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CVGG-Net: Ship Recognition for SAR Images Based
on Complex-Valued Convolutional Neural Network
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 Abstract— Ship target recognition is a vital task in synthetic
aperture radar (SAR) imaging applications. Although
convolutional neural networks have been successfully employed
for SAR image target recognition, surpassing traditional
algorithms, most existing research concentrates on the amplitude
domain and neglects the essential phase information.
Furthermore, several complex-valued neural networks utilize
average pooling to achieve full complex values, resulting in
suboptimal performance. To address these concerns, this paper
introduces a Complex-valued Convolutional Neural Network
(CVGG-Net) specifically designed for SAR image ship
recognition. CVGG-Net effectively leverages both the amplitude
and phase information in complex-valued SAR data. Additionally,
this study examines the impact of various widely-used complex
activation functions on network performance and presents a
novel complex max-pooling method, called Complex Area Max-
Pooling. Experimental results from two measured SAR datasets
demonstrate that the proposed algorithm outperforms
conventional real-valued convolutional neural networks. The
proposed framework is validated on several SAR datasets.

Index Terms— Complex activation function, Complex Area Max-
Pooling, Complex-valued convolutional neural network,
Synthetic Aperture Radar(SAR), SAR target recognition.

I. INTRODUCTION
YNTHETIC aperture radar (SAR) is a high-resolution
active microwave imaging sensor that operates without
limitations related to weather or time [1], playing a
crucial role in both military and civilian applications.
SAR target recognition involves using variety of

methods to identify the category of targets in SAR images, and
it represents a popular research direction in microwave remote
sensing applications[2].
Presently, SAR target recognition methods can be roughly

categorized into traditional methods, deep learning-based
methods, and complex information-based methods. Traditional
SAR image target recognition methods rely on two key
technologies: feature extraction and target recognition. SAR
images possess unique geometric, mathematical, and
electromagnetic features that significantly differ from optical
images. Common feature extraction methods for SAR images
include template matching [3] and feature fusion [4]. Once
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features are extracted, an appropriate classifier is selected to
recognize and classify them. Popular classifiers currently
include support vector machines [5-6], sparse representation
classification[7], and others. However, most traditional
recognition methods are adaptations of optical pattern
recognition, characterized by complex feature designs and
limited recognition rates.
With the advent of deep learning technology, frameworks

such as Convolutional Neural Networks (CNNs) and Fully
Convolutional Neural Networks (FCNs) have demonstrated
promising performance in SAR image target recognition,
increasingly becoming mainstream in the field. Chen et al. [8]
and Ding et al. [9] employed CNNs for SAR image target
recognition, achieving impressive results on the MSTAR
dataset. Concurrently, Lin et al. [10] integrated channel
convolution and attention mechanisms, effectively focusing on
the target area within SAR images. Deep learning-based
methods can automatically extract features and perform
recognition tasks, eliminating the need for manual feature
design or complex physical modeling. However, the majority
of deep learning-based work emphasizes amplitude
information, while phase information remains a crucial factor
in SAR image target recognition [11]. SAR utilizes microwave
coherent imaging, rendering SAR images complex-valued [12].
Compared to real values, complex values offer superior
representation and generalization characteristics[13].
Consequently, there is an urgent need to develop SAR image
target recognition methods that fully harness the advantages of
complex-valued information.
In 2017, literature [14] first introduced the CV-CNN, which

employs complex average pooling to achieve better results
than real-valued networks on multi-channel POLSAR image
classification tasks. Yu et al. [15] proposed the CV-FCNN,
consisting only of convolutional layers and utilizing 1x1
complex convolution to learn cross-channel feature
information, while Zhang et al. [16] presented the CV-
MotionNet, a complex-valued convolutional neural network
architecture that eliminates the need for motion compensation
in classifying SAR moving ship targets. However, recognizing
targets from SAR images can be challenging due to the effects
of coherent speckle noise [17], which results in the
discretization of target pixels and poor target separability.
Although complex-valued SAR images contain rich phase
information, relying solely on amplitude information makes it
difficult to obtain satisfactory recognition results.
To address these issues, we propose a complex-valued

convolutional neural network (CVGG-Net) for target
recognition in SAR images that fully utilizes the amplitude
and phase information in complex-valued SAR data.
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Moreover, we introduce a novel complex max-pooling method,
termed "Complex Area Max-Pooling", which aids the network
in extracting more effective features. Compared to traditional
real-valued CNNs, the proposed method achieves higher
accuracy.

