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Abstract—Hyperspectral unmixing is a critical yet challenging
task in hyperspectral image interpretation. Recently, great efforts
have been made to solve the hyperspectral unmixing task via deep
autoencoders. However, existing networks mainly focus on ex-
tracting spectral features from mixed pixels, and the employment
of spatial feature prior knowledge is still insufficient. To this end,
we put forward a spatial attention weighted unmixing network,
dubbed as SAWU-Net, which learns a spatial attention network
and a weighted unmixing network in an end-to-end manner
for better spatial feature exploitation. In particular, we design
a spatial attention module, which consists of a pixel attention
block and a window attention block to efficiently model pixel-
based spectral information and patch-based spatial information,
respectively. While in the weighted unmixing framework, the
central pixel abundance is dynamically weighted by the coarse-
grained abundances of surrounding pixels. In addition, SAWU-
Net generates dynamically adaptive spatial weights through the
spatial attention mechanism, so as to dynamically integrate
surrounding pixels more effectively. Experimental results on
real and synthetic datasets demonstrate the better accuracy and
superiority of SAWU-Net, which reflects the effectiveness of the
proposed spatial attention mechanism.

Index Terms—Hyperspectral image, spatial–spectral unmixing,
autoencoder, attention mechanism.

I. INTRODUCTION

RECENT years have witnessed the rapid growth of hyper-
spectral images (HSIs), and HSIs have been widely used

in a broad range of applications due to the abundant spectral
information [1]–[3]. However, the spatial resolution of HSI is
sometimes limited, and thus the mixed pixel problem arises
[1], [3]. Hyperspectral unmixing (HU) aims to decompose
mixed pixels into a collection of spectral signatures (end-
members) and a set of fractional abundances. Spectral mixing
models can be characterized as linear or nonlinear [1]. In this
work, we mainly focus on linear spectral unmixing, which
is more popular since its simple model structure and lower
computation burden. The prophase LMM is able to separate
into geometrical, statistical, and sparse regression problems.

The major representative methods for geometry-based HU is
the vertex component analysis (VCA) [4]. Furthermore, when
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the spectral signals of HSI are extremely mixed, statistical-
based methods become a valid choice [5]. Sparse regression-
based unmixing is also an extremely dynamic research area,
and a large number of unmixing algorithms based on sparse
regression have emerged such as the collaborative sparse
unmixing algorithm [6]. Considering that spatial information
is also vital for HU, a few NMF and sparse regression-based
variants incorporating spatial information have been proposed
[7], [8].

In recent years, deep learning has been extensively applied
in HU, and deep autoencoder (AE) network is the main-
stream network structure. The encoder of AE generates the
abundance scores, while the weights of the decoder are taken
as endmembers. Among them, EndNet [9], CNNAEU [10],
TANet [11], SSAE [12], SSCU-Net [13] are typical unmixing
networks based on AE structure. CNNAEU uses patch-based
convolution operation to exploit spatial information. While
SSAE uses fixed weights generated by the spatial mathemat-
ical model. Meanwhile, SSCU-Net introduces a superpixel
segmentation method based on abundance information, which
considerably facilitates the use of spatial information. On
the other hand, there are also relevant approaches that apply
attention mechanism to explore the spatial information con-
tained in HSIs. MUNet [14] applies attention mechanism to
LiDAR data to guide hyperspectral image unmixing, and [15]
introduces attention mechanism to supervised hyperspectral
image unmixing.

To sum up the above assay, introducing spatial information
into the unmixing process and making full use of the spatial-
spectral information is an essential topic for the HU task.
However, the aforementioned utilization of spatial information
is based on spatial mathematical models, which are often static
and modeled based on specific assumptions and parameters.
Therefore, to achieve dynamic adaptive spatial weights, in this
paper, we propose a novel spatial attention weighted unmixing
network, called SAWU-Net. Different from the attention men-
tioned above, our main motivation is to achieve dynamically
adaptive spatial weights through spatial attention mechanism.
It can continuously adjust the weight distribution according
to the continuous learning of the network to generate more
effective spatial weights. The main contributions of this paper
can be summarized in the following three aspects.

