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Abstract—Deep learning techniques have been widely used for 
semantic change detection (SCD) of remote sensing images (RSIs) 
and have shown encouraging performance. In this paper, we 
propose a novel neural network by embedding the difference 
enhancement (DE) module into the adjacent layers of ResNet 
for SCD of RSIs (DESNet), which can pay more attention to 
the changes of bi-temporal RSIs. Furthermore, we deploy the 
module of multi-scale parallel sampling spatial-spectral non-local 
(SSN) after feature extraction, which can effectively improve the 
robustness to large-scale changes and the integrity of the changed 
objects by fusing global features that sampled from the multi- 
scale feature space. The experimental tests demonstrate that our 
DESNet can achieve state-of-the-art accuracy on the SECOND 
dataset and the LandSat-SCD dataset. 

Index Terms—Remote sensing image; Semantic change detec- 
tion; Difference enhancement; Deep learning 

 
I. INTRODUCTION 

HANGE detection (CD) is to obtain the changed objects 
by joint analysis of two (or more) RSIs that obtained in 

the same area and at different times[1, 2, 3], and it has been 
applied to various kinds of real-world applications including 
land and resource survey, environmental monitoring, and urban 
management[4, 5]. 

Deep learning is a type of powerful numerical tools for 
extracting features and has been very popular in the com- 
munity of CD. Zhang and Lu [6] proposed a spectral-spatial 
joint learning network using a Siamese CNN (convolutional 
neural network) to extract a dual-temporal spectral-spatial joint 
representation. To address the lack of resilience to pseudo- 
variation information, Chen et al. [1] introduced a dual- 
attentive fully convolutional siamese neural network (DASNet) 
that employs weighted double marginal contrast loss (WDMC) 
to solve the sample imbalance issue. Chen et al. [7] and 
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Dong et al. [8] proposed to improve the capacity to describe 
contextual information in the network with a dual-time spatial 
and temporal domain-based Transformer. 

Although binary change detection (BCD) can provide the 
information about the location and the geometry of changes, 
the information is usual coarse-grained, and it can not describe 
the types of changes. On the contrary, SCD approaches can 
provide the location and the geometry of changes as well as 
the types of changes. Yang et al. [9], Ding et al. [10], and 
Mou et al. [11] introduced a triple-branch change detection 
paradigm in which two semantic segmentation branches divide 
the dual-temporal pictures into LCLU (Land Cover and Land 
Use) mappings, respectively, and the third one is used to 
identify the changes. Yang et al. [9] developed an asymmetric 
siamese network (ASN) for locating and identifying semantic 
changes by incorporating gating and weighting schemes into 
the decoder. Ding et al. [10] discussed the possible network 
architecture for semantic change detection and demonstrated 
that the late fusion method of separating semantic segmenta- 
tion tasks and change detection tasks (SSCD1) is appropriate 
for semantic change detection. Yang et al. [9], Ding et al. [10], 
and Caye Daudt et al. [12] designed deep neural networks 
with three CNNs that can extract the semantic information 
and changes individually. 

The above-mentioned SCD approaches have shown out- 
standing performance, however, two main issues are still 
remained: 1) For large-scale variation in RSIs, existing models 
are not sensitive enough to the edge of the changed objects. 
False alarms and missed alarms often occur at the edge 
of changed targets; 2) Many of them failed to capture the 
tiny discontinuous changes (e.g., vegetation degradation) in 
localized objects. Additionally, the non-local block [13] can 
obtain the global correlation using a self-attention mechanism, 
which benefits to capture long-range dependencies among 
inputs. Lei et al. [2] and Yuan et al. [14] improved the feature 
extraction by increasing the size of receptive field. 

In remainder of this paper, we firstly report how to construct 
DESNet by embedding the DE module into the adjacent layers 
of ResNet to ensure the network can focus on the changes of 
bi-temporal RSIs, and we then introduce the SSN module, 
combines multi-scale spatial global features to simulate large- 
scale variations, to enhance the integrity of the changed ob- 
jects. Finally, the performance of the experimental tests on the 
SECOND dataset and the LandSat-SCD dataset demonstrate 
the superiority of DESNet in terms of SCD accuracy and 
preservation of the integrity of changed objects. 
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Fig. 1. Illustration of DESNet. Layer-n (n = 1, 2, 3, 4) represents the n-residual block of the ResNet34, conv-1 denotes the convolution with kernel size of 
1 × 1, and conv-3 denotes the convolution with kernel size of 3 × 3. 

 
II. METHODOLOGY 

Given a pair of multi-temporal image I1 and I2, the goal 
of SCD is to find the mapping function that can present the 
changed areas and their semantic categories. 