II. PROPOSED TARGET RECOGNITION METHOD

In recent years, CNNs have made significant strides in
computer vision tasks. The CVGG-Net, proposed in this study,
is based on the architecture of VGG[18] and incorporates the
complex-valued convolution operation from [19]. Specifically
designed for recognizing target objects in SAR images, the
network accepts single-channel input. As illustrated in Fig. 1,
the proposed CVGG-Net comprises 13 complex-valued
convolutional blocks, 5 complex area max-pooling layers, 3
complex fully connected layers, 1 amplitude evaluation layer,
and 1 softmax layer.

Fig. 1. Architecture of the CVGG-Net.

CVGG-Net is designed with a VGG-like architecture, closely
resembling VGG16. All layers within the network are complex-
valued, allowing complex convolutional layers to extract
information present in the amplitude and phase of complex SAR
images. This approach enables the extraction of richer features
compared to traditional deep learning methods. Complex area
max-pooling is utilized to reduce the number of network
parameters and enhance overall robustness. The complex fully
connected layers further extract target features, which are then
converted to real values in the last layer for calculating cross-
entropy loss with labels. Finally, the network leverages a
softmax layer for target recognition.

A. Complex-valued convolutional blocks
A complex-valued convolutional block consists of a

complex convolutional layer, a complex batch normalization
layer, and a complex activation function layer, as shown in Fig.
2.
1)Complex Convolutional Layer: Complex convolution is

an extension of traditional convolution in computer vision that
operates in the complex domain. Unlike traditional
convolution, which only utilizes amplitude information,
complex convolution extracts target features by using both
amplitude and phase information present in complex-valued
SAR images. This approach results in complex-valued
operations being added to the traditional convolution process.
Experimental results have demonstrated that complex
convolutional layers outperform conventional convolutional
layers, indicating their superiority in extracting meaningful
target features.

Fig. 2. Schematic diagram of complex-valued convolutional
blocks.

According to [19], when the convolution operation is
extended to the complex field, the complex vector I = x + yj
and the complex convolution kernel W = A + Bj perform
corresponding element-wise multiplication and summation
operations, where j = −1. Separating the real and imaginary
values in the complex feature layer, the complex-valued
convolution is equivalent to:

� ∗ � = (� + ��) ∗ (� + ��)
= (� ∗ � − � ∗ �) + (� ∗ � + � ∗ �)� . (1)

In the right hand side of the above equation, * stands for
traditional (real) convolution. x and y represent the real and
imaginary parts of the complex-valued vector respectively, A
and B represent the real and imaginary parts of the complex
convolution kernel, respectively. It can be seen that one
complex-valued convolution operation is equivalent to four
conventional convolution operations, as shown in Fig. 3.
2)Complex Batch Normalization Layer: In deep neural

networks, batch normalization is often employed to stabilize
the intermediate output values of each layer, promote model
convergence, and mitigate the risk of overfitting [20].
Batch normalization of complex values can be scaled by the

square root of the variance of the two principal components,
real and imaginary, through dividing the zero-centered data
(� − �(�)) by the square root of the 2×2 covariance matrix �
[19].

�� = �−�(�)
�

(4)

� =
���(ℜ{�}, ℜ{�}) ���(ℜ{�}, ℑ{�})
���(ℑ{�}, ℜ{�}) ���(ℑ{�}, ℑ{�}) (5)

3)Complex Activation Function Layer: In order to handle
complex-valued representations, a family of complex
activation functions have been proposed. CRelu introduced in
[21], extending the traditional Relu activation function to the
complex domain.

CRelu(z) = Relu(ℜ{z}) + jRelu(ℑ{z}) (6)
CRelu applies separate Relu activations to both the real and

imaginary parts of neurons, satisfying the Cauchy Riemann
equation when both parts are either positive or negative.
Existing literature lacks a definitive consensus on the most

suitable activation function for complex-valued neural networks.
The primary requirement for the function is to be nonlinear,
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with gradients that do not suffer from issues such as explosion
or vanishing during training [22]. In this paper, we have
evaluated several common complex-valued activation functions
from the perspective of ease of implementation. After extensive
experimentation, we have selected CReLU as the optimal
activation function.

Fig. 3. Schematic diagram of complex-valued convolution
structure.

B. Complex Area Max-Pooling
As shown in Fig. 4(a), many researchers split complex-

valued data into imaginary and real parts, and perform real
value-based complex max-pooling on the real and imaginary
parts, respectively. However, this approach is unreasonable
and unsuitable for complex-valued SAR data. Fig. 4(b)
illustrates the amplitude-based complex max-pooling
(CAMaxPool) proposed in [23], which preserves the complex
values corresponding to the coordinates with the maximum
amplitude. Building on CAMaxPool, this paper further
proposes complex area-based max-pooling, which selects the
coordinates corresponding to the maximum area, as shown in
Fig. 4(c).

