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Abstract— This letter describes a model-based algorithm for
estimating tree height and other bio-physical land parameters
from time series of synthetic aperture radar (SAR) interferomet-
ric coherence and backscatter supported by sparse lidar data.
The random-motion-over-ground model (RMoG) is extended to
time series and revisited to capture the short- and long-term
temporal coherence variability caused by motion of the scatterers
and changes in the soil and canopy backscatter. The proposed
retrieval algorithm estimates first the spatially slow-varying
RMoG model parameters using sparse lidar data, and subse-
quently the spatially fast-varying model parameters such as tree
height. The recently published global Sentinel-1 (S-1) interfero-
metric coherence and backscatter data set and sparse spaceborne
GEDI lidar data are used to illustrate the algorithm. Results
obtained for a small region over Spain show that the temporal
coherence and backscatter time series have the potential to be
used for global, model-based land parameter estimation.

Index Terms— Forestry, radar interferometry, synthetic aper-
ture radar (SAR).

I. INTRODUCTION

SEVERAL current and forthcoming synthetic aperture
radar (SAR) missions are designed to acquire global

data from a narrow orbital tube, effectively delivering dense
time series of polarimetric-interferometric temporal coher-
ence. Examples of such missions are the C-band Sentinel-1
(S-1), the L- and S-band NASA-ISRO (NISAR), and the
L-band ROSE-L, which will provide multiyear coherence and
backscatter time series with weekly or sub-weekly cadence.

Recent works have shown that the S-1 coherence can be
used for parameter estimation [1] and land classification [2].
Most of previous works, however, have used simplified models
of the temporal-volumetric coherence, or have treated the
coherence as a feature in a machine learning or regression
scheme. Here, we propose a three-stage procedure based on
physical models, the random-motion-over-ground (RMoG) [3]
and water cloud (WC) [4] models, to estimate tree height
and other land parameters embedded in these models. The
algorithm takes as main input time series of temporal SAR
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coherence and backscatter, as well as sparse lidar data to
constrain the inverse problem.

The S-1 coherence and backscatter data set published in [5]
and GEDI L2 data are used to assess the parameter estimation.
While results with S-1 are promising, the algorithm will
likely yield better results with low-frequency missions that are
more robust to temporal decorrelation. The physical models
are described in Section II; the data sets are described in
Section III; the algorithm is presented in Section IV; and the
S-1 results and their assessment with GEDI data are discussed
in Section V.

II. PHYSICAL MODELS

A time series of temporal coherence over land can be
modeled by the extended RMoG model that incorporates
the decorrelation caused by motion of the scatterers and by
changes in canopy and soil backscatter intensity between two
interferometric SAR acquisitions [6], [7]. Given two SAR
samples acquired at epochs t1 and t2, the expression of the
RMoG temporal coherence model is

γ (t1, t2) =

√
µ1µ2 γg + γv

√
(µ1 + 1)(µ2 + 1)

(1)

where µ1 and µ2 are the ground-to-volume scattering ratios
that differ due to dielectric changes between t1 and t2, and
γg and γv are the ground-level (g) and vegetation (v) coher-
ences [3], respectively,
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where T = |t2 − t1| is the temporal gap between the two
SAR acquisitions, h is the vegetation height, κ(t) is the
average one-way attenuation coefficient of the vegetation, κ =

[κ(t1)+κ(t2)]/2, θ is the look angle, δ2
v and δ2

g are the ground
and canopy motion rate variances along the radar line-of-sight,
respectively, and hr is a constant reference height for the
vegetation motion rate. Note that the parameters κ(t), µ1(t),
µ2(t), δ2

v(t), and δ2
g(t) change between two SAR acquisitions.

The time dependence of the RMoG coherence is modeled
through T following the assumption of the Brownian motion of
the scatterers [8]. The coherence model (1) with two different
ground-to-volume ratios µ1 and µ2 has been obtained with a
procedure similar to the one followed in [3] by assuming only
soil backscatter changes and ignoring penetration in the soil
with associated decorrelation and phase effects modeled for
instance in [9].
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Fig. 1. Temporal C-band RMoG model coherence. Where applicable, fixed values are λ = 5.6 cm, θ = 37.55◦, T = 6 days, κ = 0.3 dB/m, h = 10 m,
δg = 0 m/

√
day, δv = 0.2 cm/

√
day, hr = 10 m, and µ1 = µ2. In the middle and right plots, µ varies between −6.4 and −27.7 dB.

