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Object Detection in Aerial Images
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Abstract—Object detection in aerial images is a fundamental
research topic in the geoscience and remote sensing domain.
However, the advanced approaches on this topic mainly focus on
designing the elaborate backbones or head networks but ignore
neck networks. In this letter, we first underline the importance of
the neck network in object detection from the perspective of infor-
mation bottleneck. Then, to alleviate the information deficiency
problem in the current approaches, we propose a global semantic
network (GSNet), which acts as a bridge from the backbone
network to the head network in a bidirectional global pattern.
Compared to the existing approaches, our model can capture the
rich and enhanced image features with less computational costs.
Besides, we further propose a feature fusion refinement module
(FRM) for different levels of features, which are suffering from
the problem of semantic gap in feature fusion. To demonstrate
the effectiveness and efficiency of our approach, experiments are
carried out on two challenging and representative aerial image
datasets (i.e., DOTA and HRSC2016). Experimental results in
terms of accuracy and complexity validate the superiority of our
method. The code has been open-sourced at GSNet.

Index Terms—Information bottleneck, object detection, remote
sensing scene, aerial image recognition.

I. INTRODUCTION

Object detection in aerial images is one of the most fun-
damental yet challenging research topics in the community of
computer vision. This topic aims at recognizing each object
with a precise bounding box, which is the foundation of some
potential application scenarios. Recently, deep learning based
object detection methods have made dramatic progresses [6],
[29], [37], thanks to the significant development of deep
Convolutional Neural Networks (CNNs) on vision tasks, e.g.,
semantic segmentation [2], [3], scene classification [4].

However, it is challenging for a standard deep CNNs model
to achieve a satisfactory performance, since the ground objects
in aerial images usually have the properties of tiny scale,

This work was supported by the Winter Olympic Science and Technology
Service Project under Grant DA2020001, the National Science Foundation of
China under Grant 62072246, and the Six Talent Peaks Projects of Jiangsu
Province. (Corresponding author: Xuesong Jiang and Qiaolin Ye; Yuchen Shen
and Zhihao Song contributed equally to this work.)

Y. Shen and Z. Song are with the College of Information Science and
Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
E-mail: {shenyuchen, songzhihao}@njfu.edu.cn.

Q. Ye is with the College of Information Science and Technology, Nanjing
Forestry University, Nanjing 210037, Jiangsu, China, and also with Key Lab-
oratory Intelligent Information Processing, Nanjing Xiaozhuang University,
Nanjing 211171, Jiangsu, China. E-mail: yqlcom@njfu.edu.cn.

D. Zhang is with the Department of Computer Science and Engineering,
The Hong Kong University of Science and Technology, Hong Kong, China.
E-mail: dongz@ust.hk.

X. Jiang is with the College of Mechanical and Electronic Engineer-
ing, Nanjing Forestry University, Nanjing 210037, Jiangsu, China. E-mail:
xsjiang @njfu.edu.cn.

Conv: 3x3@256

7

Backbone feature maps Feature maps for the

. head-network
a. Conventional neck network

Backbone feature maps ‘ Feature maps for the

head-network
b. Our proposed Global Semantic Network (GSNet)

Fig. 1. An illustration for the evolution of the neck network. The conventional
neck network (a) is generally based on the coarse accumulation of multiple
convolutions. Contrastively, our proposed GSNet (b) can obtain affluent
backbone feature cues via a global bilateral scanning operation, thus making
the model more suitable for dense prediction tasks.

high density, and intricate background. Especially for some
overlapping and vague scenarios, the probability of an awful
result is greatly increased [4]. In this paper, we emphasize that
if the head network does not change, the reason for the unsat-
isfactory performance is due to the insufficient feature repre-
sentation [3], [6]. The information bottleneck mechanism [26],
which explores the information flow between elements, can
help explain this phenomenon, i.e., the imperfect neck network
may cause some task-related information loss [31], [32]. In
particular, for the non-discriminative one, the information loss
problem is much more significant [1], [26]. To this end,
a large number of progressive approaches are proposed to
alleviate this problem which mainly start from improving
the model information content [31], [33]-[35]. For the first
category of methods, e.g., random shifting [31], and dilated
convolution [33], receptive fields are expanded by adjusting
the down-sampling to acquire global contexts. Methods in
the second category, e.g., AugFPN [34], and PANet [35], use
multiple convolutional layers to fuse multi-scale features, such
that the task-related information can be aggregated.