(a)

(b)

(c)
Fig. 4. Three kinds of complex max-pooling. (a) Real

value-based complex max-pooling. (b) Amplitude-based
complex max-pooling. (c) Area-based complex max-pooling.

These two complex-valued max-pooling methods can be
viewed as a choice between the values of f1 and f2. As shown
in Fig. 5, f1 represents the length of the vector OA, and f2 is
the area of the triangle AOB.

f1(z) = x2 + y2 (7)
f2(z) = |xy| (8)

Fig. 5. Diagram of coordinates.

The proposed complex area max-pooling introduces an
alternative option for selecting pooling coordinates. In essence,
the proposed complex area max-pooling tends to retain
elements where both real and imaginary parts are present.
Although in the SAR context, we cannot provide an
appropriate physical explanation for this pooling strategy, our
experiments have demonstrated that area-based max-pooling
outperforms canonical amplitude-based complex max-pooling.

III. EXPERIMENTAL RESULTS

A.Experimental data and platform
Two SAR datasets are utilized to validate the proposed

framework. One is CSRSDD (Complex SAR images Rotation
Ship Detection dataset) annotated in [24]. The other is
OpenSARship, a public dataset released by Shanghai JiaoTong
University in 2017 [25].
1)CSRSDD. All data were collected in GF-3 Spotlight (SL)

mode with 1m resolution and HH or HV polarization mode. Each
image size was 1024x1024 pixels, containing more abundant
features. The rotating box is used to mark the target, and the
annotation format refers to the DOTA dataset format [26]. The
data is primarily concentrated in the port area, with the offshore
scene accounting for more than 80%, featuring a complex
background and significant interference. To suit the recognition
task, we cut the targets out according to the annotation files. The
amplitude slices are saved as .tiff files, and the complex slices
as .mat files, with the largest dimensions being 610x944 pixels
and the smallest 12x34 pixels, as shown in Fig. 6. Five categories
are screened out, as presented in Table I.
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(a) (b)
Fig. 6. Sample slices.(a) Light_boat. (b) Cargo.

TABLE I
THE NUMBER OF SAMPLES OF TARGETS ON CSRSDD

Class cargo ship1 ship2 light_boat other All

Train 67 99 464 533 145 1308

Test 28 42 199 228 62 559

2)OpenSARship. The dataset was collected from Sentinel-1
images and contains ground range multi-look products and slant
range single-look complex products with both VV and VH
polarization. In this paper, three types of ship targets—Bulk
carrier, Cargo, and Tanker—are selected for research. Ship
categories with too few samples are discarded, and each type of
ship is randomly divided into training and testing sets according
to Table II.

TABLEⅡ
THE NUMBER OF SAMPLES OF TARGETS ON OPENSARSHIP
Class Bulk carrier Container ship Tanker All

Train 169 169 169 507
Test 164 404 73 641

In order to facilitate network processing, all image slices in
both CSRSDD and OpenSARship are normalized, filled or
cropped to 224x224 pixels.
All experiments in this paper were conducted on Pytorch 1.8.1

and a device with Ubuntu18.04 system. Hardware features
include Quadro RTX 8000 GPU (40GB memory), CPU AMD
3950x and 64G RAM. Due to the limitation of GPU memory, we
set the batch size to be 32, the initial learning rate as 0.0001, and
adopt Adam optimizer for optimization, train it for 100 epochs in
total.

B. Comparison of Proposed network and Real-valued
Networks
As comparison for benchmark, a small complex-valued

network CVnet5 with five complex-valued convolution blocks is
built in this paper. Its structure is shown in Fig. 7.

Fig. 7. Architecture of the CVnet5.
To verify the effectiveness of the proposed method, we

compare it with commonly used real-valued networks such as
ResNet18, VGG16, and Net5, which is the real-valued
network corresponding to CVnet5. Each experiment is
performed 10 times, and the average value is taken as the final
experimental result. The results on the CSRSDD dataset and
OpenSARship dataset are shown in Table III.

