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Approximation of radiative transfer for surface
spectral features

Frédéric Schmidt

Abstract—Remote sensing hyperspectral and more generally
spectral instruments are common tools to decipher surface
features in Earth and Planetary science. While linear mixture
is the most common approximation for compounds detection
(mineral, water, ice, etc...), the transfer of light in surface and
atmospheric medium are highly non-linear. The exact simulation
of non-linearities can be estimated at very high numerical cost.
Here I propose a very simple non-linear form (that includes the
regular linear area mixture) of radiative transfer to approximate
surface spectral feature. I demonstrate that this analytical form
is able to approximate the grain size and intimate mixture
dependence of surface features. In addition, the same analytical
form can approximate the effect of Martian mineral aerosols.
Unfortunately, Earth aerosols are more complex (water droplet,
water ice, soot,...) and are not expected to follow the same trend.

Index Terms—Non-linear, Hyperspectral, Unmixing, Grain
size, Intimate Mixture, Aerosols Scattering, Radiative Transfer

I. INTRODUCTION

RREMOTE sensing hyperspectral images and spectral data
are highly valuable to decipher surface’s characteristics,

such as composition but also grain size, roughness... The
standard approximation for data analysis is the linear mixing.
This approximation has been used to propose algorithms
to estimate abundances, knowing the endmembers (usually
laboratory of pure chemical compounds), incorporating several
level of complexity, such as positivity constraint [1], sparsity
[2], endmember variability [3]... Also this approximation can
be used in a non-supervised manner, leading to other class of
algorithm such as principal/independent component analysis
[4], blind source separation [5],... This type of approach has
been reviewed in [6]. Adding non-linear complexity is often
out of scope of such algorithms due to overwhelm complexity.
More recently, some non-linearities have been included in the
data analysis in bilinear form [7], using kernels [2]... This
type of model has been reviewed in [8], [9]. Unfortunately,
the full non-linearities are only tractable using bayesian Monte
Carlo inversion approach such as in [10], [11], [12]. The latter
class of method is very powerful but is impossible to apply
on large spectral data, especially when the endmembers are
not known beforehand. The standard data analysis is thus two
step : first, performing a relatively fast algorithm to identify the
compounds, second a robust algorithm to quantify the surface
properties.
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91405, Orsay, France, France e-mail: (see frederic.schmidt@univerite-paris-
saclay.fr

F. Schmidt is with Institut Universitaire de France (IUF)
Manuscript submitted October 21, 2022

In the spirit of [3] who proposed a simplification of Hapke’s
theory [13], here I propose a new approximation of radiative
transfer in soil and martian atmosphere in order to mimic
non-linear effect of light propagation in complex media. This
formulation shall be used to define a new generation of algo-
rithms.Please note that the Hapke’s work [13] and Shkuratov
model [14] are only valid in geometrical optic approximation,
i.e. : for grain size larger than wavelength.

A. Method

The standard mixing model used for spectra data analysis
is the linear mixture of spectra :

Y =

N∑
i=1

Ai.Si (1)

With Y the simulation spectra, Si the collection N spectra,
referred as spectral database, Ai the mixing coefficient, and
Nj the number of spectral bands.

In order to easily mimic the effect of the main non-linear
effect: grain size, intimate mixture and aerosols, I propose to
add an alteration in form of:

Y =

N∑
i=1

Ai.Si
α + β (2)

with α > 0 an exponent that model the change in band depth
and β a constant that model the brightness level change. Si

α

do not represents a matrix exponentiation but a single value
operation on each element of Si. If the grain size/aerosols are
not homogeneous in the scene, α and β may change spatially.

In order to validate the ability of this simple model to
reproduce non-linear effect, we compare it with non-linear
simulation such as in [15]. The effect of grain size is simulated
using the Shkuratov model [14], assuming a refractive index of
1.7, a porosity of 20 % and a grain size φ. We first estimate the
imaginary part of the optical constant κ and then regenerate
a synthetic spectra with a new grain size φ ∗ fact. The grain
size factor fact varies from 10−3 to 103. In case of granular
mixture, we tested proportion of 100%, 99.9%, 99%, 90%,
66%, 50% and their complementary part (called prop). We
used the same 26 mineral spectra as in [15].

The effect of aerosols is simulated using a parametrization
of optical thickness and single scattering albedo [16] using
DISORT to solve the radiative transfer equation [17], [18].
We tested 8 Aerosols Optical Thickness (AOT) at 1 µm from
0.01 to 20 in log space.

A simple Nelder-Mead simplex minimization [19], [20] has
been implemented to estimate A (only in the case of mixture),
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α and β that minimizes the RMS between the non-linear
radiative transfer YRT and the approximation Y spectra :

RMS =

√
1

Nj

∑
(YRT −Y)2 (3)

B. Results
Except for few spectra with significant saturation, for all

experiment using 26 different minerals with all fact, granular
mixture, and aerosols scattering demonstrates, we found RMS
> 10−2, justifying the approximation.

1) Grain size and granular mixture: Figure 1 shows the
cases for non-linear granular radiative transfer simulation and
approximation using Eq. 2 for a gypsum spectra as an example.
A value of α < 1 is coherent with absorption bands that are
weaker and occurs for smaller grain size. Whereas, a value
of α > 1 is coherent with absorption bands that are stronger,
toward saturation and occurs for larger grain size. The level
correction β = 0 for smaller grain size, but β is positive and
increases with larger grain size.

Figure 2 shows an example of granular mixture of gypsum
and smectite. Again the spectral trend is well-fitted in this
approximation (see for instance the 1.9 µm absorption band
shape change). The abundances retrieved could significantly
differ from the actual one but the trend is coherent. Coefficients
α are also coherent with precedent finding. The level correc-
tion β depends on relative brightness of both pure spectrum.