Although some advanced head networks have also been
proposed, the existing methods ignore the fact that the neck
network potentially plays a pivotal role [20], [21]. As illus-
trated in Figure | (a), the existing neck networks generally
based on the coarse accumulation of multiple convolutions,
which have a limited feature aggregation ability. In this letter,
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Fig. 2. Our proposed overall architecture, where Global Semantic Network (GSNet) and Fusion Refinement Module (FRM) are implemented on each layer
of the backbone feature pyramid. The detailed architectures of GSNet and FRM are shown in (b) and (c), respectively.

we present a Global Semantic Network (GSNet) and a Fusion
Refinement Module (FRM), which are based on the feature
pyramid network [7]. As shown in Figure 1 (b), GSNet
can obtain the rich backbone features via a global bilateral
scanning operation, thus making the model more suitable for
dense prediction tasks. Besides, FRM is an active module
that boosts the model representation by propagating semantic
features, such that the problem of semantic gap between
features at different scales can be alleviated. To demonstrate
the superiority of our model, experiments are implemented on
Fast R-CNN [13] and RetinaNet [14] on two commonly used
datasets (i.e., DOTA [11] and HRSC2016 [12]) for oriented
object detection. Results validate that our GSNet with FRM
can achieve the top performance by 79.37% and 74.49% mAP
for DOTA, 90.50% and 90.47% for HRSC2016.

Our contributions are summed up as 1) we emphasize that
the information bottleneck causes the object detection network
to lose information, which has a great performance damage.
2) we propose GSNet and FRM to reduce the information bot-
tleneck by reconstructing the neck network in a bidirectional
pattern. 3) our model achieves the competitive 79.37% and
90.50% mAP on two challenging aerial image datasets.

II. METHODOLOGY
A. Preliminaries

Considering that the information bottleneck will cause the
loss of the effective input information, while the supervised
recognition model usually expects to retain the features of
the input image as much as possible [1], [26], [31], [34]. To
alleviate the conflict the between information bottleneck and
supervised learning models, we seek to reduce the information
bottleneck to minimize feature loss and enhance the net-
work feature representation ability. The overall architecture is
shown in Figure 2. Concretely, the ImageNet [15] pre-trained

ResNet [5] is adopted as the backbone following [6]. Based
on which, we construct the enhanced feature pyramid via the
proposed GSNet and FRM. The prediction results are finally
obtained based on the enhanced feature representations with
the head network, e.g., Faster R-CNN [13] and RetinaNet [14].

B. Global Semantic Network (GSNet)

Compared to small convolutional layers, a large convolution
kernel convolution can bring large receptive fields [30], [36]
with less computational costs, which is empirically benefi-
cial to dense prediction tasks. The trained classical CNNs
merely identify small discriminative parts with high response,
while the large effective receptive fields help recognize non-
discriminative regions by sensing the high-response environ-
ment around them. Besides, large kernel enables the detection
model to have a tightly connected structure that copes with
different transformations.In other words, features generated
by convolutions with the same kernel have a stronger spatial
correlation and the fully connected layer is not suitable for
localization because of its spatially sensitive nature [9].

Motivated by the above observations, we present a GSNet in
Figure 2 (b) that explicitly reduces feature loss and improves
the model’s positioning ability [36]. First, GSNet uses as large
convolution kernels as possible or even global convolutions to
significantly expand the effective receptive fields. But unlike
many classification networks, GSNet does not have the large
kernel convolutions of k x k directly, which would signifi-
cantly increase the number of parameters. Instead, our GSNet
employs the combined convolutions of 1 x k + k x 1 and k
x 1 + 1 x k. These symmetric and depth-separable combined
convolutions [36] incorporate detailed contextual information
while decreasing the number of parameters and computational
costs, which make it more practical. Besides, GSNet is a fully
convolutional network [8] with only linear operations applied
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in combined convolutions. The global bilateral scanning oper-
ation can be formulated as:

M = Conv (Conv 1D(X)") + Conv(Conv 1D(X))", (1)

where X as the input are the feature maps extracted from
the backbone feature pyramid. Since the localization maps
obtained by the recognition network cannot precisely represent
the boundary of the target object, we refine the bounding box
by modeling the boundary alignment as a residual structure
to boost the accuracy. GSNet is introduced into the feature
pyramid structure, which is closely linked to the feature maps
and trained in an end-to-end manner, making the model more
suitable for dense prediction tasks. Formally,

Y=M+R(M)+X, (2)
R(M) = Conv2D(c(Conv2D(M))), 3)

where R(-) is the residual branch, and o is the ReLU [10]
activation function.

