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Abstract—Automatic seismic signal classification methods are
extensively investigated to reduce or replace manual interpre-
tation, with great potential in previous research. Discriminative
seismic wave propagation physical characteristics, such as veloc-
ities and accelerations, are rarely considered for classification. A
multitask learning scheme is proposed that utilises the seismic
wave equation and three-dimensional (3D) P-wave velocity Vp
model for signal representation learning. The classifier uses the
obtained latent feature maps on a convolutional neural network
architecture for classification of rockfall, slide quake, earthquake,
and natural/anthropogenic noise events, recorded at an ongoing
landslide. Our experimental results show that our approach
outperforms state-of-the-art methods.

Index Terms—Seismic wave equation, P-wave velocity,
landslide-induced seismic classification, multitask learning

I. INTRODUCTION

Seismic monitoring systems have become a viable option for
slope stability monitoring due to their high sensitivity relative
to other more conventional slope monitoring technologies (e.g.
geodetic monitoring), high network density, low cost, and
relatively low power supply, and multi-channel seismic time
series data analysis enables better understanding of the origins
of various seismic events, to predict major geological distur-
bances, and to further minimise fatalities and infrastructure
damage [1]. However, the challenges of (micro)seismic signal
classification, include: 1) the signal-to-noise ratio (SNR) of
the recorded signals is low [2], especially for microseismic
signals with very low magnitude, typically between M−3 and
M0, 2) limited datasets of events, which are time-consuming to
label and often produced with uncertainty [3], 3) heterogeneity
and complexity of recordings, that include anthropogenic and
meteorological events [4]. Conventional (micro)seismic analy-
sis, by visually inspecting the signal, is a tedious process that
necessitates detailed domain knowledge [5]. Thus, recently,
seismic signal analysis has evolved into a trend that depends on
machine learning assisted with little or no domain knowledge.

Conventional machine learning approaches, such as, e.g.,
Support Vector Machine [2]; Random Forest [4], [3], and
graph-based classifiers [2], [6], rely on handcrafted feature
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construction, extraction, and selection, commonly performed
requiring extensive domain knowledge for physical charac-
terisation of events. However, deep learning-based classifiers
perform automatic feature engineering, requiring little or no
expert input, and as such, have become attractive for seis-
mic analysis. Some examples include Convolutional Neural
Network (CNN) architectures to distinguish types of earth-
quakes [7], and quarry blasts and earthquakes [8]. [9] use
global weighted average pooling, as the attention module,
to distinguish amongst various types of seismic sources. For
multi-sensor recorded signals, [10] propose a CNN and Graph
Convolution Network-based (GCN) architecture to classify
seismic events with information exchange. Deep learning-
based approaches have been shown to learn a compact repre-
sentation of the target signal domain without expert-designed
handcrafted features [7], making the inference process au-
tonomous, practical, and fast. However, the main issue with
the current models, is their lack of interpretability [1], which
limits their application, due to not only trust issues but also
difficulties in debugging, improving performance, making fair
comparisons across approaches and datasets, and improving
understanding of underlying seismic processes.

Motivated by recent studies [11], [12], a domain-knowledge
informed multitask learning scheme comprising signal repre-
sentation learning and classification is proposed, which uses
the seismic wave equation and the P-wave velocity Vp model.
[11] classifies seismic events into volcanic tremors, earth-
quakes and ambient noise by evaluating the spatial coherence
of recorded signals, concluding that the spectral differences of
the seismic signals with high spatial coherence could enhance
the classification performance. In this letter, instead, we exploit
the high spatial coherency among signal recordings at different
sensors to denoise the signal using the second derivative of
the seismic wave propagation in the spatial domain, estimated
from the recordings of the deployed sensors. [12] shows
that, with a limited number of sensors, the seismic wave
equation can be an alternative pathway to extract the spatial
wave representations (second derivative of the seismic wave
propagation in the spatial domain) from the acquired signals
in the time domain. Rather than solving the seismic wave
equation numerically, with a few sensor recordings, [12] use
a neural network to simultaneously conduct the propagation
velocity inversion and displacement prediction. As in [12],
the signal representation learning task proposed in this paper
exploits the target signal seismic wave propagation character-
istics within a neural network. However, while [12] solves
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the seismic wave equation with a small amounts of time
and spatial domain data samples triggered by artificial shots,
we utilise a CNN architecture to estimate the propagation of
temporal characteristics of the real-field seismic recordings.
Additionally, we leverage on the CNN architecture’s ability
to operate on patch-based input, which allows it to consider
local seismic reflection patterns when defining and learning
features of target structures [7], to identify and exclude random
or coherent seismic noise and processing artifacts of distinct
patterns, resulting in reduced misclassification. The proposed
multitask learning scheme includes three key contributions: 1)
a novel signal representation learning/reconstruction with two
CNN architectures to estimate temporal and spatial charac-
teristics of the signal propagation from the real-field seismic
recordings; 2) classifying four classes of recorded landslide-
induced seismic signals with a CNN architecture; 3) experi-
mental results demonstrating competitiveness of the proposed
system w.r.t state-of-the-art in seismic signal classification.

