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Convolution and Attention Mixer for Synthetic
Aperture Radar Image Change Detection

Haopeng Zhang, Zijing Lin, Feng Gao, Junyu Dong, Qian Du, and Heng-Chao Li

Abstract—Synthetic aperture radar (SAR) image change detec-
tion is a critical task and has received increasing attentions in the
remote sensing community. However, existing SAR change detec-
tion methods are mainly based on convolutional neural networks
(CNNs), with limited consideration of global attention mecha-
nism. In this letter, we explore Transformer-like architecture for
SAR change detection to incorporate global attention. To this
end, we propose a convolution and attention mixer (CAMixer).
First, to compensate the inductive bias for Transformer, we
combine self-attention with shift convolution in a parallel way.
The parallel design effectively captures the global semantic infor-
mation via the self-attention and performs local feature extraction
through shift convolution simultaneously. Second, we adopt a
gating mechanism in the feed-forward network to enhance the
non-linear feature transformation. The gating mechanism is
formulated as the element-wise multiplication of two parallel
linear layers. Important features can be highlighted, leading
to high-quality representations against speckle noise. Extensive
experiments conducted on three SAR datasets verify the superior
performance of the proposed CAMixer. The source codes will be
publicly available at https://github.com/summitgao/CAMixer.

Index Terms—Change detection; Synthetic aperture radar;
Shift convolution; Gating mechanism.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) image change detec-
tion is widely acknowledged as a fundamental task in

interpreting and understanding remote sensing data. It has
significant implications for various applications, including land
cover monitoring such as land cover monitoring [1] [2], and
disaster monitoring [3] [4] [5]. With the increasing availability
of multitemporal SAR images, the development of reliable
change detection methods applicable to real-world scenarios
has become crucial [6].

While many supervised and unsupervised methods have
been proposed for SAR change detection, supervised methods
often require prior knowledge and high-quality labeled sam-
ples, which are inconvenient or even difficult to collect in real
applications. Furthermore, existing unsupervised methods are
commonly based on convolutional neural networks (CNNs),
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and have limitations in long-range feature modeling. There-
fore, in this letter, we primarily focus on developing robust
unsupervised SAR change detection method.

Recently, Liu et al. [7] introduced a spatial constraint on
CNN. This spatial constraint restricts the convolution oper-
ations to local regions, thereby improving change detection
performance. Saha et al. [8] proposed a Siamese convolutional
network. This network employs a shared set of weights to
handle multi-temporal SAR images. Wang et al. [9] employed
a dual-path denoising network for SAR change detection. The
network refines noise labels in training samples. Hafner et al.
[10] employed a dual-stream U-Net and performed data fusion
of Sentinel-1 and Sentinel-2 images. The fusion of multi-
source data, along with the dual-stream architecture, enables
accurate urban change detection. Liu et al. [11] proposed a
change detection approach based on image translation. By
transforming images of different types, it effectively detects
changes from multi-source data, providing a versatile solution
for unsupervised change detection.

Due to the inherent inductive bias in CNNs, existing meth-
ods possess the capability to discern subtle changes, such as
edges and corners. Hence, the aforementioned CNN-based
methods have demonstrated remarkable performance. How-
ever, with the emergence of Vision Transformer (ViT) [12],
Transformer-based models have achieved significant success in
various computer vision and image understanding tasks. These
models utilize a global attention mechanism to capture long-
range dependencies and compute informative features. Swin
Transformer [13] achieves excellent performance in many
vision tasks via shifted window self-attention computation.
Despite their success, Transformers are rarely applied to multi-
temporal SAR image analysis. Therefore, in this letter, we aim
to investigate the potential of attention mechanism for SAR
change detection task.

It is commonly non-trivial to design a robust Transformer-
like framework for SAR change detection, since it possess
the following challenges: 1) Transformers lack the inherent
inductive bias of CNNs, making them less effective when
training data is limited. 2) The non-linear transformation of the
feed-forward network (FFN) has limitations in robust feature
representation and is vulnerable to speckle noise.