C. Fusion Refinement Module (FRM)

We proposed a novel FRM in Figure 2 (c). Direct addition is
not a reasonable approach for cross-scale fusion since feature
maps from the different scales have semantic information gaps.
Compared to addition, channel-wise concatenation preserves
more feature information, but it also increases the number
of model parameters and computation. To this end, 1 x 1
convolutions are adopted at intervals to reduce dimension,
alleviating convolution bottlenecks. Besides, a residual branch
from the backbone is introduced to inject various spatial
context information. The residual structure superimposes depth
features on the basis of the original features, realizing the
fusion of global and local information. After that, we im-
plement stacked convolutional layers to remove the aliasing
effect caused by the interpolation, reducing information loss in
the channel and enhancing the feature representational ability.
The enhanced feature pyramid contains more higher-level and
semantic information. Formally, it can be expressed as

Z= (e (e (P (X Yas Yagal)))))
“)
where [-] is channel-wise concatenation, and X, Y are feature
maps from the backbone feature pyramid and feature maps
processed by GSNet, respectively. ¢ represents the level of the
feature pyramid, which equals 1, 2, 3. f X1 and f3%3 denote
the standard 1 x 1 and 3 x 3 convolutions.

III. EXPERIMENTS
A. Datasets and Evaluation Metric

DOTA [11] contains 2,806 aerial images with 15 classes,
whose size varies from 800 x 800 to 4000 x 4000. Figure 3
shows some training samples in this data set. HRSC2016 [12]
contains 1061 images with high resolution, whose size ranges
from 300 x 300 to 1500 x 900. For both data sets, we randomly
take 3/6 for training, 1/6 and 2/6 for validation and testing,
respectively. All images are cropped into 1024 x 1024 patches
with a stride of 824. We use mean average precision (mAP) as
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Fig. 3. Some demo training samples of the DOTA dataset [11].

TABLE I
ABLATION STUDY.

Methods|Backbone|GSNet FRM| mAP(%) Params(M) GFLOPs

Faster R-CNN [13]| Res-101 | X X 73.09 7412 289.19
Faster R-CNN [13][ Res-101 | v X [76.611550 7461 29398
Faster R-CNN [13]| Res-101 | X v 18984559 7645  325.66
Faster R-CNN [13]| Res-101 | v v 79371628 7791 338.14
RetinaNet [14]| Res-50 | X X 68.79 3642 21592
 RetinaNet [14]| Res-50 | v X [70.7841.99 3777 221.54
RetinaNet [14]| Res-50 | X v 71104237 3834  226.03
RetinaNet [14]| Res-50 v v 71614552  39.69 231.66

the primary metric. In addition, three commonly used metrics
are taken into consideration to verify the model efficiency,
which are the GFLOPs, the model Parameters (Params), and
the Frames Per Second (FPS).

B. Experimental Setup

Baselines. We deploy two-stage Faster R-CNN [13] and one-
stage RetinaNet [14] as baseline models. ResNet101 and
ResNet50 (both are pre-trained on the ImageNet [15]) are
adopted as backbone networks. FPN is utilized to produce an
enhanced neck network. As in [13], [14], the rotated head is
developed in Rol-Transformer [6] and RotatedRetinaNet [14]
individually. All experimental settings strictly follow as re-
ported in official codes for a fair comparison.

Training Details. We use the standard SGD [16] as the
optimizer, where the learning rate is initialized to 0.005 and
0.0025 for two baselines. The weight decay and momentum
are set to 0.0001 and 0.9, respectively. Models are trained for
DOTA and HRSC2016 in by epochs on RTX 3060 with the
batch size of 2.

C. Ablation Study

Our ablation studies aim to validate the effectiveness and
efficiency of the proposed modules on different baselines and
datasets. For this purpose, we conduct a series of experiments
and show some visual comparisons.

Effectiveness of the proposed modules. Table I shows
result comparisons for effectiveness of the proposed modules.
Specifically, we take Faster R-CNN based on ResNetl01 as
a baseline. It is observed that GSNet and FRM improve
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TABLE II
RESULT COMPARISONS WITH STATE-OF-THE-ART METHODS ON DOTA DATASET [ ! 1].
Methods| mAP(%) PL BD BR GIF SV LV SH TC BC ST SBF RA HA SP HC |FPS
tWO-StHgE.'

Gliding Vertex [17]| 75.02  89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32|10.0
Oriented R-CNN [28]| 7628  88.86 8348 5527 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 7436 70.15 57.28(15.1
CenterMap OBB [18]| 76.03  89.83 84.41 5460 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 | 6.3

