΛ,fp,rn respectively, then Stockwell coefficients can
be computed as following:

S h(t) = {h ∗ ωΛ,f0(t), h ∗ ωΛ,fρ(t)}ρ∈P (9)

where fρ = r−1
n fp and the set P = {ρ = (p, n)| p ∈

N+, n ∈ {1, 2, ...N}}. Then, a Stockwell scattering propagator
S̃ maintains the low-frequency averaging and computes the
modulus of the Stockwell coefficients:

S̃ h(t) = {h ∗ ωΛ,f0(t), |h ∗ ωΛ,fρ(t)|}ρ∈P. (10)
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Fig. 1. Structure of the SSN with m = 3.

For simplicity, the ST-modulus coefficients |h ∗ ωΛ,fρ(t)| are
defined as:

U [ρ]h = |h ∗ ωΛ,fρ(t)| with ρ ∈ P, (11)

and more ST-modulus coefficients can be further computed by
iteration of the Stockwell transform and modulus operators.
For any ordered sequence χ = (ρ1, ρ2, ..., ρm), termed as a
path with a length of m, the Stockwell scattering propagator
for a given signal h(t) along the path χ is defined by cascading
ST-modulus operator:

U [χ]h = U [ρm]U [ρm−1]...U [ρ2]U [ρ1]h

= | ||h ∗ ωΛ,fρ1
| ∗ ωΛ,fρ2

| · · · | ∗ ωΛ,fρm
|

(12)

and when χ = ∅, U [∅]h = h. In order to perform classification,
a Stockwell scattering transform is defined by computing local
descriptors with a low-pass filter ωΛ,f0 :

S[χ]h = U [χ]h ∗ ωΛ,f0

= | ||h ∗ ωΛ,fρ1
| ∗ ωΛ,fρ2

| · · · | ∗ ωΛ,fρm
| ∗ ωΛ,f0

(13)

with S[∅]h = h ∗ ωΛ,f0 . For the path χ = (ρ1, ρ2, ..., ρm),
Stockwell scattering network is constructed by iterating the
scattering propagator W̃ . Fig. 1 shows the architecture of
Stockwell scattering network with three layers. The Stockwell
scattering propagator S̃ is applied to the input signal h(t) to
compute the first layer of ST-modulus coefficients U [ρ1]h and
output its local average S[∅]h. Applying S̃ to all propagated
signals U [χ]h of the m-th layer outputs scattering signals
S[χ]h and computes all propagated signals on the next layer.

C. Classification by Stockwell scattering network for SAR
image change detection

Considering two coregistered SAR images I1 and I2 ob-
tained over the same polar region at different times t1 and t2,
the purpose of SAR images change detection is to produce
a difference image that represents the change information
between t1 and t2. The framework of SSN applied in SAR
image detection is illustrated in Fig. 2.

There are mainly four steps. Firstly, Stockwell scattering
network with finite number of layers is constructed based on
three parameters Stockwell transform. Secondly, two coregis-
tered SAR images I1 and I2 obtained at different time t1 and
t2 are put into the SSN, then Stockwell scattering coefficients

(SSCs) from different layers are obtained, which provides
noise-robust feature representation of the input SAR images
I1 and I2. Cascading SSCs of I1 and I2 from each layer, the
feature vectors are obtained. For each pixel of SAR images,
the corresponding feature vector is composed of the cascade
of SSCs from each layer captured at different time t1 and
t2. Finally, classification is then carried out with a Gaussian
kernel SVM with the input of feature vectors.

In above application process, SSN provides a more efficient
computation compared with CWNNs [13], because there is no
need for SSN to create samples from the imaging procedure
perspective but an essential step for CWNNs to generate large
training samples from original images in order to obtain state-
of-art performance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

To quantitatively evaluate the performance of the proposed
method, we use three public datasets acquired by different
sensors. The first one is the Sulzberger dataset with a size of
256×256 pixels, the second one is the Yellow River dataset
acquired by the Radarsat-2 satellite with size of 291×306
pixels, and the last one is the San Francisco dataset with
a size of 275×400 pixels. Images in last two datasets have
strong speckle noise, which are valuable to demonstrate the
effectiveness of SSN. Both images in the datasets and the
corresponding ground-truth images are shown in Fig. 3. Then
we evaluate the performance of the proposed SSN by means
of six common evaluation metrics [13] in change detection,
including false-positives (FP), false-negatives (FN), overall
error (OE), percentage of correct classification (PCC), and
kappa coefficient (KC) as well as the computation time (CT),
in which PCC and KC are essential evaluation metrics, and the
larger PCC and KC are, the better performance of the method
will obtain.

In order to demonstrate the effectiveness of our pro-
posed SSN, we give a comparison of the SSN and several
well-known methods (e.g., two traditional methods such as
NBRELM [25], NRCR [26], three modern learning-based
methods including PCANet [27], CWNN [13], and DDNet
[28] as well as WSN [16] and FSN [20]). For SSN, WSN and
FSN, we randomly select 6000 single pixels for training on
each dataset (less than 10%), with changed and unchanged
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Fig. 2. Framework of SSN in SAR images detection.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 3. Illustration of the three datasets, first row: Sulzberger dataset, second
row: Yellow River dataset, third row: San Francisco dataset. (a) Image
acquired in March 11, 2011. (b) Image acquired in March 16, 2011. (c) Ground
truth. (d) Image acquired in June 2008. (e) Image acquired in June 2009. (f)
Ground truth. (g) Image acquired in August 10, 2003. (h) Image acquired in
May 16, 2004. (i) Ground truth.
samples equal in number. All the methods except for the
DDNet are implemented on the same engine with the MAT-
LAB to get the fair comparison of the computation time.
DDNet is implemented on the Google Colab platform with
supported GPU, so it should compute faster than being put on
the MATLAB engine with 8G RAM.