1) In order to fully exploit the spatial information, we con-
sider the contribution of surrounding pixels to the central
pixel, thus introducing spatial attention to achieve the
dynamic weight distribution of spatial information, and
then propose a novel general spatial attention weighted
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Fig. 1. Flowchart of the proposed SAWU-Net architecture.

unmixing network. SAWU-Net is a simple and efficient
two-branch structure, where the weighted unmixing net-
work is efficiently trained in an end-to-end manner to
estimate endmembers and abundances simultaneously.

2) In particular, we design a spatial attention module that
consists of two parts. The first part is the pixel attention
block, which efficiently interprets and enhances spectral
information through 1×1 convolution. While the second
part is the window attention block, which generates
more effective spatial attention weights through a linear
projection with low computational intensity.

3) Moreover, in the field of hyperspectral unmixing, this is
the first unmixing network that uses spatial attention to
dynamically generate spatial weights. We introduce the
spatial attention mechanism on the basic and simple AE
network, which can fully explore the contribution of the
spatial attention mechanism. Through experiments on real
and synthetic datasets, the effectiveness and superiority of
SAWU-Net are firmly demonstrated.

II. PROPOSED FRAMEWORK

To sufficiently and effectively exploit the spatial informa-
tion in HSIs, we propose a novel spatial attention weighted
unmixing network. Fig. 1 shows our proposed SAWU-Net
architecture. The network consists of two parts, including an
attention network that generates a weight matrix of spatial
information, and a simple three-layer AE unmixing network.
In the following, we elaborate on the proposed SAWU-Net
architecture.

A. Spatial Attention Network

In SAWU-Net, a local window of size K ×K and L bands
centered on the xi,j pixel is selected. Let x∆i,j denote all the
pixels within the local window centered at (i, j), i.e.,

x∆i,j
=

{
xi+p−bK2 c,j+q−bK2 c

}
, 0 ≤ p, q < K (1)

Then the abundance of xi,j is obtained by spatial attention
weighting of the abundance of x∆i,j , which is used to recon-
struct xi,j .

Considering the characteristics of high spectral dimension
and low spatial resolution of hyperspectral images, we ef-
fectively combine two well-known types of attention [16],
[17], and propose a novel attention module. It concatenates
two blocks, focusing on pixel-level and patch-level features,
respectively. Pixel attention based on spectral information can
assist window attention to obtain more effective dynamic
spatial weights, and then obtain better unmixing results.

The pixel attention block obtains the pixel attention weight
map through 1×1 convolution and sigmoid activation function,
and then weighted to the input pixel spectral dimension. It
can assign greater weights to important spectral bands, while
reduce the weights of redundant bands, thereby achieve the
enhancement of spectral bands. In other words, the pixel
attention block can capture or highlight certain important
spectral bands. Pixel attention (PA) can be written as follows:

xpai,j = xi,j � σ(Conv(xi,j)) (2)

where Conv represents 1 × 1 convolution, σ represents the
sigmoid activation function, and � indicates elementwise
multiplication.

Meanwhile, a window attention block is connected in series
with the pixel attention block. The purpose is to make better
use of the spectral information features enhanced by pixel at-
tention, and to generate more efficient spatial weights through
effective linear projection, thereby significantly improving the
performance of hyperspectral unmixing. Window attention can
be written as follows:

D̂i,j = Softmax(Reshape(MLP (xpai,j))) (3)

For the input, xpai,j through a fully connected layer, the linear
layers of weights WD ∈ RL×K4

. Via the reshape operation,
and then by a softmax activation function, an attention weight
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Fig. 2. Endmembers estimated by SAWU-Net (blue curves), the GTs (red curves) and the abundance maps on Jasper Ridge dataset.

map is generated D̂i,j ∈ RK2×K2

, for the weighting of
abundance.

B. Unmixing Network

The unmixing network proposed in this paper is designed as
a simple three-layer AE network, which is the same as com-
mon unmixing networks [9], [13]. The encoder is designed as
a fully connected layer to generate coarse-grained abundances,
which are finally dynamically augmented by spatial attention
weights.

The encoder mainly uses the ReLU activation function,
in order to limit abundance nonnegativity constraint (ANC).
Moreover, BN and Dropout denote the batch normalization
layer and dropout layer, respectively. Therefore, the hidden
representation obtained by fully connected layer encoding is
as follows:

hi,j = ReLU(Dropout(BN(W (e)xi,j))),

xi,j ∈ x∆i,j , i, j = 1, 2, ...,K
(4)

where W (e) is the weight coefficient of the fully connected
layer without bias.