RSDet-II [27]| 76.34  89.93 84.45 53.77 74.35 71.52 78.31 78.12 91.14 87.35 86.93 65.64 65.17 75.35 79.74 6331| -
SCRDet++ [19]|  76.81  90.05 84.39 5544 73.99 77.54 71.11 86.05 90.67 87.32 87.08 69.62 68.90 73.74 71.29 65.08 13.0
* Faster R-CNN+Ours | 79.3712 5 89.66 86.04 56.25 79.45 79.07 84.29 88.40 90.86 88.10 85.51 65.56 66.01 78.70 79.57 73.02|14.0

one-stage:
02-Det [23]| 71.04 8931 82.14 47.33 61.21 7132 74.03 78.62 90.76 82.23 8136 60.93 60.17 58.21 66.98 61.03| —
R3Det [21]| 71.69  89.54 81.99 4846 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.97 59.82 65.44 67.46 60.05|14.0
BBAVectors [25] | 72.32 8835 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70| -
DRN [24]| 7323  89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48| 9.8
CFC-Net [22]| 73.50  89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09| —
""""""""""""""""""""""""""""""""""""""""" 87.26 90.85 82.19 85.12 55.34 66.73 71.28 70.46 56.64|20.0
TABLE III

Fig. 4. Visualization of oriented detection results of baseline (blue boxes)
and Faster R-CNN + Ours (red boxes) on DOTA dataset [11].

bounding box mAP by 3.52% and 5.89%, respectively. Com-
bining GSNet and FRM, our method achieves 79.37%mAP,
which is 6.28% higher than the baseline by a large margin.
For model efficiency, we can observe that when GSNet is
implemented on the baseline, there are only 0.49M Params
and 4.79 GFLOPs. It shows that the combined convolution
in GSNet could effectively control model parameters and
computational cost.

Effectiveness on different baselines. Table I shows the results
of our modules deployed to two baselines on DOTA [11].
For RetinaNet, comparing row 9 to row 6, we observe that
the proposed modules bring remarkable performance enhance-
ments(i.e., 2.82%mAP). It is because our GSNet and FRM
encourage each layer to preserve more features to reduce
information bottleneck. This phenomenon is consistent across
the HRSC2016 dataset [12]. As we mentioned under Eq. 4, the
main reason for computational overheads is the introduction
of additional convolutional layers in constructing FRM.

Visualizations. Figure 4 shows some visual comparisons of
DOTA [11] between the baseline (blue boxes) and Faster R-
CNN + Ours (red boxes). Faster R-CNN + Ours refers to our

THE QUANTITATIVE RESULT COMPARISONS WITH STATE-OF-THE-ART
METHODS ON THE TEST SET OF HRSC2016 [12].

Methods ‘ Publication ‘ mAP (%) ‘ FPS

Rol Trans [6] CVPR 2019 86.20 6.0
Gliding Vertex [17] | TPAMI 2020 88.20 -
R3Det [21] | AAAI 2021 89.26 12.0
S2A-Net [20] | TGRS 2021 90.17 -
"Faster R-CNN + Ours | - 79050055 | 140
RetinaNet + Ours - 90.4710.30 | 25.1

proposed network based on ResNet-101. We can intuitively
observe that our proposed methods have noticeable accuracy
improvement in location and boundary, e.g., the roundabout,
the harbor, and the plane. From the last two rows, we observe
that it also enhances the recall of some small objects.

D. Comparisons with State-of-the-arts

In this section, we make result comparisons with the state-

of-the-art methods on both DOTA [ 1] and HRSC2016 [12].
Results on DOTA [11]. As shown in Table II, compared to
the previous best result of 76.81% by SCRDet++ [19] (i.e., the
two-stage model) and 73.50% by CFC-Net [22](i.e., the one-
stage model), our GSNet + FRM model ranks the first and
improves 2.56% and 0.99% mAP, respectively. Concretely,
some hard categories (e.g., the ship, the large vehicle, the
harbor, and the helicopte) have notable mAP improvements.
These results indicate that our model enhances the feature
presentation capabilities. With input image size of 1024x1024,
our model achieves 14.0 and 20.0 FPS on two RTX 3060
GPUs, respectively. This observation can validate the effi-
ciency of our proposed method.
Results on HRSC2016 [12]. The quantitative result compar-
isons on the test set of HRSC2016 are given in Table II. We
can observe that our results are markedly prevail, reaching the
top performance (i.e., 90.50% mAP in 14.0 FPS and 90.47%
mAP in 25.1 FPS) among all the state-of-the-art methods,
which surpass the previous best model by 0.33% and 0.30%
mAP with comparable inference speed, individually.
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IV. CONCLUSIONS

In this letter, we first analyze the existing problems in ob-
ject detection from the perspective of information bottleneck.
Then, we propose a simple GSNet and FRM for enhancing
feature representations for the neck network in object detection
of aerial images. Extensive experiments on two challenging
datasets confirm the superiority of our GSNet + FRM model.
The main limitation is that although our network greatly im-
proves the detection rate of small targets, it still fails to detect
tiny ones that are difficult to be distinguished by naked eyes.
In the future, we will consider adjusting the network structure
to overcome this issue and applying our proposed methods
to more computer vision tasks, e.g., semantic segmentation,
video object detection.
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