The interferometric coherence γ (t1, t2) can be linked to
backscatter time series σ(t) modeled by the WC model [4]
by deriving the ground-to-volume ratio µ(t)

σ (t) = σg(t) K (t) + σv(t)[1 − K (t)] (4)

µ(t) =
σg(t) K (t)

σv(t)[1 − K (t)]
=

σg(t)
σv(t)

[
e2κ(t)h/ cos θ − 1

] (5)

where σg(t) and σv(t) are the time-varying soil and vegetation
backscatter coefficients, respectively, and K (t) = e−2κ(t)h/ cos θ

is the time-varying transmission coefficient.

A. Model Sensitivity Analysis and Long-Term Coherence
Fig. 1 shows the C-band temporal coherence when backscat-

ter changes are neglected (µ1 = µ2) and therefore the sensitiv-
ity of the coherence to tree height is caused only by differential
motion (δv − δg > 0). Considering a 10-m-tall tree as an
example, 0.2 cm/

√
day canopy motion rate standard deviation,

κ = 0.3 dB/m, the six-day coherence reduces up to 0.7. Due to
the low penetration depth at shorter wavelengths, the C-band
coherence compared to lower radar frequencies tends to be
more sensitive to tree height when the vegetation is short,
less dense, and sparse (i.e., with gaps). Both time interval and
differential motion affect the coherence significantly, whereas
the extinction coefficient has less impact, specially for κ values
greater than 0.2 dB/m. At C-band, typical values of κ ranges
between 0 and 2 dB/m [10], whereas δv can fluctuate between
0 and 1 cm/

√
day.

The RMoG model provides a physical interpretation for the
long-term coherence γ∞ included in existing semi-empirical
coherence models (referred to as ρLT in [2] and ρ∞ in [5]),
γ (t) = (1 − γ∞)e−t/τ

+ γ∞, where τ is a time constant that
controls the decay of the coherence over time t . When δg =

0 m/
√

day and T → ∞, the RMoG model coherence becomes

γ∞ =

√
µ1µ2

√
(µ1 + 1)(µ2 + 1)

. (6)

The value of γ∞ is illustrated as a horizontal asymptote in
Fig. 1. For long time intervals within a predefined time frame
(e.g., a season), the coherence approaches a value that depends
on the ground-to-volume scattering ratios evaluated within the
time frame. Assuming temporal decorrelation caused only by
scatterers motion (µ1 = µ2), a value of γ∞ of 0.2 leads
to a value of µ of about −6 dB. Smaller values of γ∞ are
associated with smaller values of µ because the ground is less
visible to microwaves and the canopy layer decorrelates faster
than the ground over long time intervals.

III. DESCRIPTION OF THE DATASET

A. S-1 Coherence and Backscatter Data

A recent effort funded by the NASA Jet Propulsion Labo-
ratory generated a global backscatter and coherence data set
from about 205 000 S-1 single-look-complex frames acquired
between 1 December 2019, and 30 November 2020 [5].
Consistent six-day repeat coverage with about 60 image pairs
from either ascending or descending orbits are available over
Europe, the coastal areas of Greenland and Antarctica, and
some smaller areas around the world. A consistent coverage
with 12-day repeat-pass imagery, instead, can be observed
almost globally. All coherence, backscatter, and supporting
layers are available as GeoTIFF tiles to a fixed 1◦

× 1◦ grid
with a pixel spacing of three arcsecs. Coherence is calculated
as the median across all co-polar coherence estimates of a
given repeat interval (6, 12, 18, 24, 36, and 48) and from four
seasonal three-month periods: 1) December/January/February;
2) March/April/May; 3) June/July/August; and 4) Septem-
ber/October/November. Coherence is estimated with a spa-
tially adaptive multilooking window size to mitigate the esti-
mation bias [5]. Backscatter is distributed as a seasonal aver-
age for the co- and cross-polar channels. The data set contains
also γ∞ and τ estimated by fitting an exponential decay
model, γt (t) = (1 − γ∞)e−t/τ