TABLEⅢ
COMPARISON BETWEEN DIFFERENTMETHODS ON CSRSDD

AND OPENSARSHIP
Vnet5 Resnet18 Vgg16 CVGG-Net

CSRSDD 73.47 75.57 75.01 79.57
OpenSARship 69.73 70.75 70.05 71.07

On the CSRSDD dataset, Vnet5, which is the corresponding
real-valued network of CVnet5, has the least number of layers
and the weakest feature extraction ability, achieving only a
73.47% accuracy. In comparison, ResNet18 and VGG16
achieve 75.57% and 75.01% accuracy, respectively. Our
proposed CVGG-Net achieves 79.57% accuracy. On the
OpenSARship dataset, Vnet5, ResNet18, and VGG16 achieve
recognition rates of 69.73%, 70.75%, and 70.05%,
respectively, while our proposed CVGG-Net achieves 71.07%.
It can be seen that our proposed CVGG-Net outperforms the
real-valued networks.

C. Comparison of Different Complex Activation Functions
CRelu, CTanh, CElu, and CPrelu are extensions of the real-

valued activation functions ReLU, Tanh, Elu, and Prelu,
respectively. The recognition rates of these four activation
functions on the CSRSDD and OpenSARship datasets are tested
using Cvnet5, as illustrated in Fig. 7. The recognition rates are
presented in Table IV.

TABLEⅣ
COMPARISON BETWEEN DIFFERENT COMPLEX ACTIVATION

FUNCTIONS ON CSRSDD AND OPENSARSHIP
CRelu CTanh CElu CPrelu

CSRSDD 77.92 60.11 75.29 77.41

OpenSARship 70.59 58.42 68.49 69.27

It can be seen from Table III that CTanh has the worst
performance, CRelu has a better effect on complex network.
Therefore, in the following experiments, CRelu is used for
activation functions of complex network.

D.Comparison Between Complex Amplitude-based max-
pooling and Complex Area-based max-pooling
In this paper, the amplitude-based complex max-pooling

CAMaxPool proposed in [23] and the complex area max-
pooling proposed by us is compared, respectively, applied to
complex-valued networks Vnet5 and CVGG-Net, and the
experimental results on CSRSDD dataset and OpenSARship
dataset are obtained in TableⅤ.

TABLEⅤ
COMPARISON BETWEEN OURMETHOD AND OTHER

COMPLEX VALUED NETWORKS
CVnet5 +
amplitude-
based max-
pooling

CVnet5 CVGG-Net +
amplitude-
based max-
pooling

CVGG-
Net

CSRSDD 77.17 77.92 78.86 79.57
OpenSARship 70.59 70.89 70.20 71.07

It can be observed that, on the CSRSDD dataset, CVnet5
and CVGG-Net with amplitude-based max-pooling achieve
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77.17% and 78.86% recognition rates, respectively. With our
area-based max-pooling, the network performance is improved
by 0.75% and 0.71%, respectively. On the OpenSARship
dataset, the network performance is improved by 0.3% and
0.87%, respectively, with area-based max-pooling. These
results indicate that the proposed area-based max-pooling is
more effective than amplitude-based max-pooling for
complex-valued networks.

D.Comparison with other complex-valued networks
To verify the effectiveness of the proposed method, we

compared the recognition results with other complex-valued
convolutional networks, including CVnet5 and the complex-
valued network CV-Net proposed in [17]. As shown in Table
VII, the performance of the proposed method is superior to
other methods on both the CSRSDD and OpenSARship
datasets. Even when CV-Net is combined with our complex
area max-pooling, the recognition rates are increased by
0.07% and 0.23%. This improvement can be attributed to the
fact that the CVGG-Net, based on complex-valued
convolution blocks and complex area max-pooling, is better
suited for SAR image target recognition tasks.

TABLE VII
COMPARISON BETWEEN OUR METHODS AND OTHER

COMPLEX-VALUED NETWORKS
CVnet5 CVGG-

Net
CV-Net[17] CV-Net[17] +

area-based
max-pooling

CSRSDD 77.92 79.57 75.72 75.85
OpenSARship 70.89 71.07 66.70 66.93

Ⅳ. CONCLUSION
Traditional target recognition methods for SAR images often

neglect the phase information, which is crucial for recognition
accuracy. Considering that SAR images are inherently
complex-valued, we propose a complex-valued convolutional
neural network method named CVGG-Net for target
recognition in SAR images. Additionally, we introduce a
novel complex max-pooling method based on area, which
outperforms other complex max-pooling methods. Our
experimental results, obtained from CSRSDD and
OpenSARship datasets, demonstrate the effectiveness of our
proposed method, including the complex area max-pooling
and CVGG-Net algorithms. In the future, we plan to extend
complex-valued convolutional neural networks to other fields,
such as SAR object detection and semantic segmentation.
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