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H2TF for Hyperspectral Image Denoising: Where
Hierarchical Nonlinear Transform Meets

Hierarchical Matrix Factorization
Jiayi Li, Jinyu Xie, Yisi Luo, Xile Zhao, Jianli Wang

Abstract—Recently, tensor singular value decomposition (t-
SVD) has emerged as a promising tool for hyperspectral image
(HSI) processing. In the t-SVD, there are two key building
blocks: (i) the low-rank enhanced transform and (ii) the accom-
panying low-rank characterization of transformed frontal slices.
Previous t-SVD methods mainly focus on the developments of
(i), while neglecting the other important aspect, i.e., the exact
characterization of transformed frontal slices. In this letter, we
exploit the potentiality in both building blocks by leveraging the
Hierarchical nonlinear transform and the Hierarchical matrix
factorization to establish a new Tensor Factorization (termed as
H2TF). Compared to shallow counter partners, e.g., low-rank
matrix factorization or its convex surrogates, H2TF can better
capture complex structures of transformed frontal slices due to its
hierarchical modeling abilities. We then suggest the H2TF-based
HSI denoising model and develop an alternating direction method
of multipliers-based algorithm to address the resultant model.
Extensive experiments validate the superiority of our method
over state-of-the-art HSI denoising methods.

Index Terms—Hyperspectral denoising, t-SVD, ADMM.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) inevitably contain
mixed noise due to sensor failures or complex imaging

conditions [1], [2], which seriously affects subsequent appli-
cations. Traditional hand-crafted HSI denoising methods, e.g.,
low-rankness [3], total variation (TV) [4], sparse representa-
tions [5], and non-local self-similarity [6], utilize interpretable
domain knowledge to design generalizable regularizations for
HSI denoising. Their representation abilities may be inferior
to data-driven methods using deep neural networks (DNNs)
[7]–[9], which can learn representative denoising mappings
via supervised learning with abundant training pairs. However,
supervised deep learning methods mostly neglect the prior
information of HSIs, which sometimes results in generalization
issues over different HSIs and various types of noise.

More recently, tensor singular value decomposition (t-SVD)
attracts much attention in HSI denoising [10], [11]. The t-
SVD views HSI as an implicit low-rank tensor and exploits
the low-rankness in the transformed domain, which can more
vividly characterize the structures of HSIs since it is flexible to
select appropriate transforms and the accompanying low-rank
characterization of the transformed frontal slices. Under such a
framework, there are naturally two key building blocks: (i) The
selection of the low-rank enhanced transform. A suitable trans-
form can obtain a lower-rank transformed tensor and enhance
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the recovery quality [12], [13]. (ii) The characterization of
low-rankness of transformed frontal slices. The implicit low-
rankness of HSIs is exploited by the low-rank modeling of
frontal slices in the transformed domain.

Classical t-SVD-based methods mainly focused on the first
building blocks, i.e., the design of different transforms. For
example, the discrete Fourier transform (DFT) [14] was first
used in the t-SVD, and then the discrete cosine transform
(DCT) [15] was employed. Later methods exploited more
representative and flexible transforms such as non-invertible
transforms [16] and data-dependent transforms [17] to en-
hance the low-rankness of transformed frontal slices. These
methods have achieved increasingly satisfactory results for
HSI denoising [10], [11]. Nevertheless, these t-SVD methods
pay less attention to the second building block, i.e., the exact
characterization of transformed frontal slices. Specifically, they
all employ shallow representations such as low-rank matrix
factorization (MF) [13], QR factorization [18], and nuclear
norm [12], [16] to characterize the transformed frontal slices.