II. PRELIMINARIES

A. Seismic wave equation

The location of the signal source is an important feature to
distinguish seismic events occurring in different critical zones
of the monitored slope deformation. For instance, rockfalls
emit signals from locations concentrating on the surface of
the slopes, while slide quakes are identified as shallow-depth
local seismic events [13]. To estimate source location, it is
necessary to model the signal propagation pathway from their
origin or source to the deployed sensors.

In general, seismic signals involve the superimposition of
several complex pulses traveling at speeds dictated by the
elastic characteristics and density of the medium [14]. The
propagation of these signals through an isotropic and homo-
geneous medium is usually modeled by a 1-dimensional time-
dependent seismic wave equation [15]:
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∂2u(x, t)

∂t2
=

∂2u(x, t)

∂x2
, (1)

where u(x, t) is the displacement in point x at time t. The
solution to this differential equation can be expressed as
u(x, t) = E cos[2π(t − x/V ) − φ], where E and φ are the
amplitude and phase of the wave, respectively, V is the P/S-
wave velocity; for typical sensor arrays with vertical channels
(as in our dataset) where P-waves are dominant, V is the P-
wave velocity, Vp, determined by the elastic properties and
density of the medium along the wave propagation pathway.

The solution of (1) depends on the Vp model. Generally,
signal propagation characterisation and localisation require a
three-dimensional (3D) Vp model of the crust, determined by
the density and elastic properties of the material along the
seismic wave pathway [16]. Specifically, each cube of this 3D
Vp model represents Vp of the wave propagating through the
material inside the small cube area, which is assumed to be
homogeneous. Vp of the crust varies across layers and depends
on the geological composition (e.g., rock, clay etc.); thus, it

can be exploited to distinguish the distance that wave travels
and determine its source [13].

III. PROPOSED METHOD

The main idea behind the proposed method, as illustrated
in Fig. 1, is to use the recorded signals and a Vp model to
estimate the location of the seismic event source via domain-
knowledge informed multitask learning relying on wave equa-
tion to optimise the model, and then use this information to
classify the signal based on the fact that different classes of
seismic events propagate differently through the medium. In
the following, first, we provide an overview of the proposed
method and then provide implementation details.

A. Overview
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Figure 1. Proposed domain-knowledge informed multitask learning scheme.

First, the recorded seismic waveform is decomposed with
a level three wavelet packet decomposition (Block 1), to
identify its frequency distribution over time with variable-
width windows using a bank of low-pass and high-pass filters,
trading off time and frequency resolution [2]. This results in
eight signal representations, each corresponding to a frequency
band. Block 2 estimates the second derivative w.r.t time, of the
displacement vector, ∂2u(x,t)

∂t2 , from the latter wavelet packet-
decomposed signals, which is the latent features for classifica-
tion, since, the second derivative w.r.t. time carries information
on wave curvature and depth, discriminating seismic events,
particularly those originating from distinct locations.

Block 3 extracts one Vp value for each event, from each
of the 3D Vp models, where the size of the grid cells can
vary depending on the resolution required, trading off the
resolution of the seismic velocity model and the complexity
of the multi-tasking learning model. Here, the grid size of 10
× 10 × 3 velocity values was chosen to balance resolution
and complexity. Block 3 comprises two Fully Connected
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Figure 2. The modified Vp model for earthquake signal [17].

