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Abstract :   
 
Recently, deep convolutional networks have made great progress on the task of super-resolution, i.e., 
reconstructing images with finer spatial resolution. However, although the reconstructions are visually 
impressive, they may lack physical consistency. This aspect is sought in remote sensing, where the 
resolution of satellite imagery (e.g., Sentinel-2) may be too coarse to characterize the physical structure 
and dynamics of certain landscapes. Through the study of flooding dynamics in wet grasslands, we 
propose a super-resolution approach that allows deriving fine resolution patterns that are visually realistic 
and physically exploitable. This approach is based on an architecture, Fusion-UNet, allowing the fusion 
of multispectral data with a digital terrain model (DTM) associated with a loss function combining content, 
structure, and segmentation losses. Our results show that this model can precisely predict water levels 
(WLs) while restituting the fine structure of the landscape. This approach allows to refine the production 
of hydrological and ecological indicators to define the state of the ecosystem. 
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Super-resolution by fusing multi-spectral and terrain
models: application to water level mapping

Alvarez-Vanhard Emilien, Fernandez-Garcia Guglielmo, Corpetti Thomas

I. INTRODUCTION

Monitoring the water levels in wet grasslands is of prime 
importance to recover important ecosystem functions and 
to help managers to better manage their resources. Indeed, 
water dynamics of these areas lead ecological, hydrological, 
physical, biogeochemical, climatic and agronomic functions 
[1]–[3]. However, due to their spatiotemporal variability, 
flood measurements (water extent, level and residence time) 
remain a challenge. To this end, Sentinel-2 (S2) data can 
be an appealing solution.

The arrival of S2 data has indeed caused significant changes 
in the monitoring of land use/land cover [4]. Thanks to its good 
compromise between resolution on spatial (from 60 m to 10 m 
depending on spectral bands), temporal (one revisit every 5 ≈ 6 
days) and spectral (12 bands) axes, many new use cases have 
been explored in a wide range of applications related either to 
agriculture monitoring [5], imperviousness estimation [6], 
vegetation [7], or water quality for example [8]. S2 has also 
revealed to be an appealing complementary source to other 
satellite (Sentinel-1 radar, higher spatial resolution as 
WorldView-3 satellite with 1.24m) for data fusion [9], [10] as 
for example in [11] for soil moisture analysis.

Sentinel-2 features make such data widely used, in par-
ticular for the monitoring of dynamics, as floods, through 
the production of temporal series revealing fine patterns as 
seasonal and monthly intra-variability. However, in some 
applications, the 10 m spatial resolution may be limited. 
This is more generally true in the field of ecology where 
important variables generally belong to higher resolutions [12]

such as the biological effects of irregular flooding due to
small scale topographic features (e.g. ditches). The particular
example of flood dynamics monitoring in wet grasslands is
relevant because these areas are composed of fine spatial
patterns (below 10 m spatial resolution) that reflect habitat
structure and ecosystem fragmentation [1], [13]. Moreover,
other physical fine-scaled variables play important roles in the
characterization of wetlands, such as water level or volume,
that have to be evaluated together with the spatial patterns.

The recent progress of machine learning methods, especially
with convolutional neural networks (CNN), associated with
the availability of high-resolution data make now possible
the reconstruction of high-resolution images using S2 data.
This task, called super-resolution (SR), consists in learning
an upscaling model to improve the spatial resolution of S2
data. In practice, from pairs of S2 images and corresponding
high-resolution, the idea is to learn a model able to improve
the initial S2 resolution and authorize an analysis of spatial
patterns at a finer scale.

Today, some techniques give visually impressive results
using adversarial losses [14]. However, despite being visually
plausible, super-resolved images remain not exploitable in
terms of physical consistency. The use of Generative Ad-
versarial Networks (GANs) indeed generates patterns which,
although realistic, do not correspond to any reality on the
field, preventing practical applications related, for example,
to vegetation monitoring, urban growth analysis, estimation of
flooded areas, etc [15].