C. Weighted Reconstruction Network

The unmixing network has obtained coarse-grained abun-
dance values, therefore, we define h∆i,j

∈ RP×K2

to represent
all abundance values with P endmember signatures and K×K
window centered at (i, j), i.e.,

h∆i,j
=

{
hi+p−bK2 c,j+q−bK2 c

}
, 0 ≤ p, q < K (5)

Thus, fusing the spatial attention weights, the abundance
value projection procedure can be written as:

H∆i,j
=MatMul(D̂i,j , h∆i,j

) (6)

Finally, through the fold operation, the abundances from
different positions of the current window are dynamically

summed up as the abundance vector output of the center pixel,
and the operation can be presented as follows:

Ĥi,j =
∑

0≤m,n<K

Hi,j
∆

i+m−bK
2
c,j+n−bK

2
c

(7)

Meanwhile, to satisfy the abundance sum-to-one constraint
(ASC), we use the l1 norm. Therefore, the eventual abundance
of the central pixel can be expressed as:

sc =
Ĥi,j

‖Ĥi,j‖1 + ε
(8)

where ε is a very small number to prevent the denominator
from being meaningless.

Eventually, through the decoder, the reconstructed center
pixel can be expressed as follows:

x̂i,j =W (d)sc (9)

where W (d) represents the weight matrix of the fully con-
nected layer of the decoder, which corresponds to the extracted
endmember matrix.

The weighted reconstruction network in the overall ar-
chitecture can assign different weights to the input features
according to their importance, which helps to enhance the
performance of hyperspectral unmixing. In addition, using a
simple network structure is also beneficial to tap the potential
of SAWU-Net, exploring a unified network for unmixing, and
embodying the effectiveness of spatial attention weights.

D. Initialization and loss function

Experiments have proved that the spectral angular distance
(SAD) as a loss function of the AE unmixing network has
obtained superior unmixing results. At the same time, in order
to improve the sparsity of abundance, we impose a constraint
with the l1/2 norm. Therefore, the overall loss of SAWU-Net
can be formulated as:
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Fig. 3. Endmembers estimated by SAWU-Net (blue curves), the GTs (red
curves) and the abundance maps on Samson dataset.

TABLE I
HYPERPARAMETERS SETTING.

Hyperparameters Datasets
Jasper Rage Samson

λ1 12
λ2 2e-3
Batch size 128
Optimizer Adam
Maxiter 300
Learning rate (encoder) 1e-3
Learning rate (decoder) 1e-5 1e-4

LSAWU = λ1cos
−1 〈xi,j , x̂i,j〉
|xi,j |2|x̂i,j |2

+ λ2|sc| 1
2

(10)

where xi,j and x̂i,j represent the original center pixel and
the reconstructed center pixel, respectively, and sc represents
the abundance vector of the center pixel after spatial atten-
tion weighting. Meanwhile λ1 and λ2 are the regularization
parameters, where its specific values are shown in Table I.

III. EXPERIMENTS

To further assess our proposed method, we compare with
traditional and deep learning-based linear unmixing methods.
They are VCA [4], L1/2-NMF [5], Dgs-NMF [7], EndNet [9],
CNNAEU [10], SSAE [12], respectively. EndNet only uses
spectral information, while CNNAEU and SSAE make full
use of spatial-spectral information.

A. Experimental Setup and Data Description

1) Evaluation Metrics: So as to better assess the proposed
network, we adopt the SAD, which is employed to calculate
endmembers, and root mean square error (RMSE), which is
utilized to measure abundance, two most commonly used eval-
uation metrics. They are defined as SAD = cos−1 〈xi,x̂i〉

|xi|2|x̂i|2

and RMSE =

√
1
N

N∑
i=1

(si − ŝi)2. The smaller their corre-

sponding values are, the excellent unmixing consequence is.
The proposed network is specifically implemented in the

CPU environment using PyTorch and Python. The detailed
network hyperparameters are shown in Table I.

TABLE II
VALUATION METRICS SAD AND RMSE FOR ABUNDANCE AND

ENDMEMBER OF JASPER RIDGE DATASET. BEST RESULT ARE BOLD.

