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Abstract—Existing point cloud modeling datasets primarily
express the modeling precision by pose or trajectory precision
rather than the point cloud modeling effect itself. Under this
demand, we first independently construct a set of LiDAR system
with an optical stage, and then we build a HPMB dataset based
on the constructed LiDAR system, a High-Precision, Multi-Beam,
real-world dataset. Second, we propose an modeling evaluation
method based on HPMB for object-level modeling to overcome
this limitation. In addition, the existing point cloud modeling
methods tend to generate continuous skeletons of the global
environment, hence lacking attention to the shape of complex
objects. To tackle this challenge, we propose a novel learning-
based joint framework, DSMNet, for high-precision 3D surface
modeling from sparse point cloud frames. DSMNet comprises
density-aware Point Cloud Registration (PCR) and geometry-
aware Point Cloud Sampling (PCS) to effectively learn the
implicit structure feature of sparse point clouds. Extensive
experiments demonstrate that DSMNet outperforms the state-
of-the-art methods in PCS and PCR on Multi-View Partial Point
Cloud (MVP) database. Furthermore, the experiments on the
open source KITTI and our proposed HPMB datasets show that
DSMNet can be generalized as a post-processing of Simultaneous
Localization And Mapping (SLAM), thereby improving modeling
precision in environments with sparse point clouds.

Index Terms—3D surface modeling, modeling evaluation, point
cloud registration, point cloud sampling, post-processing of
SLAM.

I. INTRODUCTION

VER the past few decades, most widely used LiDARs

have centimeter-level range errors and visible point spac-
ing due to low-beam. How to utilize such sparse point clouds
for 3D surface modeling has become essential in various
fields, such as autonomous driving, robot navigation, industrial
manufacturing, etc. Existing point cloud modeling datasets
(KITTI[1], OXFORDI2], etc.) do not provide a unified and
complete method to evaluate the modeling effect, whereas pri-
marily use pose precision for modeling evaluation. However,
due to the inhomogeneous surface point clouds of sparse point
cloud frames, pose-based methods[3] will cause inevitable
errors compared with the accurate modeling precision.
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Fig. 1. Our proposed DSMNet performs accurate surface modeling of
complex objects (horse in the HPMB dataset), better than BALM[4].

In this paper, under the above demand, first, we propose
HPMB dataset, a High-Precision, Multi-Beam real-world,
LiDAR dataset. HPMB consists of numerous low-precision
LiDAR-scanned sequences with high-precision position and
modeling ground truth. Second, we propose an evaluation
criterion focusing on modeling effect. In detail, we utilize a
simple similarity method to measure the difference between
the low-precision LiDAR modeling results and high-precision
LiDAR capture. Following this criterion, we can evaluate
scene-level and object-level modeling precision.

Furthermore, existing methods (BALM[4], etc.) demonstrate
ineffective in modeling complex object surfaces in sparse point
clouds (see Fig. 1). The problem of learning modeling of
the environment is customarily known as Simultaneous Local-
ization and Mapping (SLAM). Among these, mapping tasks
are often operated as post-processing, such as moving least
squares, bundle adjustment and others[5]. Most methods rely
on the matching features on the prior inter-frame registration
results for modeling correction, which leads to low adaptability
in sparse point clouds[5]. In this case, the shape characteristics
of the object will become increasingly blurred and continue
to disturb the inter-frame pose estimation.

Therefore, preliminary inter-frame pose estimation plays
a vital role in this task, which is accomplished with point
cloud registration (PCR). There are many effective traditional
algorithms in the field of PCR. Besl et al. [6] proposed a
groundbreaking iterative optimization method based on point-
wise distance. Dellenbach et al.[7] utilizes point-based feature
matching. Besides, methods based on deep learning demon-
strated excellent results. Li et al.[8] proposed IDAM based on
the idea of ICP, and Pan et al.[9] proposed GMCNet, which
introduced the popular transformer in the matching framework.

However, the destination of the PCR is only to maximize
the coincidence rate of both point clouds, but it do not handle
the situation of significant noise and redundant surface points.
In this scenario, it is desirable to filter out insignificant points,
at which Point Cloud Sampling (PCS) is considered helpful.
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Fig. 2. Overview of DSMNet: DSMNet alternately processes point cloud
frames through the Density-Aware PCR and the Geometry-Aware PCS mod-
ule. In each alternation, DSMNet predicts the complete and precise point
cloud obtained by the current processing, which continuously updates two
point-wise weighting maps used for feature fusion.

Equivalent to PCR, the most commonly used method is the tra-
ditional method farthest point sampling[10], which preserves
point clouds by iteratively picking the most faraway points. In
the field of deep learning, S-Net[11] and SampleNet[12] both
adopt the same training method that instructs a separate PCS
module by training the downstream task.