(FC) layers, to estimate the sampling probabilities in the Vp
model, which represent the likelihood of a velocity value
being selected as the most likely propagation velocity of
corresponding events, that in turn weighs the contribution of
each velocity value to the overall proposed multi-task learning
model fitting process. The Vp model is computed over a certain
area with inversion techniques and interpolation of the seismic
signals recorded by a dense network. Fig. 2 (a) shows a seismic
topographical area of interest using, as an example, recorded
earthquakes originating in South Alps near Jausiers. Using
the Vp model in [18], the Vp values are extracted to form
a tensor G ∈ RM×N×C , as shown in Fig. 2 (b). To simplify
the model, we only consider the areas (cubes) most likely to
contain seismic sources (limited to 10 cubes in each direction,
i.e., M = N = 10 and C = 3), where the blue, red, and yellow
cubes show Vp values of 5.3 ,6.0 ,6.7 km/s, respectively.

Seismic waves in earth materials are subject to attenuation
and dispersion in a broad range of frequencies; in addition,
the field-observed seismic signals are usually obscured by a
significant amount of noise, which affects the precision of
estimating the second derivative w.r.t time using the seis-
mic wave equation Eq. (1) [19]. Hence, we perform signal
enhancement on derivatives w.r.t the spatial coordinate via
Block 4, which uses the seismic wave equation Eq. (1) to
convert the second derivative w.r.t time ∂2u(x,t)

∂t2 (Block 2)
to the second derivative w.r.t the spatial coordinate ∂2u(x,t)

∂x2 ,
by performing element-wise division by the estimated V 2

(Block 3) ∂2u(x,t)
∂x2 = ∂2u(x,t)

∂t2 ⊘ V 2, where ⊘ stands for
element-wise division. Motivated by the high spatial coherency
among seismic recordings observed in [11], Block 5 performs
denoising of the spatial domain second derivative, by replacing
the three highest-energy spectral components with their mean
value. Block 6 performs the inverse operation to Block 4 on
the denoised signal (Block 5) recovering the second derivative
w.r.t time with Eq. (1). Finally, Block 7 reconstructs the
decomposed time series signal using the recovered second
derivative w.r.t time ∂2u(x,t)

∂t2 obtained by Block 6 after spatial-
domain denoising in Block 5. The output of Block 7 updates
the loss function of the reconstruction task by measuring

the difference between the output of Block 1 (dashed line
in Fig. 1), as explained in the following section. The CNN
classifier takes the labeled second derivative w.r.t time (output
of Block 2) as input to predict the event label.

B. Implementation Details
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Figure 3. CNN architectures implemented

Fig. 3 shows our CNN architectures, where B is the batch
size, S is the number of data recording channels, L is the
signal length, and A represents the length of the second
derivative of the displacement vector u w.r.t time. Since Blocks
4 and 6 provide a simple application of the seismic wave
equation Eq. (1) and Block 5 performs denoising via mean
averaging, the focus is on Blocks 2, 3, 7, and the classification
block, which are described next. The proposed multi-task
(signal representation learning and classification) scheme is an
end-to-end learning process. CNN models, Figs. 3 (a) and (b),
used for feature learning, perform signal reconstruction, taking
as input the wavelet decomposed signal and the estimated
time domain acceleration, respectively. The output of Fig. 3
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(a) is the learnt latent feature set, fed to Fig. 3 (c) for
classification. Additionally, the loss function of the proposed
scheme contains two terms, reconstruction and classification
loss, which are utilised to train the whole network. Thus,
CNN models, Figs. 3 (a) and (b), are embedded into the
signal representation learning task, whose weights are updated
synchronously minimising Eq. (2).

1) Time-Domain Second Derivative Estimation (Block 2
in Fig. 1): The input signal is first decomposed with a
db4 wavelet packet transform. Let T ∈ RS×8×L

8 be the
wavelet-decomposed signal from Block 1, where 8 comes
from the number of signal representations at Level 3, each
corresponding to one frequency band. Taking signal T as the
input, the proposed CNN architecture, illustrated in Fig. 3
(a) is used to estimate the second derivative w.r.t time,
Dt =

∂2u(x,t)
∂t2 ∈ RS×8×A for each input window using ReLU

activation function. Heuristically, we set A, the length of the
second derivative signal, to 64.