Spectral Angle Distance (×10−2 )

EM VCA L1/2 -NMF Dgs-NMF EndNet CNNAEU SSAE SAWU

#1 13.95 ± 3.1 15.10 ± 0.3 4.66 ± 0.2 4.57 ± 0.4 11.94 ± 2.1 3.37 ± 0.1 2.63 ± 0.2
#2 29.09 ± 10.2 4.60 ± 0.0 4.60 ± 0.0 5.05 ± 0.9 6.92 ± 0.4 4.72 ± 0.1 3.03 ± 0.1
#3 15.22 ± 2.3 6.16 ± 0.5 5.66 ± 0.2 5.29 ± 0.3 10.15 ± 0.9 3.02 ± 0.3 2.50 ± 0.1
#4 9.94 ± 1.1 9.81 ± 0.1 6.73 ± 0.1 3.54 ± 0.2 7.45 ± 0.4 2.77 ± 0.2 1.68 ± 0.3
Avg 17.05 ± 3.6 7.19 ± 2.4 5.41 ± 0.1 4.61 ± 0.5 9.12 ± 0.6 3.47 ± 0.1 2.46 ± 0.1

Root Mean Square Error (×10−2 )

EM VCA L1/2 -NMF Dgs-NMF EndNet CNNAEU SSAE SAWU

#1 16.09 ± 3.1 16.16 ± 0.5 11.66 ± 0.2 8.85 ± 0.4 13.56 ± 0.3 5.15 ± 0.6 5.54 ± 0.4

#2 6.06 ± 1.8 5.57 ± 0.0 4.13 ± 0.0 6.88 ± 0.3 9.66 ± 0.3 5.63 ± 0.4 4.01 ± 0.2
#3 15.00 ± 1.5 17.02 ± 0.4 11.13 ± 0.3 10.59 ± 0.2 10.61 ± 0.2 6.19 ± 0.4 6.28 ± 0.1

#4 11.09 ± 1.5 6.73 ± 0.2 5.68 ± 0.1 11.17 ± 0.4 8.64 ± 0.2 7.15 ± 0.3 5.37 ± 0.3
Avg 12.05 ± 1.5 11.37 ± 0.2 8.15 ± 0.2 9.37 ± 0.5 10.62 ± 0.1 6.03 ± 0.2 5.30 ± 0.2

TABLE III
VALUATION METRICS SAD AND RMSE FOR ABUNDANCE AND
ENDMEMBER OF SAMSON DATASET. BEST RESULT ARE BOLD.

Spectral Angle Distance (×10−2 )

EM VCA L1/2 -NMF Dgs-NMF EndNet CNNAEU SSAE SAWU

#1 4.21 ± 0.0 6.21 ± 7.3 5.64 ± 7.4 1.98 ± 0.2 3.73 ± 2.1 2.04 ± 0.1 1.42 ± 0.1
#2 5.58 ± 0.2 5.23 ± 0.3 4.80 ± 0.3 5.31 ± 0.3 3.97 ± 0.4 3.61 ± 0.1 2.73 ± 0.2
#3 43.97 ± 31.1 11.97 ± 2.1 4.70 ± 0.3 3.98 ± 0.2 4.30 ± 0.9 3.12 ± 0.2 2.30 ± 0.1
Avg 17.92 ± 1.5 7.80 ± 3.2 5.05 ± 2.7 3.76 ± 0.2 4.00 ± 0.7 2.92 ± 0.1 2.15 ± 0.1

Root Mean Square Error (×10−2 )

EM VCA L1/2 -NMF Dgs-NMF EndNet CNNAEU SSAE SAWU

#1 16.45 ± 3.0 8.58 ± 3.3 7.77 ± 3.8 8.60 ± 0.0 18.49 ± 0.6 4.70 ± 0.4 5.66 ± 0.3

#2 11.25 ± 1.0 7.44 ± 3.7 7.74 ± 3.6 6.92 ± 0.1 16.21 ± 0.4 5.33 ± 0.3 5.31 ± 0.4
#3 19.21 ± 3.3 5.55 ± 0.9 2.70 ± 0.9 4.99 ± 0.0 6.69 ± 0.3 5.27 ± 0.3 4.03 ± 0.3
Avg 15.64 ± 0.6 7.19 ± 2.4 6.07 ± 2.8 6.84 ± 0.0 13.80 ± 0.4 5.10 ± 0.2 5.00 ± 0.2

2) Hyperspectral Datasets: We use two real datasets, Jasper
Ridge and Samson, to comprehensively test the validity of the
proposed method. The datasets are processed in the same way
as the references [5], [7]. We also conduct experiments on
a synthetic dataset, which is processed in the same way as
reference [6]. Meanwhile, the SNR is set to 30 dB.