B. Results and analysis

The visualized and quantitative evaluation results of change
detection for Sulzberger, Yellow River and San Francisco
datasets are shown in Fig. 4, Fig. 5, Fig. 6, Table I, Table II
and Table III respectively. Fig. 4, Fig. 5 and Fig. 6 show the
change maps of Sulzberger, Yellow River and San Francisco
datasets from different method respectively, in which it is easy
to observe that change detected by SSN are much closer to
the ground truth illustrated in Fig. 3.

In order to compare the performance of different methods
precisely, Table I lists the quantitative evaluation results on
Sulzberger dataset, from which the proposed SSN outperforms
other methods with a PCC of 99.06%. Table II and Table III
give the quantitative evaluation results on the Yellow River
and San Francisco dataset, which shows that PCC and KC
values of SSN are obviously better than that of other methods.
Besides, the proposed SSN uses the pixel vector with SVM
for change detection instead of learning-based patch image
training, which largely decreases the computation time. In

(a) (b) (c)

(e) (f) (g)

( ) (c)(a)(a) (d)

(h)

( ) ((d))( )(c)(b)(b)

Fig. 4. Visualized results of various change detection methods on Sulzberger
dataset. (a) Result by NBRELM [25]. (b) Result by NRCR [26]. (c) Result
by GaborPCANet [27]. (d) Result by CWNN [13]. (e) Result by DDNet [28].
(f) Result by WSN [16]. (g) Result by FSN [20]. (h) Result by SSN.

(a) (b) (c)

(e) (f) (g)

( )

(e)

(c)(b)(a)(a) (d)

(h)

( )

(f)ff

(b) ( )

(g)

(c) ((d))

(h)

Fig. 5. Visualized results of various change detection methods on Yellow
River dataset. (a) Result by NBRELM [25]. (b) Result by NRCR [26]. (c)
Result by GaborPCANet [27]. (d) Result by CWNN [13]. (e) Result by DDNet
[28]. (f) Result by WSN [16]. (g) Result by FSN [20]. (h) Result by the
proposed method.

(a) (b) (c)

(e) (f) (g)

(d)

(h)

Fig. 6. Visualized results of various change detection methods on San
Francisco dataset. (a) Result by NBRELM [25]. (b) Result by NRCR [26].
(c) Result by GaborPCANet [27]. (d) Result by CWNN [13]. (e) Result by
DDNet [28]. (f) Result by WSN [16]. (g) Result by FSN [20]. (h) Result by
the proposed method.

short, the proposed SSN outperforms other methods both
effectively and efficiently.

IV. CONCLUSION

In this letter, we propose Stockwell scattering network
for SAR change detection. Stockwell scattering network is
introduced to extract noise-robust features efficiently. It can
directly extract features from multi-temporal images without
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TABLE I
CHANGE DETECTION RESULTS OF DIFFERENT METHODS ON

THE SULZBERGER DATASET
Methods FP FN OE PCC(%) KC(%) CT

NBRELM [25] 862 356 1218 98.14 94.11 10.1

NRCR [26] 508 574 1082 98.35 94.68 71.7

GaborPCANet [27] 447 543 990 98.49 95.13 2166.4

CWNN [13] 1125 228 1353 97.94 93.53 7405.2

DDNet [28] 754 300 1054 98.39 94.90 286.1∗

WSN [16] 630 82 712 98.91 96.56 38.9

FSN [20] 588 88 676 98.97 96.73 42.3

SSN (Λ = (2.62, 1,−0.98)) 504 109 613 99.06 97.03 35.9
*means the computation is acquired by the google colab platform with

GPU, which is much more powerful than the authors’ engine

TABLE II
CHANGE DETECTION RESULTS OF DIFFERENT METHODS ON

THE YELLOW RIVER II DATASET
Methods FP FN OE PCC(%) KC(%) CT

NBRELM [25] 600 3684 4464 93.99 77.59 8.69

NRCR [26] 2275 2308 4583 93.83 79.15 135.6

GaborPCANet [27] 1885 1581 3466 95.33 84.39 3746.5

CWNN [13] 2076 1198 3274 95.59 85.49 3449.0

DDNet [28] 1290 2215 3505 95.28 83.63 399.4∗

WSN [16] 1757 547 2304 96.90 89.89 68.9

FSN [20] 1187 1012 2199 97.04 90.06 64.3

SSN (Λ = (2.84, 1,−0.89)) 1292 793 2085 97.19 90.66 71.3
*means the computation is acquired by the google colab platform with

GPU, which is much more powerful than the authors’ engine
TABLE III

CHANGE DETECTION RESULTS OF DIFFERENT METHODS ON
THE SAN FRANCISCO DATASET

Methods FP FN OE PCC(%) KC(%) CT

NBRELM [25] 15399 746 16145 85.32 54.29 11.3

NRCR [26] 12329 933 13262 87.94 59.70 176.3

GaborPCANet [27] 390 5271 5661 94.85 72.72 4870.5

CWNN [13] 5996 1199 7195 93.46 74.27 4483.7

DDNet [28] 5576 3545 9121 91.71 64.79 519.2∗

WSN [16] 5351 511 5862 94.67 79.06 89.5

FSN [20] 5951 585 6536 94.06 76.98 83.5

SSN (Λ = (2.84, 1,−0.89)) 4609 396 5005 95.45 81.82 92.7
*means the computation is acquired by the google colab platform with GPU,
which is much more powerful than the authors’ engine

splitting them into numerous patches for learning, which
greatly decreases the computation. The experimental results
on two datasets show that the proposed Stockwell scattering
network can achieve a better performance over several change
detection methods with high effectiveness and low computa-
tion burden.
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