To address these challenges, we present a Convolution and
Attention Mixer for SAR change detection, CAMixer for
short. First, to compensate the inductive bias for Transformer,
we combine self-attention with shift convolution in a parallel
way. The parallel design enriches feature representations by
modeling convolution and attention simultaneously. Addition-
ally, we adopt a gating mechanism in FFN to enhance the
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Fig. 1. Illustration of the proposed Convolution and Attention Mixer (CAMixer) for SAR image change detection. The overall pipeline of CAMixer consists
of three 3x3 convolutions and three mixing blocks. Each mixing block comprises a parallel Convolution and Attention Module (PCAM) and a Gated Feed-
Forward Network (GFFN).

non-linear feature representations. The gating mechanism is
formulated as element-wise multiplication of two parallel
linear layers. Important features can be highlighted, leading
to high-quality representations against the speckle noise.

In a nutshell, we summarize our contributions in threefold:
• We present a convolution and self-attention mixed net-

work for SAR change detection. To the best of our
knowledge, we are the first to explore the Transformer-
like network for multi-temporal SAR data interpretation.

• We propose a gated feed-forward network (GFFN) for
non-linear feature transformation. Gating mechanism is
formulated as the element-wise product of two parallel
paths of linear transformation layers, one of which is
activated with the GELU activation. Hence, the GFFN
selectively emphasizes important features, thereby miti-
gating the interference caused by speckle noise.

• Extensive experiments conducted on three SAR datasets
demonstrate the effectiveness of the proposed CAMixer.
In order to benefit other researchers, we have made our
code publicly available.

II. METHODOLOGY

A. Framework of the Proposed CAMixer
SAR change detection aims to identify the changes that

occur in the same area at different times (t1 and t2). The
overview of CAMixer is shown in Fig. 1.

Preclassification is performed to generate training samples
for CAMixer. Specifically, we first compute the difference
image by the log-ratio operator. Then, hierarchical fuzzy c-
means [14] are used to classify the difference image into
changed, unchanged, and intermediate class. The pixels from
changed and unchanged class are selected as training samples.

In the proposed CAMixer, several mixing blocks are em-
ployed for local and global feature extraction. Finally, the

extracted features are reshaped for classification. We now
describe the key components of the mixing block: 1) Parallel
Convolution and Attention Module (PCAM) and 2) Gated
Feed-Forward Network (GFFN).
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Fig. 2. Details of the PCAM. It consists of shift convolution and self-attention.
The output of shift convolution and self-attention are fused through element-
wise summation.

B. Parallel Convolution and Attention Module (PCAM)

As shown in Fig. 1, our PCAM is composed of shift
convolution and self-attention.

Shift convolution. Inspired by Wang’s work [15], we incor-
porate shift convolution for local feature extraction. It consists
of a series of shift operations and a 1 × 1 convolution. The
input features are evenly divided into five groups. The first
four groups are shifted in different directions (left, right, top,
bottom), while the last group remains unchanged.

In our implementation, we initially expand the number of
channels of the input data X to βC using a 1×1 convolution,
where β is the expansion ratio and C is the number of
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Fig. 3. Relationship between the number of the parallel blocks and the PCC
value.

channels. Following the shift operation, we reduce the feature
dimension back to the original size through another 1 × 1
convolution. This ensures consistency between the input and
output feature sizes. Consequently, the shift convolution can
be formulated as:

X̂ = W 2
1×1(shift(W 1

1×1(X))), (1)

where W 1
1×1 is the first 1 × 1 convolution, and W 2

1×1 is
the second 1 × 1 convolution. Through the shift operation,
channels of the input data are shifted, enabling cross-channel
information fusion through channel mixing. The second 1× 1
convolution leverages information from neighboring pixels,
while the shift convolution facilitates the incorporation of
large receptive fields, while maintaining a low computational
burden.

Self-Attention Computation. Inspired by ViT [12], we
first divided the image into non-overlapping patches (3 × 3
pixels), and encode each patch into a token embedding. Next,
we compute query (Q), key (K), and value (V ) via linear
transformation of the token embedding. The output of self-
attention is calculated by:

Attention(Q,K, V ) = Softmax(QKT /
√
d)V, (2)

where
√
d is a scaling factor. Finally, the output of shift

convolution and self-attention are fused via element-wise
summation. The obtained features are then normalized and
fed into the GFFN to generate the input of the next mixing
block.

C. Gated Feed-Forward Network

To enhance non-linear feature transformation, FFN is com-
monly used to process the output from the attention layer,
enabling a better fit for the input of the subsequent attention
layer. As illustrated in Fig. 1, we introduce the GFFN to
further enhance representation learning. We make two modi-
fications to the FFN: 1) multi-scale convolution and 2) gating
mechanism. Firstly, we employ 3 × 3 and 5 × 5 depth-
wise convolutions to enhance the extraction of multi-scale
information. Additionally, we utilize the gating mechanism

Fig. 4. Visualization of the feature representations on the Chao Lake I dataset.
(a) Features before the PCAM. (b) Features after the PCAM.

to emphasize the important components of the multi-scale
convolutions.