Figure 3 summarizes the results of all experiments. The
trends from Fig. 1 seem valid for all the 26 minerals when
considering grain size change only (in blue). Unfortunately, the
non-linearities are more complex in a case of granular mixture
and there is no general trend neither for α, nor β. Nevertheless,
the RMS is lower than 10−2 for 98% of the cases (maximum
4.1×10−2) demonstrating that the approximation is valid in a
very large range of minerals, grain size and granular mixture.

2) Martian aerosols: Fig. 4 shows the cases for non-linear
aerosol scattering radiative transfer simulation and approx-
imation using Eq. 2 for soil made of pure gypsum as an
example. A value of α < 1 is coherent with absorption bands
that are weaker and occurs for aerosols alteration. The level
correction β is negative and decreases with larger AOT as
expected since the pure spectra is brighter than the aerosols
contribution. Again the RMS is lower than 10−2 for 96% of
the cases (maximum at 3.6 × 10−2) demonstrating that the
approximation is valid in a very large range of surface material
and aerosols content for Mars.

Please note that contrarily to Earth, Martian atmospheric gas
absorption can be corrected independently since the aerosols
are confined in the lower layers of the atmosphere [21].
Applying this strategy on Earth is unfortunately more difficult
also because of the high variability of terrestrial aerosols
(water ice, droplet, soot,...). As a perspective, I could propose
to include the spectra of optically thick aerosols in the spectra
endmember library.

II. CONCLUSION

A new non-linear formulation is proposed to approximate
radiative transfer in the surface granular material and in
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fact=1000   : =36.69 =0.03 RMS=2.5e-04
fact=100     : =10.78 =0.03 RMS=1.9e-03
fact=10       : =3.38 =0.02 RMS=2.4e-03
fact=5         : =2.36 =0.02 RMS=3.0e-03
fact=1         : =1 =0 RMS=0.0e+00
fact=1/5      : =0.45 =0 RMS=1.1e-03
fact=1/10    : =0.32 =0 RMS=1.0e-03
fact=1/100  : =0.1 =0 RMS=4.5e-04
fact=1/1000: =0.03 =0 RMS=1.5e-04

Fig. 1. Validation of the approximation of non-linear radiative transfer model
for grain size effect on pure gypsum. Parameter fact indicates the grain size
factor change, for instance 1000 means that the grain size has been multiplied
by 1000 respect to the reference spectrum.
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Granular mix, fact1=10, fact2=0.1

prop=1: ab=0.99 1=3.22 2=230.25 =0.01 RMS=8.6e-05
prop=0.999: ab=0.99 1=3.22 2=63.9 =0.01 RMS=8.7e-05
prop=0.99: ab=0.99 1=3.21 2=40.27 =0.01 RMS=1.5e-04
prop=0.9: ab=0.97 1=3.19 2=26.28 =0.03 RMS=1.3e-03
prop=0.667: ab=0.95 1=2.25 2=1.94 =-0.03 RMS=6.9e-03
prop=0.5: ab=0.75 1=3.1 2=0.22 =0.01 RMS=2.0e-03
prop=0.333: ab=0.62 1=3.05 2=0.24 =0.01 RMS=3.0e-03
prop=0.1: ab=0.3 1=2.91 2=0.27 =0 RMS=4.5e-03
prop=0.01: ab=-0.15 1=0 2=0.26 =-0.01 RMS=3.3e-03
prop=0.001: ab=0 1=1.67 2=0.32 =0 RMS=1.1e-03
prop=0: ab=-0.08 1=0 2=0.29 =0 RMS=2.4e-04

Fig. 2. Validation of the approximation of non-linear radiative transfer model
for granular mixture of smectite (endmember 1) and gypsum (endmember 2).
prop is the imposed proportion and ab is the retrieved abundance using the
approximation. An offset of 0.1 is added for visibility.
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Fig. 3. Evaluation of α and β as a function of grain size factor fact compiling
all results for: (in blue) grain size change of pure material. (in red) alteration
of granular mixture with grain size change. The linear trend on blue points
is log 10(α) = 0.5105 × log 10(fact) + 0.0249. The pearson correlation
coefficient is 0.99957 for 179 points. In order to increase the visibility of each
individual point, a random offset is added along the x axis just for plotting.
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aot=0.22: =0.64 =-0.17 RMS=1.4e-02
aot=0.51: =0.63 =-0.16 RMS=1.2e-02
aot=0.92: =0.62 =-0.16 RMS=9.8e-03
aot=1.61: =0.55 =-0.19 RMS=7.3e-03
aot=2.3: =0.58 =-0.18 RMS=4.0e-03
aot=5: =0.26 =-0.38 RMS=5.5e-03
aot=20: =0.01 =-0.56 RMS=6.7e-03

Fig. 4. Validation of the linear approximation of non-linear radiative transfer
model on Martian aerosols effect on a gypsum spectrum. aot stands for
Aerosols Optical Thickness (τ ) and represents the aerosols quantity in the
atmosphere with an attenuation of e−τ at 1 microns.

Martian aerosols scattering. Using simple fitting procedure, I
demonstrated that this formulation is coherent with the full
non-linear formulation and by construction to linear aerial
mixture. Future algorithms should be based on this new
formulation. Ideally, the methods should be able to estimate
α and β, at the same time as A (and S in case of non-
supervised approach). An application to real Martian data
has been performed [22]. In a case of supervised unmixing,
one could build an extended dictionary from the database of
endmember spectra S by applying several α, using S′ = Sα.
By adapting usual method using sparsity constraint, one should

be able to estimate the abundances A.
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