In this paper, we tackle the issue of estimating high res-
olution water level (WL) images from S2 images. To this
end, we exploit the fact that flooded areas are connected to
local topology and we propose an original neural network
that fuses S2 images with Digital Terrain Models (DTM)
to estimate water level images with high spatial resolution.
Furthermore, to eliminate the use of adversarial losses likely
to generate realistic but physically inconsistent patterns, we
suggest relying on structural/content losses to derive visually
realistic and physically exploitable patterns.

II. RELATED WORKS

Based on the fact that the topography largely controls
the spatial distribution of flooded areas, most of the super-
resolution of water level mapping are today performed by mix-
ing a coarse resolution water surface information (e.g. satellite
observations) with finer resolution data, usually issued from
DTM. For example, the studies in [16]–[18] propose optimal
fittings of the position of flood mask profiles according to
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the underlying terrain information to extract higher resolution
flooded information. Such approaches are straightforward but
suffer from some drawbacks : 1) sensitivity to classification
errors, particularly due to the coarse resolution ; and 2)
difficulty to detect a reliable boundary between flooded and
non-flooded areas.

On the computer vision side, with the democratization of
CNN architectures in the last decade, several techniques have
emerged to design relevant reconstruction of high-resolution
data from low-resolution ones (see for example [19], [20])
or to improve the resolution of some spectral bands [21],
[22]. By definition, the super-resolution task is subject to
two major problems: i) ill-posedness: several high-resolution
images can give the same low-resolution one and ii) accuracy
analysis: the definition of an objective criterion evaluating
the quality of an estimated super-resolution image is tricky
(usual image-comparison metrics do not discriminate details
and high frequencies). Among the various CNN architectures,
GANs have brought interesting solutions to these two issues
[23]. In particular, they have partly solved the problem of
finding an objective criterion to optimize: usual loss functions
based on image comparisons are replaced by an adversarial
task where a generative network is trained to generate fake
data with realistic features and a discriminative network is
trained to recognize whether the input is real or fake data.
The first network tries to fool the second network and an
increase of the error rate of the latter means that it becomes
increasingly difficult to differentiate false data from real data,
until the generated data is sufficiently realistic. GAN based
super-resolution approaches are the current state of the art for
SR tasks by directly learning an end-to-end mapping between
low-resolution and high-resolution images.

Although for everyday life image analysis applications,
super-resolution images produced by GAN-based networks are
of excellent quality, when focusing on details related to the
physics of the reconstructed objects, one observes errors or
a lack of physical consistency. For example, in the case of
water level mapping, GANs do not ensure that topographical
features (e.g. ditches, riverbanks, depressions, etc.) and their
geographical location are respected. This is due to the ad-
versarial losses that are likely to introduce visually realistic
images, but physical consistency is not ensured. This is the
reason why, in addition to adversarial losses, some studies
have proposed to use perceptual losses based for examples of
features from Visual Geometry Group (VGG) neural network
[24], [25] or on contours [26].

In this study, we suggest to super-resolve S2 images to
recover flooded areas by i) efficiently combining the DTM
(to rely as much as possible on the physics of wet grasslands)
to S2 and ii) exploiting various loss functions to reconstruct
realistic patterns, without the use of GANs.

III. MATERIALS AND METHODS

A. Data Description

We address the super resolution’s problem for water-level
estimation in the Sougéal marsh (175 ha), part of the river
basin of the Couesnon valley (France, 48.52 N, 1.53 W,

Brittany region). The flooding dynamics of wet grasslands are
characterised by high spatiotemporal variability, due to the het-
erogeneity of the topography, hydraulic conductivity of soils
and hydrological discontinuities [2]. Therefore marshes are
usually divided in hydrogeomorphological units, i.e. portions
of space whose hydrological response is homogeneous with
respect to external stresses. This work used three piezometers
for measuring WL in three different units through the study
site.