In this work, we exploit a more representative formulation
to capture complex structures of transformed frontal slices.
Specifically, we leverage the hierarchical matrix factorization
(HMF), which tailors a hierarchical formulation of learnable
matrices along with nonlinear layers to capture each frontal
slice in the transformed domain. The hierarchical modeling
ability of HMF makes it more representative to capture the
complex structures of HSIs. Meanwhile, we leverage the
hierarchical nonlinear transform (HNT) to enhance the low-
rankness of transformed frontal slices. With the Hierarchical
nonlinear transform and Hierarchical matrix factorization, we
develop a new Tensor Factorization method (termed as H2TF)
under the t-SVD framework. Correspondingly, we develop the
H2TF-based HSI denoising model. Attributed to the stronger
representation abilities of HMF than shallow MF or its surro-
gates, our H2TF-based model can better capture fine details
of the underlying clean HSI than conventional t-SVD-based
methods. Thus, our model is expected to deliver better HSI
denoising results. Meanwhile, the parameters of H2TF can
be inferred from the observed noisy HSI in an unsupervised
manner. In summary, the contributions of this letter are:

(i) We propose a new tensor factorization, i.e., the H2TF,
which leverages the expressive power of two key building
blocks—the HNT and the HMF, to respectively enhance the
low-rankness of transformed data and characterize complex
structures of transformed frontal slices. By virtue of their
hierarchical modeling abilities, H2TF can faithfully capture
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fine details of the clean HSI, and thus is beneficial for
effectively removing heavy noise in the HSI.

(ii) We suggest an unsupervised H2TF-based HSI denoising
model and develop an alternating direction method of mul-
tipliers (ADMM)-based algorithm. Extensive experiments on
simulated and real-world data validate the superiority of our
method over state-of-the-art (SOTA) HSI denoising methods,
especially for details preserving and heavy noise removal.

II. THE PROPOSED H2TF
A. The t-SVD framework

We first introduce the general formulation of t-SVD. Sup-
pose that the noisy HSI Y ∈ Rh×w×b admits Y = X + N ,
where X denotes the clean HSI and N denotes noise. To
infer the underlying clean HSI X from the observed Y , t-SVD
method generally formulates the following model:

min
Z,θ

L(Y,X ) +
∑
k

ψ(Z(k)), where X = φθ(Z). (1)

Here, L(Y,X ) denotes the fidelity term and ψ(Z(k)) repre-
sents the low-rank characterization of Z(k) (which denotes
the k-th frontal (spatial) slice of Z ∈ Rh×w×b [16]). φθ(·) :
Rh×w×b → Rh×w×b denotes a transform with learnable
parameters θ, which transforms the low-rank representation
Z into the original domain. Sometimes the transform φθ(·)
may not be learnable (e.g., the fixed DFT [14]), and in those
situations the optimization variable only includes Z .

The philosophy of the t-SVD model (1) is to minimize the
rank in the transformed domain, which can model the implicit
low-rankness of HSI. There are naturally two key building
blocks for exactly modeling the implicit low-rankness, i.e.,
the selection of the transform φθ(·) and the exact low-rank
characterization ψ(·) of the transformed frontal slice Z(k).
Most t-SVD-based methods focus on the design of different
transforms φθ(·) (see examples in [13], [16], [17]), but all
of them pay less attention to the exact characterization of
the transformed frontal slice. They mostly adopt shallow
representations to characterize Z(k), e.g., MF [13], [19], QR
factorization [18], and nuclear norm [15], [16]. However,
these shallow representations may not be expressive enough
to capture fine details of the clean HSI. Therefore, more rep-
resentative methods are desired to enhance the representation
abilities of the model in the transformed domain.

B. HMF for Characterizing Z(k)

To cope with this challenge, we leverage the HMF (hierar-
chical matrix factorization) to characterize Z(k). The hierar-
chical modeling ability of HMF helps it more faithfully capture
complex structures of the transformed frontal slice Z(k) than
shallow counter partners, e.g., SVD, MF, and QR factorization.