B. Comparison of SAWU-Net Against Other Methods

The experimental results of SAD and RMSE are obtained
after 20 experiments, and the average value is secured.

1) Experiments on Jasper Ridge DataSet: Table II exhaus-
tively lists the endmember extraction results for all com-
pared unmixing methods. Compared with traditional unmix-
ing algorithms, deep learning-based methods show strong
performance. However, SAWU-Net utilizes spatial attention
weighting mechanism to adaptively adjust the information
weight of different spatial positions, which is beneficial for
accurately extracting endmember information. At the same
time, Fig. 2 shows the difference between the endmembers
obtained by the proposed method and the ground truth (GT).

Table II shows the results of abundance estimation on
the Jasper Ridge dataset. Since the input to our network is
window size data, in order to generate abundance maps for
the entire hyperspectral image, we perform certain processing
on the input data such that each pixel contains window size
data, which is then fed into the network to yield our final
abundances. From Table II, SAWU-Net effectively performs
weighted fusion by considering the different contributions of
surrounding pixels to the central pixel, so as to obtain more
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accurate abundance. At the same time, Fig. 2 visualizes the
abundance map more intuitively.

2) Experiments on Samson DataSet: Table III detail the
experimental results of the proposed and other comparative
algorithms on the Samson dataset. Obviously, it performs
about the same as the Jasper dataset. One possible reason is
that the two datasets are relatively similar. As expected, the
spatial attention weights obtained by SAWU-Net using spectral
information are crucial for the extraction of endmembers.

In the abundance estimation stage, we still use the same
processing method as the Jasper dataset. This is shown in Table
III. Although the effect is comparable compared to SSAE, it
still has a great advantage over other algorithms which shows
that the SAWU-Net framework is versatile. Fig. 3 shows in
detail the comparison between the endmembers obtained by
the SAWU-Net and GTs, and visualizes the abundance map
generated by the SAWU-Net.

C. Ablation Study

In our proposed SAWU-Net network, spatial attention
weights serve as a key element. Whether to consider it or
not has become the main research direction of our ablation
experiment. At the same time, the window size has a certain
influence on the endmember extraction.

1) Experiments on window size: In order to explore the
correlation between the center pixel and the surrounding
pixels, we selected five window sizes for experiments and
finally found that the 3×3 window size is the most suitable for
endmember extraction. Fig. 4 shows the experimental results
in detail.

2) Experiments on spatial attention: Our ablation experi-
ments mainly compare the most basic three-layer AE network
and the EENet network in which the spatial weights are
obtained mathematically in the SSAE network. Meanwhile,
the column of SAWU-Net (w/o PA) represents the unmixing
effect without the pixel attention block. Table IV shows that
SAWU-Net can extract endmembers more effectively, which
also demonstrates the effectiveness of our proposed spatial
attention module.

IV. CONCLUSION

In this letter, in order to make full use of the spatial
information, we propose a novel spatial attention weighted

TABLE IV
ABLATION STUDAY FOR SAD (×10−2) TO EVALUATE THE

BASELINE NETWORKS AND SAWU-NET.

Datasets Baseline SSAE (EENet) SAWU-Net (w/o PA) SAWU-Net

Jasper Ridge 4.51 3.47 2.58 2.46
Samson 3.55 2.92 2.27 2.15

Synthetic 4.83 3.84 3.36 3.28

network structure, which is simple and effective. First, we
design a spatial attention module, which consists of a pixel
attention block and a window attention block. In addition,
weighted unmixing network employs dynamically weighted
neighborhood coarse-grained abundance method, which fur-
ther promotes the spatial continuity of abundance. Compared
with state-of-the-art methods, SAWU-Net achieves excellent
performance on real and synthetic hyperspectral datasets.
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