2) Velocity Extraction (Block 3 in Fig. 1): Given initial
Vp model G ∈ RM×N×C from [13], [17] and the estimated
time-domain second derivative Dt, we pose the random sam-
ple consensus as a voting strategy to extract velocities that
optimally describe the underlying seismic wave attributes to
pick one of the M × N × C values in G for each given
Vp model and each input window. As in [20], the sampling
indices are generated by a set of trainable probability values
P ∈ RM×N×C in order to select the optimal hypothesis of
candidate Vp values that optimises the objective. A two-FC
layer unit (with input (output) sizes of A (128) and 128 (300)
for the first and the second layer, respectively) is employed
to estimate the probability values P for generating random
H hypotheses (H = 12 in our experiments) based on the
multinomial distribution with M = N = 10 and C = 3, such
that the dimension of P matches the dimensions of the initial
Vp model G (see Subsection III-A). The network takes as an
input the output of Block 2 (Dt) and predicts the probability
of signal originating in each of M×N×C cube. At the output
of Block 3, we extract the Vp that corresponds to the second
derivative w.r.t time estimated in Block 2.

3) Time-Domain Signal Reconstruction (Block 7 in Fig. 1):
Block 7 performs time series signal reconstruction by setting
the network objective to be a reconstruction task (Task A
in Fig. 1) that optimises the mean square error between the
recovered time domain signal T̂ ∈ RS×8×L

8 after spatial
domain denoising (output of Block 6) and the input wavelet-
decomposed signal T, defined as

Lr =
1

S

S∑
s=1

1

8

8∑
ch=1

(
1
L
8

L
8∑

l=1

(
Ts,ch,l − T̂s,ch,l

)2

), (2)

where ch and l represent the index of wavelet-decomposed
frequency bands and the data samples of the event window.
Specifically, we propose a CNN architecture that contains five
deconvolution layers, ReLU activation function, and maxpool-
ing operations, as illustrated in Fig. 3 (b) and performs the
reverse operation to Fig. 3 (a).

4) Classification: With the learned optimal latent feature
(output of Block 2, Dt), a CNN architecture is employed for
classification (Task B in Fig. 1), containing two 2-dimension
convolution layers and two FC layers, with the Cross-Entropy
loss function Lc. The classifier is trained with the labelled
latent features.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the accuracy and precision of the
proposed CNN-based multitask learning to classify the seismic
signals recorded at an ongoing landslide. All experiments
are conducted on NVIDIA RTX 3090 with PyTorch v1.12.
All CNN-based models are trained over 450 epochs with 1.8
second per epoch using adaptive moment estimation (ADAM)
optimiser with β1 = 0.9, β2 = 0.999, and 7.7ms per sample
for prediction. Note that the overall loss function of the
proposed domain knowledge informed multitask learning is
defined as Loss = Lr + Lc.

A. Dataset

The dataset is obtained from publicly available raw seismic
recordings1, sampled at Fs = 250Hz, measures the ground
shock caused by seismic signals, as described in [4]. The
array comprises one 3-component center sensor and three
vertical 1-component sensors organised as an equilateral tri-
angle. A catalog of manually verified events, detected with
spectrogram-based Short Time Average over Long Time Aver-
age (STA/LTA), contains 401 “Rockfall”, 234 “Slide Quake”,
388 “Earthquake”, and 351 “Anthropogenic/Natural noise”
events, totaling 1374 labeled events [4]. We filter 6-channel
raw signals with a 5−100Hz bandpass filter, and then segment
a 10 s window for each event from 2 s before the event starts
(P wave pick), to form the input as X ∈ RS×L, where S = 6
channels, and L = 2500 samples. For benchmarking classi-
fication, we employ stratified sampling with 60% (training),
10% (validation), and 30% (testing). The validation set is used
to evaluate the performance of the model on data that the
model has not seen during training, which helps in determining
the best set of hyperparameters for the model. At the testing
stage, the best model corresponds to the one with the highest
validation accuracy. To eliminate the impact of random data
splitting, we repeat the experiment 50 times with a randomly
split training, validation, and testing set.