The standard MF used in previous t-SVD methods [13], [19]
decomposes a low-rank matrix Z ∈ Rh×w into two factors as
Z = W2W1, where W2 ∈ Rh×r, W1 ∈ Rr×w, and r is the
rank. To model the hierarchical structures of Z, we extend the
MF to the product of multiple matrix factors {Wd}ld=1:

Z = WlWl−1 · · ·W1, (2)

where Wd ∈ Rrd×rd−1 , rl = h, and r0 = w. It was shown in
[20] that such a linear HMF can induce an implicit low-rank

regularization on Z when using gradient-based optimization.
Generally, the larger l is (i.e., adding depth to the HMF),
the tendency towards low-rank solutions goes stronger and
oftentimes leads to better matrix recovery performances. Thus,
the HMF is suitable to play the role of low-rank regularization
in the t-SVD model (1).

Nevertheless, the linear HMF (2) may not be sufficient
to capture nonlinear interactions inside HSIs. It motivates
us to utilize the nonlinear HMF [21], [22] to model the
low-rank matrix Z via Z = Wlσ(Wl−1 · · ·W3σ(W2W1)),
where σ(·) is a nonlinear scalar function. Classical HMF-
based methods [20], [21] only utilize HMF to tackle the two-
dimensional matrix. However, matrixing the HSI inevitably
destroys its high-dimensional data structures. Therefore, we
suggest tailoring b nonlinear HMFs to model the transformed
tensor Z by using each HMF to represent one of the frontal
slices of Z . Formally, we represent each frontal slice of Z by

Z(k) =W(k)
l σ(W(k)

l−1 · · ·W
(k)
3 σ(W(k)

2 W
(k)
1 )), k = 1, 2, · · · , b.

The above HMFs can be equivalently formulated as the ten-
sor formulation Z = Wl∆σ(Wl−1∆ · · ·W3∆σ(W2∆W1)),
where ∆ is the tensor face-wise product [23] and {Wd ∈
Rrd×rd−1×b}ld=1 are some factor tensors.

Compared to shallow counter partners, e.g., MF, QR fac-
torization, and nuclear norm, the above nonlinear HMF can
better capture complex hierarchical structures of HSIs due to
its nonlinear hierarchical modeling abilities, which helps to
better recover fine details of HSI and remove heavy noise.

C. The Proposed H2TF

Next, we introduce our H2TF. Recall that two key building
blocks in the t-SVD are the selection of the transform φθ(·)
and the characterization of the transformed frontal slice Z(k).
We have leveraged the HMF to characterize Z(k), and we
further leverage the HNT (hierarchical nonlinear transform)
as the first building block φθ(·):

φθ(Z) := σ(· · ·σ(Z ×3 H1)×3 · · · ×3 Hm−1)×3 Hm,

where σ(·) is a nonlinear scalar function, θ := {Hp ∈
Rb×b}mp=1 are learnable parameters of HNT, and ×3 is the
mode-3 tensor-matrix product [24]. It was throughout demon-
strated [13] that the HNT can effectively enhance the low-
rankness of transformed tensor and thus obtain a better low-
rank representation than shallow transforms (e.g., DFT [14]
and DCT [15]), which benefits the implicit low-rank modeling.

Definition 1 (H2TF). Finally, we can define the following
factorization modality of a certain low-rank tensor X param-
eterized by {Wd}ld=1 and {Hp}mp=1:
X = φθ

(
Wl∆σ(Wl−1∆ · · ·W3∆σ(W2∆W1))︸ ︷︷ ︸

Hierarchical matrix factorization

)
,

φθ(Z) := σ(· · ·σ(Z ×3 H1)×3 · · · ×3 Hm−1)×3 Hm︸ ︷︷ ︸
Hierarchical nonlinear transform

,
(3)

which we call the H2TF representation of X .