Atmospherically corrected [27] cloud-free S2 images were
downloaded for 74 dates between 01-01-2017 and 23-04-2021,
chosen to take seasonal dynamics into account: in order to
avoid an imbalance between flooded and non-flooded areas
the acquisitions were mainly selected during the wet period.
Only bands with ground resolution between 10 m and 20 m
were used.

DTM with 5 cm ground resolution was generated from pho-
togrammetric processing of Unmanned Aerial Vehicle (UAV)
images [28], [29]. The flight was carried out during the
summer of 2020, when the grazing is well advanced in order
to have a low vegetation cover. High vegetation patches and
features that stand out from the scene surface (e.g. cows)
have been removed and elevation has been approximated by
Inverse Distance Weighting (IDW) interpolation. The effect of
vegetation is not fully corrected as vegetation after grazing
is around 10 cm high which corresponds to the vertical
error of the DTM : 9 cm (+/- 6 cm), estimated via 50
positioning surveys by differential Global Navigation Satellite
System with Post-Processed Kinematic (centimetric vertical
precision). This vertical error identified in the production of
ground truth data represents a decimeter bias in assessing the
accuracy of predicted water levels. The DTM was resampled at
1 m to reduce the scale factor with the S2 data. We assume that
topographic changes are negligible over the studied period.

The data has been, first, divided into tiles of 112x112 pixels,
resulting in 4620 tiles. Then, this dataset was divided into three
sets, with the train set comprising data from the years 2017-
2019 (75% of total tiles), the validation set 2020 (23%) and
the test set 2021 (2%). Finally, data mirroring and random
deformation techniques were used for data augmentation.

B. Fusion network for super resolution

Our approach, called Fusion-UNet (Fig. 1), consists of
merging two sources of information useful for estimating
surface water heights: coarse-resolution optical data (S2) and
fine-resolution topographic data (DTM). The data fusion is
performed through a semantic segmentation model (U-Net
[30]) adapted to super-resolution and regression.

Audebert et al. [31] have proposed different fusion strategies
that go beyond the simple concatenation of input data, as
treating each data source in its own encoding branch. Inspired
by this work, we applied an early fusion using a third ”virtual”
branch that allows fusion during encoding in a symmetrical
way, i.e. by treating the two data sources independently. This
approach, which encodes the two data sources separately and
in parallel, avoids imbalances arising from the different nature
of the data. The ”virtual” branch corresponds to the sum at
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Fig. 1. Fusion-UNet workflow.

each level of the two encoding branches, which is then used
for explicit connections to the decoding branch (and also at the
lowest encoding level). In addition, a regularisation step with
batch normalisation was added to the original blocks [32].

Due to the task at hand, that is pixel-wise regression from
fused data, the structure of the loss function plays a critical
role. Given an input y ∈ Rd1×d2×c, with d1 and d2 its sizes
and c the number of channels, and the predicted output ŷ ∈
Rd1×d2

, the loss function L(ŷ, y) can be written as a sum of
three parts:

L(ŷ, y) = λpℓ
ϕ,j
percep.(y, ŷ)+λcℓcont.(y, ŷ)+λsℓseg.(y, ŷ) (1)

where ℓϕ,jpercep.(y, ŷ) is a perception function [25], ℓcont.(y, ŷ)
a content function and ℓseg.(y, ŷ) a segmentation function. All
three terms are preceded by a λ hyperparameter to adjust its
importance with respect to the others. For the perception term,
we used a pre-trained network (VGG-16 [33]) as a feature
extractor, with ϕj the features at the jth convolutional layer :

ℓϕ,jpercep.(y, ŷ) =
1

cjd1jd
2
j

|ϕj(ŷ)− ϕj(y)| (2)

with cj ,d1j and d2j depending on the layer. This term encour-
ages the network to generate similar features for ŷ and y. On
the other hand, ℓcont.(y, ŷ) is the simple L1 distance between
input y and output ŷ:

ℓcont.(y, ŷ) =
1

d1d2
|ŷ − y| (3)

Finally, ℓseg.(y, ŷ) forces to consider non-wet surfaces as
0 m water heights, with reference data classified as ”water”
and ”non-water”. This allows us to frame this part as a
semantic segmentation term and to use the IoU (Intersection-
over-Union) as a loss function.