  
(0, 0), LP = LP 

which can hinder the detection of objects that have undergone 
a change. Therefore, we embed the DE module between 
adjacent layers of the feature extraction backbone. This allows 
the network to learn the different information of dual-time 
images and establish semantic interaction among the dual-time 
branches. Hence, the network can filter out irrelevant changes 

 
1 2 1 2 

where P represents the same spatial location of the multi- 
temporal image I1 and I2, and LP , LP are the semantic classes 
of bi-temporal at P . 

Inspired by [10] that utilizes a siamese CNN encoder to 
extract features from dual-temporal images. We develop a 
modified siamese ResNet34 as the backbone for extracting 
features, which embeds DE module and SSN module into 
ResNet34 to improve the SCD accuracy (Fig. 1). The neural 
network utilizes ResNet34 with an embedded DE module 
(weight sharing) for dual time-phase remote sensing image 
processing. This extracts semantic and multiscale variation 
features from the dual time-phase data. The multiscale varia- 
tion features merge into the binary variation detection branch, 
creating a binary variation detection map. Concurrently, the 
SSN module enhances semantic features by fusing spatial 
and spectral information. The resulting semantic segmentation 
output undergoes a mask multiplication operation with the 
binary change detection map, ultimately producing the dual 
time-phase semantic change map. 

of the DE module is shown in Fig. 2. The original bi-temporal 
images are fed into the feature encoder followed by inputting 
the extracted feature maps to the DE module to enhance the 
bi-temporal difference features. The encoder consists of four 
feature extraction layers. The difference feature Di can be 
written as 

Di = |Fi1 − Fi2|, (2) 

where Fi1 and Fi2 represent the outputted bi-temporal feature 
maps of the i-th layer from the encoder, and |·| represents the 
absolute value operation to ensure Di is meaningful. 

We obtain the attention maps by 

Ai = σ(MLP (Maxpool(Di))+MLP (Avgpool(Di))),  (3) 

where Ai represents the attention map after the channel 
attention operation. MLP denotes the multilayer perceptron 
network, Maxpool and Avgpool represent the max-pooling 
operation and average-pooling operation, respectively, and σ 
is the sigmoid function. 

Once the attention map achieved, we can enhance the 
original features by 

′ = Ai × Fin + Fin, (4) 

where i = {1, 2, 3, 4} indexes the layer for feature extraction, 
n = {1, 2} indexes the dual-branch path and Fin denotes the 
output of the i−th layer for feature extraction on the n−th 
branch of the encoder. 

The enhanced difference feature maps obtained by perform- 
Fig. 2. Architecture of the DE module. ing subtraction operations on F ′ and F ′ can be expressed as 

1) DE module: In SSCDl[10], the semantic features ex- 
tracted by the backbone network lack attention to changes, 

D′ = |F ′ − F ′ |. (5) 

F 

Fscd(I1, I2) = , ∀P ∈ I, (1) and focus on the objects that have truly changed. The structure 
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Fig. 3. Architecture of the SSN module. 

 
2) SSN module: To enhance the modeling capability of 

CNN in space-time domain, the non-local mechanism is 
introduced into CD and can improve the detection accuracy 
by capturing the long-range correlation of pixels. However, 
the conventional non-local module usually failed to detect the 
small-scale changes and to keep the good integrity of the 
changed objects. As a result, we introduce SSN module after 
the feature encoder (Fig. 3). 

In non-local module, features output from the CNN encoder 
will be fed into three branches Q, K, and V individually, 

 

where N is the number of semantic classes, and yi and 
pi denote the GT (Ground Truth) label and the predicted 
probability of the i-th class, respectively. The binary change 
loss is defined as 

Lchange = −yclog(pc) − (1 − yc)log(1 − pc), (11) 

where yc and pc denote the GT label and the predicted 
probability of change, respectively. The semantic consistency 
loss Lsc is expressed as 

 
1 − cos(x , x ),  y = 1 

features at multi-scales by 

MSn = Avgpooln(x), (6) 

where x ∈ RC×H×W denotes the features, n indicates the 
scale of pooling, and MSn stands for the sampled map. Four 
sampling scales (n = 2, 4, 8, 16) are used in DESNet. We 
reshape these feature maps to RC×Mn , with Mn = (H/n) × 
(W/n). Thus, we define MPS as 

MPS(x) = Cat(R2, R4, R8, R16), (7) 

where Cat denotes the concatenation operation, and Rn(n = 
2, 4, 8, 16) stands for the feature maps at four different sam- 
pling scales. The shape of the output of MPS is C × S, with 
S =  n=2,4,8,16 Mn. 

We then obtain the interrelationship using the global fea- 
tures, 

Mc = MPS(Q) × MPS(K)T , (8) 

where T is transpose for matrix, and Mc ∈ RC×C is the 
channel attention matrix. 

Thus, the augmented feature map Fout can be obtained by 
 

Fout = softmax(Mc) × V + X, (9) 

where softmax is the softmax function,X and Fout are the 
input and out of SSN, respectively. 