A general illustration of the proposed H2TF is shown in Fig.
1. H2TF benefits from the HMF to exploit complex hierarchi-
cal information of transformed frontal slices and the HNT to
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PSNR 23.43 (l = 2) PSNR 23.65 (l = 3) PSNR 24.15 (l = 4) PSNR 24.34 (l = 5)

PSNR 17.41 (m = 1) PSNR 23.95 (m = 2) PSNR 23.98 (m = 3) PSNR 24.34 (m = 4)

)… 

Hierarchical matrix factorization 
Hierarchical nonlinear transform

… 

)

)… 

Hierarchical matrix factorization 
Hierarchical nonlinear transform

… 

)

) … 

Hierarchical matrix factorization 
Hierarchical nonlinear transform

… 

)

Fig. 1. A general illustration of the H2TF representation of a tensor X . The
nonlinear layer σ(·) is omitted for space consideration.

enhance the low-rankness in the transformed domain. With the
hierarchical modeling abilities of H2TF, the characterization
of HSIs would be more accurate. Therefore, H2TF can more
faithfully capture fine details and rich textures of HSIs and
remove heavy mixed noise. Now, we discuss the connections
between H2TF and some popular matrix/tensor factorizations.

Remark 1. By changing the layer number of hierarchical
matrix factorization (i.e., l) and the layer number of hier-
archical nonlinear transform (i.e., m), H2TF includes many
matrix/tensor factorizations as special cases:

(i) When l = 2, i.e., the HMF degenerates into the MF,
our H2TF degenerates into the hierarchical low-rank tensor
factorization [13]. (ii) When m = 1 and Hm is an identity
matrix (i.e., the transform φθ(·) is an identical mapping), our
H2TF degenerates into the plain HMFs [21], [22] applied on
each frontal slice of the tensor separately. In the following,
we interpret this case as “m = 0” since the transform is
neglected. (iii) When l = 2 and m = 1 with Hm being the fixed
inverse DFT matrix, our H2TF degenerates into the classical
low-tubal-rank tensor factorization [19], [25].

Moreover, H2TF can explicitly preserve the low-rankness of
the tensor when omitting some nonlinearity, as stated below.

Lemma 1. Suppose that X = φ
(
Wl∆(Wl−1∆ · · ·∆W1)

)
∈

Rh×w×b, where {Wd ∈ Rrd×rd−1×b}ld=1 (rl = h and r0 = w)
are factor tensors, φ(Z) := Z ×3 F−1 is the inverse DFT,
and F−1 is the inverse DFT matrix (which is a special case
of H2TF). Then we have rankt(X ) ≤ min{r0, r1, · · · , rl},
where rankt(·) denotes the tensor tubal-rank [12]–[14].

Lemma 1 indicates that H2TF can preserve the low-rankness
in the linear special case, where the degree of low-rankness
(the upper bound of tubal-rank) is conditioned on the sizes of
factor tensors. Therefore, we can readily control the degree of
low-rankness by tuning the sizes of factor tensors in H2TF.

D. H2TF for HSI Denoising

H2TF is a potential tool for multi-dimensional data analysis
and processing. We consider HSI denoising as a representative
real-world application. By applying the H2TF representation
(3) into (1), we can obtain the following HSI denoising model:

min
{Wd}ld=1

,{Hp}mp=1

L(Y,X ),

where X = φθ
(
Wl∆σ(Wl−1∆ · · ·W3∆σ(W2∆W1))

)
.

In the HSI denoising problem, we consider the fidelity term as
L(Y,X ) = ‖Y−X −S‖2F +α1‖S‖`1 , where ‖·‖2F denotes the
Frobenius norm and we introduce S ∈ Rh×w×b to represent
sparse noise (often contains impulse noise and stripes). The
`1-norm enforces the sparsity on S so that the sparse noise
can be eliminated. Here, α1 is a trade-off parameter.