In light of this, we propose a learning-based approach,
DSMNet, while jointly optimizing the inter-frame pose estima-
tion and the location of points. Instead of using simple surfel
or plane methods, we use geometry-aware PCS to enhance
the ability to obtain robust geometry features of sparse point
clouds. As for feature matching, density-aware PCR achieves
overlapping consistency for objects with complex structures.
Additionally, we jointly optimize PCR and PCS to enhance
feature fusion between modules. We utilize neighbor-focused
PCR to transfer local density information to PCS by a point-
wise weighting map, making PCS adaptable to uneven density.
At the same time, we pass the geometric information as
another weighting map of global-focused PCS to PCR, which
handles the situation of low overlap and shape confusion.
Overall, our main contributions are as follows:

* We independently construct a set of LiDAR system with
an optical stage to contribute a high-precision, multi-beam,
real-world dataset HPMB, containing over 3,000 points cloud
frames with high-precision position and modeling information.
Based on HPMB, we propose a unified and adaptable evalua-
tion of the modeling precision method.

* We propose a novel learning-based framework, DSMNet,
to jointly optimize geometry-aware PCS and density-aware
PCR, which simultaneously learns implicit density and ge-
ometry information.

 Extensive experiments demonstrate that DSMNet outper-
forms previous state-of-the-art methods in PCS and PCR.
Besides, DSMNet can be generalized as a post-processing of
SLAM, which can precisely model complex objects in sparse
point clouds.

II. DSMNET

Given a sequence of point cloud frames I = {P,..., P},
where P = {p; € R*}""_ . 3D surface modeling from point
cloud frames aims to obtain precise and complete modeling
of corresponding objects in a unified world coordinate system.
The architecture of DSMNet is shown in Fig. 2.
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Fig. 3. Overview of Density-Aware PCR module: The module unifies

the point-wise density feature through attention kernels of different scales of
horizons. Given the source and target point clouds, the registered source point
cloud is obtained through the similarity matrix calculated by RANSAC.

A. Density-Aware Point Cloud Registration

In the case of sparse point clouds, the locations of surface
points are affected by LiDAR measurement errors. To address
the noise generated by such errors, we follow the construction
pattern of variational autoencoder (VAE) for feature extraction.
This makes feature distribution close to the normal distri-
bution, reducing the position error caused by normal noise.
Moreover, we divide it into a global encoder and a point-
wise neighborhood encoder. The details of the feature encoder
follow the encoder design of Pointnet++[13].

After obtaining global and point-wise local features, the
PCR module adopts a novel local density consistent cross-
attention module to combine global and local information
(see Fig. 3). Specifically, we use local feature distribution
as a query matrix and global feature distribution as a key
matrix to query the distribution difference of neighborhoods in
global information. Based on this, we use the proportion of the
difference to mask the point-wise local features, which filter
points with non-uniform densities. Additionally, to accommo-
date the densities of the corresponding point neighborhoods of
the source and target point clouds, we aggregate local features
using different scales of horizons. Finally, the relationship ma-
trix M between two point clouds is obtained by RANSAC[14],
and a point-wise significance map R oriented to PCR, which
is used for cross-module feature fusion, defined as follows:

R(pi) == Z tOpS(Mi,l, Mi,2, e

Pi€P

s Min) ey

where M is the similarity matrix between the source point
cloud and the target point cloud. The significance map is the
sum of five largest similar weights associated with per point
on the similarity matrix, indicating the likelihood that the point
belongs to an inline point of another point cloud during the
registration process. The loss Ly operated in the registration
module is the distance between the predicted and ground truth
registered point clouds, formulated as:

N
1
LR = N Z ‘(Rgtpi + tgt) - (Rpredpi + tp’r‘ed)l (2)

K3
where R is the rotation matrix and ¢ is the translation vector
of the source point cloud registered to the target point cloud.

B. Geometry-Aware Point Cloud Sampling

Divergent from the PCR module, PCS utilizes a geom-
etry consistent self-attention module for geometric feature
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Fig. 4. Overview of Geometry-Aware PCS module: The module explores
the implicit shape feature through attention kernels at different resolution
scales. Given a point cloud, a complete, precise sampled result is obtained.
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enhancement. Afterward, an accurate and complete point cloud
O with uniform density is obtained by uncomplicated point-
wise position regression. Each attention kernel further explores
the implicit global shape information of point clouds by
fusing point-wise features corresponding to point clouds with

different scales of resolution. The details are shown in Fig. 4.