+ γ∞ [2], to seasonal coherence
samples with increasing repeat intervals. Fig. 2 shows the
Fall S-1 coherence for six time intervals, backscatter, long-
term coherence, and incidence angle for a region in Spain.
Vegetation in our test site is dominated by Aleppo pine (Pinus
halepensis) and Austrian pine (Pinus nigra), partially mixed
with Scots pine (Pinus sylvestris) and oak (Quercus ilex).
According to the ESA’s CCI Biomass Map (2018, v3), the
mean biomass is 41.90 Mg/ha with values up to 100 Mg/ha.
Vegetation type is partly accounted for in (1) by κ and µ.
Topographic variations are predominant for about half of the
image, with local incidence angle varying mostly between 20◦

and 50◦. Topography is modeled in (1) via µ.

B. Other Ancillary Data

Other data sets included in this study are the ESA World
Cover Map (WCM), GEDI L2A/L3 data [11], and the
global ecoregion map derived from the WWF ecoregion map.
The 2021 ESA WCM is distributed as 3◦

× 3◦ tiles, 2651 in
total, 10-m resolution, and is based on both S-1 and S-2 data.
Each tile is provided in EPSG:4326 projection and consists
of two CO-GeoTIFF files, a land cover map with 11 classes
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Fig. 2. S-1-derived layers [5], and GEDI and WCM data described in Section III for a region in Spain (lon: 0◦–0.2◦; lat: 40.7◦–41◦). This study includes
the following WCM classes: trees (10), shrubs (20), grass (30), crops (40), and bare/sparse vegetation (60). (a) Fall COH 06 (-). (b) Fall COH 12 (-). (c) Fall
COH 18 (-). (d) Fall COH 24 (-). (e) Fall COH 36 (-). (f) Fall COH 48 (-). (g) Backscatter σVV (dB). (h) Inc angle θ (◦). (i) Fall γ∞ (-). (j) GEDI L2A
height (m). (k) GEDI L3 height (m). (l) ESA WCM.

and quality indicators of the S-1 and S-2 input data. The
GEDI Level 3 gridded Land Surface Metrics [11] provides
15 data files in GeoTIFF format delivered in EPSG:6933
projection. Spatial resolution is 1 km, GEDI coverage is +52◦,
−52◦ latitude, whereas temporal coverage is from 18 April
2019 to 4 August 2021. The GEDI L2A product contains
elevation, RH100 canopy height and surface energy metrics
extracted from reflected waveforms within each laser footprint,
and it is sampled at 25-m resolution. In this study, all products
are resampled to the S-1 data set resolution (3 arcsecs) using
the Nearest Neighbor method, as shown in Fig. 2(j)–(l).

IV. MODEL-BASED RETRIEVAL ALGORITHM

The coherence model (1) contains three structural param-
eters (tree height h, mean extinction κ , and ground-to-
volume scattering ratio µ1) and three dynamic parameters
causing temporal decorrelation (ground motion std-dev rate δg ,
canopy motion std-dev rate δv , and ground-to-volume scatter-
ing ratio µ2) for a single coherence observation. Estimating all
model parameters from multiple single-polarimetric coherence
observations requires assumptions to avoid an ill-posed inverse
problem. While it is difficult to select a priori values for the
model parameters, we recommend the following strategy based
on different assumptions and approaches tested with S-1 data.
To reduce the number of model parameters, zero decorrelation
due to soil/vegetation backscatter changes (µ1 = µ2) and zero
ground-level motion (δg = 0 m/

√
day) are assumed, which

leaves h, κ , δv , and µ as unknown model parameters. While the
assumption of zero ground-level temporal decorrelation may
seem unrealistic, this decorrelation source is partially (and sub-
optimally) accounted for by δv , which will then represent an

Fig. 3. Model-based estimation algorithm described in Section IV.