Meanwhile, our H2TF can be readily combined with other
proven techniques to enhance the denoising abilities. Here,

we consider the hybrid spatial-spectral TV (HSSTV) regu-
larization [26] to further capture spatial and spatial-spectral
local smoothness of HSIs. The HSSTV is formulated as
‖X‖HSSTV := α2‖X‖TV + α3‖X‖SSTV, where ‖X‖TV :=
‖∇xX‖`1 + ‖∇yX‖`1 , ‖X‖SSTV := ‖∇x(∇zX )‖`1 +
‖∇y(∇zX )‖`1 , and αi (i = 2, 3) are trade-off parameters.
Here, the derivative operators are defined as (∇xX )(i,j,k) :=
X(i+1,j,k)−X(i,j,k), (∇yX )(i,j,k) := X(i,j+1,k)−X(i,j,k), and
(∇zX )(i,j,k) := X(i,j,k+1) − X(i,j,k), where X(i,j,k) denotes
the (i, j, k)-th element of X .

Based on the formulations of fidelity term and HSSTV, the
proposed H2TF-based HSI denosing model is formulated as

min
{Wd}ld=1

,{Hp}mp=1,S
‖Y − X − S‖2F + α1‖S‖`1 + ‖X‖HSSTV,

where X = φθ
(
Wl∆σ(Wl−1∆ · · ·W3∆σ(W2∆W1))

)
.

(4)

Compared to previous t-SVD-based HSI denoising methods
[10], [11], H2TF has powerful representation abilities brought
from the hierarchical structures and thus could better capture
fine details of HSIs. Besides, the parameters of H2TF are
unsupervisedly inferred from the noisy HSI by optimizing (4)
without the requirement of training process.

E. ADMM-Based Algorithm
To tackle the problem (4), we develop an ADMM-based al-

gorithm. By introducing auxiliary variables Vi (i = 1, 2, 3, 4),
(4) can be equivalently formulated as

min
{Wd}ld=1,{Hp}

m
p=1,

S,{Vi}4i=1

‖Y − X − S‖2F+α1‖S‖`1 + α2‖V1‖`1+

α2‖V2‖`1 + α3‖V3‖`1 + α3‖V4‖`1 ,
s.t. V1 = ∇xX ,V2 = ∇yX , V3 = ∇x(∇zX ),V4 = ∇y(∇zX ),

where X = φθ
(
Wl∆σ(Wl−1∆ · · ·W3∆σ(W2∆W1))

)
. The

corresponding augmented Lagrangian function is
Lµ({Wd}ld=1, {Hp}mp=1,S, {Vi}4i=1, {Λi}4i=1)

= ‖Y − X − S‖2F+α1‖S‖`1 + α2‖V1‖`1 + α2‖V2‖`1+

α3‖V3‖`1 + α3‖V4‖`1 +
µ

2
‖∇xX +

Λ1

µ
− V1‖2F+

µ

2
‖∇yX +

Λ2

µ
− V2‖2F +

µ

2
‖∇x(∇zX ) +

Λ3

µ
− V3‖2F+

µ

2
‖∇y(∇zX ) +

Λ4

µ
− V4‖2F ,

where µ is the penalty parameter, Λi (i = 1, 2, 3, 4) are
multipliers, and X is defined as in (3). The joint minimization
problem can be decomposed into easier subproblems, followed
by the update of Lagrangian multipliers.

The Vi (i = 1, 2, 3, 4) subproblems are
minV1

µ
2
‖∇xX t +

Λt1
µ
− V1‖2F + α2‖V1‖`1

minV2
µ
2
‖∇yX t +

Λt2
µ
− V2‖2F + α2‖V2‖`1

minV3
µ
2
‖∇x(∇zX t) +

Λt3
µ
− V3‖2F + α3‖V3‖`1

minV4
µ
2
‖∇y(∇zX t) +

Λt4
µ
− V4‖2F + α3‖V4‖`1 ,

which can be exactly solved by Vt+1
1 = Softα2

µ
(∇xX t+ Λt1

µ ),

Vt+1
2 = Softα2

µ
(∇yX t+ Λt2

µ ), Vt+1
3 = Softα3

µ
(∇x(∇zX t)+

Λt3
µ ), and Vt+1

4 = Softα3
µ

(∇y(∇zX t) +
Λt4
µ ), where(

Softv(X )
)
(i,j,k)

:= sign(X(i,j,k)) max{|X(i,j,k)| − v, 0}.
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The S subproblem is minS‖Y−X t−S‖2F+α1‖S‖`1 , which
can be exactly solved by St+1 = Softα1

2
(Y − X t).