The significance map S of PCS is obtained from the
minimum distance calculation between sampled and original
point clouds, which is defined as follows:

S(pi) = Ilpi — osll5 3)

min
pPi€EP,0;€0

The significance map S is represented as the point-wise
importance of the global shape, measured by point-wise minist
distance. The loss Lg operated in the sampling module, the
traditional Chamfer Distance[12], can be formulated as:

Ls(P,0)=+%" minpeP,oie(QD loi — pll
+4 Y7 minoeo,piep [P — oll;

“)

C. Cyclic Optimization Based on Point-wise Weighting Map

Our DSMNet is trained end-to-end and optimizes the PCR
and PCS modules alternately (see Fig. 2). Initially, we utilize
the PCR module to register the point clouds to a unified
world coordinate system and the PCS module to sample
the registered point clouds for a concise result. In the next
iteration, we utilize the sampled point cloud of the previous
iteration as the target point cloud for registration.

However, cyclic modeling will lead to the accumulation of
errors. In order to effectively suppress this situation, we utilize
two point-wise weighting maps for reducing the attention
weights of low utility points generated by previous iterations.
Precisely, we not only utilize the significance map intro-
duced in Sec. II-A and II-B, but also construct a point-wise
neighborhood distribution map D. After computing global and
point-wise local feature distributions, M points are randomly
sampled from each local feature distribution. Based on these
points, the probability belonging to the global feature distri-
bution is calculated as the value of the point-wise distribution
map. The specific calculation method is as follows:

D)= > (U ogo) —los(vam) (5
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Fig. 5. Overview of HPMB LiDAR System: The system consists of an
optical stage, a milliradian-level precision translation guide, a millimeter-level
precision rotary table, and different LiDARs.
TABLE I
COMPARING HPMB WITH EXISTING DATASETS.

Dataset Translation Precision | Rotation Precision | Modeling Precision
OXFORD|2] > lem 0.02° 20mm

KITTI[1] > lem 0.15° 20mm
3DMatch[15] 2cm 0.1° X
HPMB(Ours) 0.01cm 0.01° Smm

where ;1 and o is the mean and variance of the global feature
distribution. dI(-) is the samping point set of the local feature
distribution. M is the number of sampling points.

The point-wise distribution map, containing features about
the neighborhood density, assigns task-irrelevant information
for module optimization. The significance map provides task-
oriented information and the geometry importance of the
local shape in the global shape. Through the cyclic, the map
obtained by PCR assists PCS in performing a preliminary
sampling based on density. PCS assists PCR in screening
geometry outliers. It is worth noting that since there are no
corresponding results to calculate in the first iteration, we
replace the weighting map with two matrices of all ones.

III. HPMB DATASET

We independently construct a set of LiDAR system with
an optical stage, containing a millimeter-level precision trans-
lation guide and a milliradian-level precision rotary table to
collect data, which is illustrated in Fig. 5.

e Data Acquisition. During the capture process, multiple
complex structured objects were placed in a static scene at
two meters from the LiDAR system. We operate the high-
precision translation guide and rotary table to move the low-
precision LiDARs to simulate realistic multi-view modeling.
After each movement, we record the ground truth of high-
precision rotation and translation at the current time node. At
the same time, under a unified world coordinate system, we
use a millimeter-level precision LiDAR to capture, regarded
as the ground truth of high-precision global modeling.

In summary, HPMB provides 3,600 time node, three kinds
of LiDARs (Velodyne-16, Hesai-32 and Rigel VZ-1000), and
10 kinds of complex objects (Horse, Cabinet, Sofa, etc.).

e Data Characteristic. Table I presents statistics of our
HPMB dataset in comparison to other publicly available
datasets. Our HPMB dataset has the following advantages:
(1) HPMB consists of over 3,000 high-precision optical flow
ground truth, while other registration-oriented or SLAM-
oriented datasets usually have limited precision. (2) HPMB is
comprised of multiple LiDARs with varying beams and preci-
sion. Most current datasets lack such high modeling precision.
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Fig. 6. Qualitative results on the MVP-SP and MVP-RG datasets. The
upper part is PCS and the lower part is PCR, which proves DSMNet can
handle various challenging conditions (Large Noise, Moving, etc.).
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Fig. 7. Qualitative modeling results on the KITTI dataset. DSMNet
can be used as a SLAM post-processing algorithm to achieve high-precision
surface modeling of complex objects (Cars, Pillars, etc.)

TABLE III
QUANTITATIVE COMPARISON OF PCS IN MVP-SP DATASET.

TABLE II
QUANTITATIVE COMPARISON OF PCR IN MVP-RG DATASET. Method Modeling Precision
i i (Chamfer Distance F-Score@1%)
Method Rotation Error (Er) | Translation Error (E}) FPS[10] 0307
DeepGMR[17] 43.74° 0.353 .
GMCNet[9] 16.57° 0.174 SampleNet[12] 0.5921
IDAM[8] 24.35° 0.280 Local SampleNet 0.5421
RPMNet[18] 22.20° 0.174 TASL[19] 0.6410
DSMNet(Ours) 14.17° 0.158 S-Net[11] 0.3954
DSMNet(Ours) 0.6610

(3) On the basis above two, we can calculate the similarity
between the modeling results of low-precision LiDAR and
the capture of high-precision LiDAR at any time node, which
can be regarded as a unified modeling effectiveness evaluation
method. Existing datasets use pose precision to replace the
evaluation of modeling precision, which has low precision and
inevitable error when the point cloud is sparse.