The proposed GFFN is formulated as:

X̂ = W 0
1×1Gating(X) +X, (3)

Gating(X) = σ(W 1
1×1(X))⊙ ϕ(X), (4)

ϕ(X) = W3×3(W
2
1×1(X)) +W5×5(W

2
1×1(X)), (5)

where W 0
1×1,W

1
1×1, and W 2

1×1 are 1× 1 convolution. W3×3

denotes 3 × 3 depth-wise convolution, and W5×5 denotes
5 × 5 depth-wise convolution. Here, the ⊙ is element-wise
multiplication, and σ is the GeLU activation. To improve
computational efficiency, we reduce the expansion ratio to 2
with marginal performance loss.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets and Evaluation Metrics
We conducted experiments on three datasets, namely the

Yellow River, Chao Lake I, and Chao Lake II datasets, to
validate the effectiveness of the proposed CAMixer. The
Yellow River dataset covers the Yellow River Estuary region
in China, with images captured in June 2008 and June 2009
using the Radarset-2 SAR sensor. The Chao Lake I and II
datasets cover a region of Chao Lake in China, with images
captured in May 2020 and July 2020, respectively, using the
Sentinel-1 sensor. During this period, Chao Lake experienced
its highest recorded water level. The ground truth change maps
for all three datasets were meticulously annotated by experts
with prior knowledge.

To evaluate the performance of change detection, we employ
five evaluation metrics: false positives (FP), false negatives
(FN), overall error (OE), percentage of correct classification
(PCC), and Kappa coefficient (KC).

B. Analysis of the Parallel Block Number
There are N PCAMs in the proposed CAMixer, and it

is a critical parameter that may affect the change detection
performance. To investigate the relationship between N and
change detection accuracy, we set N from 0 to 8. Fig. 3 shows
that when the number of PCAM increases, the value of PCC
first increases and then becomes stable. However, more PCAM
would increse the computational burden. Therefore, we set
N = 3 for the Chao Lake II dataset, and N = 5 for the
Yellow River and Chao Lake I datasets.
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(a)                         (b)                           (c)                         (d)                         (e)                          (f)                         (g)                         (h)                          (i)

Fig. 5. Visualized results of different change detection methods on the three dataset: (a) Image captured at t1. (b) Image captured at t2. (c) Ground truth
image. (d) Result by PCA-KM [16]. (e) Result by NR-CR [17]. (f) Result by NR-ELM [18]. (g) Result by DDNet [19]. (h) Result by MSAPNet [20]. (i)
Result by the proposed CAMixer.

TABLE I
ABLATION STUDIES OF THE PROPOSED CAMIXER

Method PCC on different datasets (%)

Yellow River Chao Lake1 Chao Lake2

Basic Network 95.28 96.40 97.10
w/o PCAM 96.02 97.25 97.98
w/o GFFN 96.14 97.58 98.13

w/o H-Clustering 96.18 97.76 98.21
Ours 96.28 98.39 98.35

C. Ablation Study

We conduct ablation experiments to verify the effectiveness
of the PCAM and GFFN for the change detection task. We
design the following four variants: 1) Basic Network represents
the backbone without PCAM and GFFN. (2) w/o PCAM
denotes the proposed method without PCAM, (3) w/o GFFN
denotes the proposed method without GFFN, and (4) w/o H-
Clustering denotes the proposed method employs fuzzy c-
means for preclassification instead of hierarchical clustering
[14].

The results in Table I demonstrate that compared to our
full model, either w/o PCAM or w/o GFFN consistently
exhibited lower performance on all datasets. This indicates
that the PCAM significantly enhances the change detection
performance, while the GFFN marginally improves it. It shows
that GFFN enhances the non-linear feature transformation.
Furthermore, the proposed method using hierarchical cluster-
ing demonstrates superior performance compared to w/o H-
Clustering. It is apparent that hierarchical clustering generates
more reliable training samples for the proposed CAMixer,
consequently enhancing the change detection performance.

To further verify the validity of our proposed PCAM, we
used the t-SNE [21] tool to visualize the characteristics before
and after the module. As shown in Fig. 4, the feature repre-
sentations after PCAM are noticeably more discriminative.