B. Vp models
Table I

SEISMIC TOPOGRAPHIC AREAS

Event Latitude (N) Longitude (E)
Rockfall 44◦20′41′′-44◦21′8′′ 6◦40′24′′-6◦40′47′′

Slide Quake 44◦20′51′′-44◦21′58′′ 6◦40′30′′-6◦40′41′′

Earthquake 44◦24′10′′-44◦31′27′′ 6◦40′44′′-6◦52′16′′

Noise 44◦20′41′′-44◦21′8′′ 6◦40′24′′-6◦40′47′′

The Vp models are obtained from the seismic topographic
areas (Table I) and depth from [13]. 3D Vp models for rockfall,

1https://seismology.resif.fr/networks/#/MT
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slide quake and noise events are obtained by cubic interpola-
tion of the 2D profiles, which are computed by inverting the
anthropogenic shots recorded by the sensors deployed in the
preset geophones using the Quasi-Newton inversion approach
[13]. The 3D Vp model2 for the earthquake is obtained by
inverting the dense network recorded teleseismic data in [18].

Table II
EXPERIMENTAL RESULTS AVERAGED WITH 50 RUNS (MEAN (STD))

Classifier Acc
Recall

Rockfall Slide Quake Earthquake Noise
CNN + GCN [10] 0.8576 (0.03) 0.8715 (0.04) 0.7662 (0.07) 0.8442 (0.06) 0.9176 (0.04)
DeepQuake [21] 0.8650 (0.03) 0.9041 (0.04) 0.7560 (0.06) 0.8769 (0.05) 0.8796 (0.05)

ConNetQuake [7] 0.8470 (0.03) 0.8901 (0.04) 0.7254 (0.08) 0.8494 (0.05) 0.8756 (0.05)
GWAP1 [9] 0.9140 (0.01) 0.9210 (0.03) 0.8249 (0.07) 0.9379 (0.03) 0.9389 (0.02)
GWAP2 [9] 0.9345 (0.02) 0.9405 (0.03) 0.8520 (0.05) 0.9554 (0.02) 0.9592 (0.02)

Proposed 0.9422 (0.02) 0.9413 (0.03) 0.9083 (0.04) 0.9474 (0.02) 0.9602 (0.02)
Replace Task A (Fig. 1) 0.9312 (0.01) 0.9393 (0.02) 0.8571 (0.05) 0.9403 (0.03) 0.9491 (0.02)

C. Results
To evaluate the classification performance of the proposed

multitask learning scheme, we compare the classification per-
formance to the state-of-the-art in terms of Accuracy (Acc)
and Recall (as in [9]). The benchmarks are based on recent
CNN [7], [21], GCN [10] and attention-module based [9]
architectures. Table II shows that the proposed method outper-
forms the benchmarks in terms of Acc averaged over all four
classes. Furthermore, it provides the highest recall rate for all
classes except Earthquake, where the schemes optimised for
the detection and classification of earthquakes, such as, [9]
perform slightly better. However, the limitation of [9] is that
the size of the training set required for good performances of
seismic classification is large. To evaluate the performance of
the intermediate CNN models (Fig. 3 (a) and (b)), the state-of-
the-art feature extraction architecture of [22] is implemented
to replace task A in Fig. 1. The optimised latent feature
maps are fed into the proposed classifier (Fig. 1), and the
resulting classification performance is shown in the last row
of Table II. Comparing the last two rows which use the same
proposed classifier, the proposed intermediate feature learning
architectures (Fig. 3 (a) and (b)) outperform that of [22] for all
classes. The largest improvement is observed for slide quakes.

V. CONCLUSION

A novel domain knowledge informed multitask learning
scheme is proposed with the seismic wave equation and Vp
models for ongoing landslide-induced signal classification.
CNN architectures are utilised as an alternative technique to
estimate the signal temporal and spatial attributes. Experimen-
tal results demonstrate that the proposed multitask learning
scheme is effective and outperforms state-of-the-art methods.
The proposed model can also be applied to other applications,
such as volcano active monitoring systems and earthquake
early warning systems. As future work, it is worth investigating
the effect of the 3D velocity model accuracy comparing
homogeneous, 2-layer and gradient velocity models.

2https://dataservices.gfz-potsdam.de/panmetaworks/showshort.php?
id=b259c149-19dd-11ec-9603-497c92695674
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