The loss function used for training DESNet consisted of 
semantic loss, binary change loss, and consistency loss. The 
semantic loss Lseg can be written as 

1 N L = − y log(p ), (10) 
 

cos(x1, x2), yc = 0 

where x1 and x2 are feature vectors of a pixel on predicted 
semantic maps P1 and P2, respectively, and yc is the value at 
the same position on GT semantic change maps Lc. Therefore, 
we can obtain the loss function Lscd by 

 
Lscd = Lseg + Lchange + Lsc. (13) 

 
III. EXPERIMENTAL RESULTS 

We use two benchmark dataset to test the effectiveness of 
DESNet, including the SECOND dataset [9] and the LandSat- 
SCD dataset [14]. In the SECOND dataset, all RSIs have a 
size of 512 × 512 pixels and are annotated at pixel level. In 
the annotated labels, there are 1 class without changes and 
5 LC classes, namely non-vegetated land surface, trees, low 
vegetation, water, buildings, and playgrounds. For the test on 
the SECOND dataset, we split this dataset into a training set 
and a test set with the numeric ratio of 4:1 (i.e., 2375 RSIs for 
training and 593 RSIs for testing). The RSIs in Landsat-SCD 
have been annotated into the class without changes and 4 LC 
classes including farmland, desert, building and water (only 
the changed areas are annotated). The Landsat-SCD datset has 
8468 RSIs, with the spatial resolution of 416 × 416. We split 
them into training, validation and test sets with 7468, 560 and 
560 RSIs, respectively, following the numeric ratio of 8:1:1. 

We conduct the network training and testing on a worksta- 
tion with NVIDIA GeForce RTX 3060. We set the same hype- 
parameters for the two experimental tests. We set the batch 
size to 4, the epoch of training to 100 and the initial learning 
rate to 0.01, respectively. We adopt stochastic gradient descent 
(SGD) method to optimize the weights. Also, we augment the 

 

where {Q,K,V} ∈ RC×H×W . We can obtain the sampled 

training data by flipping and/or rotating the RSIs. We use the 

L sc = , (12) 
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overall accuracy (OA), mean Intersection over Union (mIou), 
Separated Kappa (Sek) coefficient and SCD-targeted F1 Score 

TABLE I 
COMPARISON WITH THE SOTA METHODS FOR SCD ON THE SECOND 

(Fscd )[10] to quantify the effectiveness of DESNet. DATASET 

Assume Q = {qi,j} is the confusion matrix, where qi,j 
represents the number of pixels that are classified into class 
i while their ground truth index is j (i, j ∈ {0, 1, ..., N} (0 
represents no-change). The OA represents the numeric ratio 
between the correctly classified pixels and the total image 
pixels, which can be defined as 

OA = 
L 

qii/ 
L L 

qij. (14) 
 

 
TABLE II 

COMPARISON WITH THE SOTA METHODS FOR SCD ON THE 
 

Also, we can obatin mIou by averaging the Ious between the 
non-changed and changed classes, 

(Iounc + Iouc) 
mIou = 

where Iounc = q00/(
�N

 

2 
qi0 +

�N
 

, (15) 
 

q0j −q00), and Iouc = 
N 
i=1 

N 
j=1 qij/

�N
 N 

j=0 qij − q00. IV. CONCLUSION 
Sek evaluates the segmentation of semantic classes, espe- 

cially in the changed areas. It is calculated based on the 
confusion matrix Q′ = {q′ }, where q′ = qij except that 
q′ = 0. The formula of Sek can be express as 

Sek = Kappa ∗ eIouc−1, (16) 

where Kappa = (p0 − pe)/(1 − pe), with p0  = 

In this paper, we propose a neural work for SCD of RSIs, 
where the DE module is embedded into the adjacent layers of 
ResNet and the SSN module is deployed after the module of 
feature extraction. DESNet can enhance the difference features 
when establish the connection among the bi-temporal semantic 
branches. Also, our DESNet can capture the multi-scale and 
long-range contexts to enhance the integrity of the changed 

�N  
q′ / 

�N  �N 
q′

 and pe = 
�N

 (
�N  q′  ∗ objects, which beneficial to improve its robustness to the 

�N  q′ )/(
�N  �N  q′ )2. small-scale changes. Experimental results on on the SECOND 

Fscd is used to evaluate the segmentation accuracy of the 
changed objects. It can be written as 

2 × Pscd × Rscd 

can effectively enhance the integrity of the changed objects 
and can achieve higher SCD accuracy compared with the 
competitive methods. 

Fscd = Pscd + Rscd 
, (17)  REFERENCES 

where Pscd  =  
�N

 qij/ 
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Fig. 4. Visual comparisons of DESNet and the state-of-the-art approaches on the SECOND dataset. (a) Pre-change Image. (b) Post-change Image. 
 

 
Fig. 5. Visual comparisons of DESNet and the state-of-the-art approaches on the LandSat-SCD dataset. (a) Pre-change Image. (b) Post-change Image. 
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