The X subproblem is
min

{Wd}ld=1
,{Hp}mp=1

‖Y − X − St‖2F+
µ

2
(‖∇xX −Dt1‖2F+

‖∇yX −Dt2‖2F + ‖∇x(∇zX )−Dt3‖2F + ‖∇y(∇zX )−Dt4‖2F ),

where Dti := Vti −
Λti
µ (i = 1, 2, 3, 4). The clean HSI X is

parameterized by {Wd}ld=1 and {Hp}mp=1, as presented in Eq.
(3). To tackle the nonlinear and nonconvex X subproblem, we
apply the adaptive moment estimation (Adam) algorithm [27].
In each iteration of the ADMM-based algorithm, we employ
one step of the Adam to update {Wd}ld=1 and {Hp}mp=1.

Finally, the Lagrange multipliers are updated by Λt+1
1 =

Λt1+µ(∇xX t−Vt1), Λt+1
2 = Λt2+µ(∇yX t−Vt2), Λt+1

3 = Λt3+
µ(∇x(∇zX t)−Vt3), and Λt+1

4 = Λt4 +µ(∇y(∇zX t)−Vt4).

III. EXPERIMENTS

A. Experimental Settings

We compare H2TF with SOTA model-based methods LRT-
DTV [28], SSTV-LRTF [11], RCTV [4], and HLRTF [13]
and deep learning methods HSID-CNN [9] and SDeCNN [8].
We use the pre-trained models of HSID-CNN and SDeCNN
provided by authors. All hyperparameters of these methods are
carefully adjusted based on authors’ suggestions to achieve the
best results. We report the peak-signal-to-noise-ratio (PSNR)
and structural similarity (SSIM). For more implementation
details, please refer to supplementary materials.

We include four HSIs and three multi-spectral images
(MSIs) as simulated datasets. The HSIs are WDC (256×256×
32), PaviaC (256× 256× 32), PaviaU (256× 256× 32), and
Indian (145×145×32). The MSIs are Beads (256×256×31),
Cloth (256 × 256 × 31), and Cups (256 × 256 × 31) in the
CAVE dataset [29]. The noise settings of simulated data are
explained as below. Case 1: All bands are added with Gaussian
noise of standard deviation 0.2. Case 2: The Gaussian noise
for Case 1 is kept. Besides, all bands are added with impulse
noise with sampling rate 0.1. Case 3: The same as Case 2
plus 50% of bands corrupted by deadlines. The number of
deadlines for each chosen band is generated randomly from 6
to 10, and their spatial width is chosen randomly from 1 to 3.
Case 4: The same as Case 2 plus 40% of bands corrupted by
stripes. The number of stripes in each corrupted band is chosen
randomly from 6 to 15. Case 5: The same as Case 2 plus both
the deadlines in Case 3 and the stripes in Case 4. To test our
method in real scenarios, we choose two real-world noisy HSIs
Shanghai (300 × 300 × 32) and Urban (307 × 307 × 32) as
real-world experimental datasets.

B. Experimental Results

1) Results: The quantitative results on simulated data are
reported in Table I. Our H2TF obtains better quantitative re-
sults than other competitors. H2TF outperforms other TV and
tensor factorization-based methods (LRTDTV, SSTV-LRTF,
RCTV, and HLRTF), which shows the stronger representation
abilities of H2TF than existing shallow tensor factorizations
thanks to the hierarchical structures of H2TF. Some visual
results on simulated and real data are shown in Figs. 2-3.