IV. EXPERIMENTS

In line with previous methods, like VRCNet [16]
and GMCNet [9], we evaluate PCR by computing
isotropic rotation errors and translation errors: Ep =
arccos (% (tr (R(_;; ~Rpred) - 1)) E;, = |lter — tpred | |2-
Besides, we evaluate PCS by computing the Chamfer Distance
(Eq. (4)), which is also utilized as the evaluation method of
modeling precision in the HPMB dataset.

A. Point Cloud Registration and Sampling

MVP [16] is a multi-view partial point cloud dataset,
consisting of over 100,000 complete and incomplete point
clouds in 16 categories, which renders partial 3D shapes from
26 uniformly distributed camera poses for 3D CAD models.

Following the construction method of the MVP dataset[16],
we construct a challenging multi-view registration dataset
(MVP-RG) for PCR. In summary, MVP-RG dataset consists of
7,600 partial point cloud frame pairs from sixteen categories.
We compared our DSMNet with existing superior methods
(see Table. II). Experiments demonstrate that our DSMNet
has a favorable effect on the MVP-RG dataset, which rep-
resents our PCR module exhibiting excellent performance on
challenging, low-overlap partial point clouds (see Fig. 6).

Unlike the point cloud completion (PCC) introduced in the
original MVP dataset, we construct a challenging sampling
dataset MVP-SP based on the data of the PCC. Specifically,
for each object we randomly select several frames from the
corresponding set of multi-view partial point cloud frames. On
this basis, we stack all the selected frames, which is regarded
as the input of PCS. Subsequently, the complete and concise
point cloud provided by the PCC is used as the ground truth. In
summary, our MVP-SP dataset consists of 104,000 point cloud
frames of 16 categories. Experiments demonstrates that our
DSMNet outperforms SOTA methods in the MVP-SP dataset,
showing the superiority of our PCS module in the case of non-
uniform densities and incomplete point clouds (see Fig. 6 and
Table III).

B. Post-processing of Simultaneous Localization and Mapping

The KITTI odometry dataset[1] consists of 22 independent
sequences captured during driving over various road envi-
ronments. Sequences 00-10 (23,201 scans) are provided with
ground truth poses obtained from the IMU/GPS readings.

Rather than comparing the precision of trajectory in the
KITTI dataset, we focus more on the effect of modeling.
Specifically, we use several classic LIDAR odometry methods
of SLAM as preprocessing. Based on these prior poses, we
tested our DSMNet and several post-processing algorithms for
fine modeling. To achieve an intuitive comparison, we selected
a special and complex object, car, from the KITTI dataset for
visual comparison (see Fig. 7). As the visualization shows,
our framework also obtains excellent modeling precision on
complex structural objects in the case of high noise or poor
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Fig. 8. Qualitative modeling results on the HPMB dataset by different
methods. DSMNet can guarantee the integrity of the shape of the complex
object (horse) in the case of sparse point clouds.

prior results. While in the environment of good prior and high
signal-to-noise ratio point clouds, our algorithm achieves a
similar effect comparable to these algorithms.

Howeyver, due to the lack of methods to evaluate the effect of
modeling in the KITTI dataset, we can only achieve qualitative
experiments. As introduced in Sec. III, our HPMB dataset
utilizes a unified modeling effect evaluation method to realize
quantitative experiments at the object level. Additionally, we
also achieve qualitative experiments like the KITTI dataset.

The visual results shed light on the more lower precision
of LiDAR, the more worse modeling quality due to sparsity
and cumulative errors (see Fig. 8). In this particular scenario,
experiments demonstrate that our DSMNet effectively allevi-
ates this situation and guarantees highly precise point cloud
modeling results for complex object. For a more intuitive
comparison effect, quantitative experiments demonstrate that
DSMNet outperforms SOTA methods of modeling precision
in our HPMB dataset (see Table 1V).

V. CONCLUSION

In this letter, we independently construct a set of LiDAR
system with an optical stage to contribute a high-precision,
multi-beam, real-world dataset HPMB. Based on HPMB, we
propose a method to evaluate modeling precision, which
fills the gap that the existing datasets cannot evaluate mod-
eling quality. Besides, we propose a novel learning-based
joint framework, DSMNet. DSMNet jointly optimizes density-
aware PCR and geometry-aware PCS for modeling complex
objects of sparse point cloud. Experiments show that DSMNet
achieves the best results in PCS and PCR, and can be general-
ized as SLAM post-processing to solve the difficult challenge
of high-precision modeling in complex environments.
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