aggregated motion-induced decorrelation parameter. Assuming
µ1 = µ2 allows ground and vegetation backscatter coefficients
to change by the same amount; in addition, a model analysis
indicates a small level of decorrelation when µ1 ̸= µ2. The
idea for estimating these four parameters is to use sparse
lidar data in conjunction with SAR coherence to estimate
the spatially slow-varying model parameters (κ and δv), and
then use coherence samples at multiple intervals to estimate
the spatially fast-varying model parameters for each S-1
pixel (µ and h). The rationale behind choosing κ and δv as
parameters that vary slowly across the image is that they are
impacted to a large extent by weather conditions (e.g., rainfall,
wind), which are expected to affect similarly adjacent pixels.
The parameter estimation procedure can be broken into three
stages as illustrated in Fig. 3.

A. Three-Stage Parameter Estimation Algorithm

Parameter estimation (see Fig. 3) starts with the estimation
of the ground-to-volume ratio µ for each coherence sample
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Fig. 4. Results of the estimation algorithm applied to model simulations. The
striped pattern indicates unreliable tree height estimation (NRMSD > 20%)
for the associated values of the input parameters.

via inversion of (6) (stage-1). The long-term coherence γ∞ is
considered as an input to the algorithm because it is already
available in the coherence data set [5], but it can be estimated
from the coherence time series as described in [5] if not
available. The next step in stage-1 is the estimation of the
spatially constant extinction coefficient κ (as well as σg and
σv , which can be ignored) by fitting the WC model using total
backscatter and sparse footprint-level lidar samples. In stage-
2, the RMoG model is fit to estimate δv using tree height from
sparse lidar footprint-level data, coherence samples for all
time intervals over the lidar footprints, and ground-to-volume
ratio µ and fixed κ found in stage-1. Sparse and spatially
slow-varying δv estimates are spatially interpolated across the
study site or eco-region to generate a continuous map of δv .
Finally, in stage-3 tree height h for each coherence sample is
obtained by performing a second RMoG model fitting using as
inputs the coherence time series, the spatially varying δv and µ

calculated in stage-2 and stage-1, respectively, and the fixed
extinction coefficient κ calculated in stage-1. The algorithm
can be applied separately within each eco-region or land-cover
class as the values of the spatially constant κ parameter may
change depending on land cover and vegetation characteristics.

B. Estimation Performance Assessment With Simulated Data

Prior to working with real data, the simplified model inver-
sion was tested with RMoG model simulations to verify the
correct algorithm implementation and assess the performance
of the inversion algorithm independently of error sources. Sim-
ulated data were generated with tree height ranging from 0 to
80 m, δv ranging from 0 to 1 cm/

√
day, κ ranging from 0 to

2 dB/m, and µ fixed at −8 dB. Ten simulations for each
set of parameters were conducted, and the result of the
fitting was statistically analyzed across the simulation set
to calculate the estimation performance. Fig. 4 shows the
normalized rms difference (NRMSD) computed between input
and estimated tree height for κ equal 0.4 and 1.4 dB/m.
A threshold on the NRMSD (<20%) is applied to establish
a validity range of values for the RMoG parameters that
lead to correct model inversion. The analysis revealed that
height estimation is always achievable for very small values of
extinction coefficient (less than 0.4 dB/m), and it worsens for
increasing κ and δv values. When κ approaches 1 dB/m, height
retrieval is reliable for δv less than 0.3 cm/

√
day and height

values less than 40 m. Although not shown here, the other
model parameters were estimated with similar performance.

Fig. 5. Results of the model-based parameter estimation procedure of Fig. 3
applied to S-1 and GEDI data shown in Fig. 2. Size of GEDI samples
is exaggerated for visualization purposes. (a) µ (dB). (b) δV (cm/

√
day).

(c) h (m) (90 m). (d) h (m) (1 km). (e) GEDI L2A-h (m). (f) GEDI L3-h (m).