TABLE II
CHANGE DETECTION RESULTS OF DIFFERENT METHODS ON THREE

DATASETS

Method Results on the Yellow River dataset

FP FN OE PCC (%) KC (%)

PCA-KM [16] 1835 2798 4633 93.76 78.34
NR-CR [17] 2257 2344 4601 93.80 79.03

NR-ELM [18] 629 3806 4435 94.03 77.80
DDNet [19] 1239 2161 3400 95.42 84.12

MSAPNet [20] 1206 2026 3232 95.65 84.96
Proposed CAMixer 619 2145 2764 96.28 86.86

Method Results on the Chao Lake I dataset

FP FN OE PCC (%) KC (%)

PCA-KM [16] 12126 1786 13912 90.57 52.08
NR-CR [17] 2906 2892 5798 96.07 71.34

NR-ELM [18] 2282 3370 5652 96.17 70.71
DDNet [19] 3858 1182 5040 96.58 77.60

MSAPNet [20] 6632 1108 7740 94.75 68.95
Proposed CAMixer 1178 1203 2381 98.39 89.84

Method Results on the Chao Lake II dataset

FP FN OE PCC (%) KC (%)

PCA-KM [16] 8432 2273 10705 92.74 65.69
NR-CR [17] 959 2397 3356 97.72 86.63

NR-ELM [18] 595 3836 4431 97.00 81.27
DDNet [19] 3107 779 3886 97.36 86.18

MSAPNet [20] 2006 837 2843 98.07 89.55
Proposed CAMiser 1416 1019 2435 98.35 90.84

D. Experimental Results and Comparison

We compare the proposed CAMixer with five baselines,
including PCA-KM [16], NR-CR[17], NR-ELM[18], DDNet
[19] and MSAPNet [20]. Fig. 5 illustrates the visual com-
parison of the change maps generated by different methods
on three datasets. The corresponding quantitative evaluation
metrics are illustrated in Table II.
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Results on the Yellow River dataset: The Yellow River
dataset is severely degraded by speckle noise. As a result, it is
difficult to obtain satisfactory results by conventional methods.
The qualitative results of this dataset are shown in the first
row of Fig. 5. It can be observed that the proposed CAMixer
suppresses the false alarms effectively, and the change map of
CAMixer is the most similar to the ground truth. Furthermore,
the CAMixer reports the best PCC value, gaining 0.63% and
0.86% improvement of PCC over DDNet and MSAPNet,
respectively. DDNet and MSAPNet are CNN-based methods,
and it is evident that CAMixer improves the change detection
performance by introducing the Transformer-like architecture.

Results on the Chao Lake I and II datasets: The qualitative
results of Chao Lake I and II datasets are shown in the
second and third rows of Fig. 5, respectively. The proposed
CAMixer greatly reduces the false alarms, and obtains the best
PCC and KC values on both datasets. It is evident that the
proposed CAMixer improves the feature representations via
parallel convolution and self-attention computation. The paral-
lel design of shift convolution and self-attention extracts local
and global features simultaneously, leading to high-quality
representations against the speckle noise. Additionally, the
GFFN selectively emphasizes critical features, which further
mitigates the interference caused by speckle noise.

From the above experiments on three SAR datasets, it can
be seen that the proposed CAMixer has better performance
than several traditional methods and CNN-based methods.
Furthermore, CAMixer reports the best KC values, gaining
1.90%, 12.24%, and 1.29% improvement over the second-best
one on three datasets, respectively. It should be noted that KC
value is of the most convincing evaluation metrics for SAR
change detection. Moreover, the CAMixer obtains balanced
FP and FN values on three datasets. It demonstrates that
the PCAM captures abundant convolution and self-attention
feature interactions, and contributes to better change detection
results.

IV. CONCLUSIONS AND FUTURE WORK

In this letter, we propose CAMixer, a novel SAR change
detection network that produces reliable change detection re-
sults. To address the inductive bias limitation of Transformer-
like networks, we combine self-attention with shift convolution
in a parallel manner. Moreover, we propose a gated feed-
forward network to enhance non-linear feature transformation,
formulated as the element-wise multiplication of two parallel
linear layers. Extensive experiments on three SAR change
detection datasets demonstrate the superiority of CAMixer and
validate the effectiveness of its two critical components. In the
future, we plan to investigate the fusion of mutli-source remote
sensing data to improve the change detection performance.
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