TABLE I
AVERAGE QUANTITATIVE DENOISING RESULTS BY DIFFERENT METHODS.

Dataset Method
Case 1 Case 2 Case 3 Case 4 Case 5

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

HSIs

WDC
PaviaC
PaviaU
Indian

LRTDTV 30.88 0.888 29.55 0.849 28.29 0.825 29.35 0.843 28.31 0.824
SSTV-LRTF 30.77 0.887 30.35 0.879 28.32 0.839 29.51 0.859 27.42 0.812
HSID-CNN 29.61 0.863 22.89 0.691 21.98 0.661 22.16 0.669 21.22 0.635
SDeCNN 30.26 0.873 23.97 0.735 23.33 0.725 23.41 0.723 22.63 0.714
RCTV 29.53 0.853 29.05 0.839 26.75 0.782 28.47 0.826 26.34 0.772
HLRTF 30.12 0.868 29.65 0.855 29.58 0.853 29.15 0.846 29.03 0.841
H2TF 32.51 0.919 31.41 0.900 31.34 0.899 30.83 0.893 30.84 0.892

MSIs

Beads
Cloth
Cups

LRTDTV 28.85 0.889 27.05 0.838 26.31 0.828 26.83 0.830 26.13 0.819
SSTV-LRTF 27.64 0.878 27.48 0.864 26.25 0.855 26.79 0.844 25.11 0.823
HSID-CNN 25.86 0.827 21.22 0.660 20.97 0.645 20.68 0.646 20.34 0.626
SDeCNN 28.43 0.886 22.04 0.715 22.32 0.709 21.53 0.706 21.70 0.698
RCTV 28.15 0.869 27.49 0.866 25.77 0.839 26.98 0.854 25.46 0.829
HLRTF 29.21 0.884 28.73 0.886 28.67 0.884 28.10 0.870 28.03 0.868
H2TF 31.51 0.940 29.46 0.906 29.47 0.901 29.22 0.908 29.03 0.896

H2TF generally outperforms other competitors in two aspects.
First, H2TF can more effectively remove heavy mixed noise.
Second, H2TF preserves fine details of HSIs better than other
methods. The superior performances of H2TF are mainly due
to its hierarchical modeling abilities, which help to better
characterize fine details of HSI and robustly capture the
underlying structures of HSI under extremely heavy noise.
More visual results can be found in supplementary.

2) Discussions: The HMF is an important building block
in H2TF. We test the influence of the layer number of HMF
(i.e., l); see Fig. 4 (a). A suitable layer number of HMF
(e.g., l = 5) can obtain both good performances and a
lightweight model. The HNT is another important building
block. We change the layer number of HNT to test its
influence; see Fig. 4 (b). Also, a proper layer number of HNT
(e.g., m = 2) can bring good performances. According to
Lemma 1, the sizes of factor tensors in HMF, i.e., {rd}4d=1,
determine the degree of low-rankness. Hence, we test such
connections by changing the sizes of factor tensors; see Fig.
4 (c) (Here, r0 and r5 are fixed as the sizes of observed
data and {rd}4d=1 are selected in {(1, 2, 4, 8), (2, 4, 8, 16),
(3, 6, 12, 24), · · · , (20, 40, 80, 160)}). When the sizes (rank)
are too small, the model lacks representation abilities and
when the sizes (rank) are too large, the model overfits.
Nevertheless, our method is quite robust w.r.t. {rd}4d=1.

IV. CONCLUSIONS

We propose the H2TF for HSI denoising. Our H2TF simul-
taneously leverages the hierarchical matrix factorization and
the hierarchical nonlinear transform to compactly represent
HSIs with powerful representation abilities, which can more
faithfully capture fine details of HSIs than classical tensor
factorization methods. Comprehensive experiments validate
the superiority of H2TF over SOTA methods, especially for
HSI details preserving and heavy noise removal.
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