V. APPLICATION TO S-1 DATA

The algorithm of Fig. 3 was applied to S-1 coherence and
backscatter data distributed in [5]. We selected a site in Spain
(lon: 0◦–0.2◦; lat: 40.7◦–41◦) characterized by a Mediterranean
biome with prevalence of tree cover class (79.5%). Trees are
about 10 m high according to GEDI L2 data, with a standard
deviation of 3.5 m and ranging between 0 and 20 m. Data in
the Fall season were chosen because coherence appeared to
be higher than the other seasons.

Fig. 5(a)–(c) shows the output µ, δv , and h of the algorithm
applied to the input data of Fig. 2. The ground-to-volume ratio
in Fig. 5(a) was derived by inverting (6) using γ∞ of Fig. 2(i).
As expected, µ reveals spatial heterogeneity linked to the land
cover and vegetation characteristics, as well as terrain slope.
This can be seen by comparing µ with Fig. 2(h) and (l). In the
second step of stage-1 of the algorithm, the WC model is
fit to backscatter data binned according to GEDI L2 canopy
height sampled at 1 m intervals. The results of the WC model
fitting are shown in Fig. 6. The extinction coefficients were
found equal to κ = 0.34 and 0.35 dB/m for the VV and VH
polarizations, respectively.

In stage-2, δv was estimated from the RMoG model fitting
over the GEDI locations. The results are shown in Fig. 5(b).
The map of sparse δv samples shows values ranging between
0 and 0.5 cm

√
day, for which the estimation algorithm is

expected to perform well according to our simulations of Fig. 4
and given the value of κ = 0.35 dB/m. In stage-3, the S-1
coherence time series (six maps; samples with coherence less
than 0.3 are ignored), µ, κ , and the spatially interpolated map
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Fig. 6. WC model fit (left), S-1 Fall coherence with RMoG model fit (middle), and residuals of h estimated from S-1 (right).

of δv were given as inputs to the RMoG model fitting to esti-
mate h. The results are shown in Fig. 5(c) and (d) for 90-m and
1-km posting, respectively. The middle plot in Fig. 6 illustrates
the quality of the stage-3 model fitting as a function of the
S-1 time gap and for increasing GEDI height intervals. Dots
are the median coherences for a given time interval further
averaged within increasing GEDI height ranges. Dashed lines
show the RMoG model fit. The overestimation of coherence
for long repeat intervals is likely due to the way κ and µ are
estimated, in addition to possible bias in the estimation of δv .

Fig. 5(e) and (f) shows the difference between GEDI L2
data and h, and GEDI L3 data and h, respectively. While h
matches the GEDI L2 height with sub-meter accuracy, the
difference between GEDI L3 height and h appears small in
the upper portion of the image and larger toward the bottom of
the image where severe topography and taller trees occur. This
spatial pattern of the error can also be ascribed to inaccuracies
in the δv interpolation method and to the low resolution of
the GEDI L3 map. The comparison of the S-1-derived tree
height against the GEDI L3 canopy top height map reveals
a general acceptable agreement with residuals stratified by
canopy height shown in Fig. 6 (bottom). As a consequence of
the slight mismatch between modeled and observed coherence,
trees taller than 10–15 m tend to be underestimated whereas
sparse/short vegetation is overestimated with respect to GEDI
L3 data assumed here as a reference. The average RMSD of
the estimated h is 2.83 m with a mean difference of 1.13 m.

VI. CONCLUSION

Estimating land parameters, such as tree height, from coher-
ence time series is relevant to SAR missions like NISAR
and ROSE-L that will generate global and dense time series
of interferometric temporal coherence at L-band. This letter
emphasizes the use of physical models that could complement
or enhance alternative approaches based on machine learning
or statistical regression. Results from S-1 data are promising,
although a full assessment would require a global analysis.
Several refinements can be devised to improve parameter
retrieval, e.g., by relaxing some of the model assumptions,
or by adopting a multiseasonal approach. We used the median
seasonal coherence distributed in [5], but using the coherence
that minimizes temporal decorrelation while maximizing the

coherence contrast in the time series will likely yield better
results. Also, changes in µ and ground-level decorrelation
have been ignored causing δv to likely absorb partially or
sub-optimally these decorrelation sources. More model param-
eters may be estimated by incorporating additional data sets
such as moisture maps and wind measurements from other
sensors.
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