The hyperparameters have been chosen empirically and kept
fixed for all experiments, except for the λ parameters: an SGD
optimiser was used with a momentum of 0.9, gamma of 0.2,
step of 15. Due to computing limitations, all experiments ran
for 50 epochs with a batch of 10 images. The model algorithm
is written with Pytorch and is available here : https://gitlab.
com/EmilienAlvarez/spim-nn.

IV. EXPERIMENTS AND DISCUSSION

In this section, we aim to evaluate the contribution of the
fusion strategy and the loss function for reconstructing high-
resolution images of flooded areas. For the first task, we
compared Fusion-UNet with a standard UNet with two con-
figuration: with (UNet-MNT-S2) and without (UNet-S2) DTM
data as auxiliary data in input. To evaluate the performance
of the models on N estimated data {ŷ1, ..., ŷN}, the mean
absolute error (MAE), which compares the ŷ estimates with
the y reference data, is often used :

MAE =
1

N × d1 × d2

N∑
k

d1∑
i

d2∑
j

|ŷk(i, j)− yk(i, j)| (4)

where, i and j correspond to the pixel’s indices.
Given the strong disparity in the distribution of water levels

in the reference data - non-flooded and lightly flooded areas
are over-represented in the dataset - the use of the MAE, alone,
may then appear biased. Therefore, we adjust this metric by
rebalancing the contribution of WLs in its calculation. The
sample is then divided into G ranges of 10 cm WL, i.e.: [0];
(0, 10]; ... (G− 10, G]. The adjusted MAE (MAEadj) is then
the average of the MAEs of each G ranges, i.e. :

MAEadj =
1

G

G∑
k=0

MAEk (5)

with k an index running on the total G ranges.

A. Contribution of the fusion strategy

The performance evaluation of each model is presented in
Table I. The model UNet-S2 shows the worst performance
with an MAEadj of 0.16 m on the test dataset. On the same
dataset, the models UNet-MNT-S2 and Fusion-Unet both show
better performances with an MAEadj of 0.09 m. However,
on the training and validation datasets, Fusion-Unet slightly
outperforms UNet-MNT-S2 by +0.01 m. Finally, whatever the
model, the results on the validation and test dataset are better
than on the training. This point accounts for an imbalance
between the learning, validation and test sets due to the inter-
annual variability of the flooding dynamics. Indeed, the high
ranges of WL, i.e. >140 cm, are rare and only present in the
training set.

Visually, we can see differences between the predictions
of the different models (Figure 2). It can be seen that the
predictions of the model UNet-S2 are correct for coarse spatial
patterns but do not recover fine patterns. The predictions of the
models UNet-MNT-S2 and Fusion-UNet, which incorporate
the fine resolution DTM, are closer to the reference with very
similar spatial patterns. However, the UNet-MNT-S2 model
restores in its predictions the coarse resolution pixel raster of
the Sentinel-2 data, unlike the Fusion-UNet model.

These results show, visually and via the evaluation metric
(MAEadj), that the Fusion-UNet model performs better than
the UNet-S2 and UNet-MNT-S2 models. Therefore, the rest
of the performance and sensitivity evaluation focuses on this
model and validation dataset.
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TABLE I
PERFORMANCE COMPARISON (MAEadj IN METER) BETWEEN THE

MODELS UNET-S2, UNET-MNT-S2 AND FUSION-UNET.

Models Training Validation Test

UNet-S2 0.27 0.24 0.16
UNet-MNT-S2 0.17 0.14 0.09
Fusion-UNet 0.16 0.13 0.09

Fig. 2. Visual comparison of the water level predictions of the models UNet-
S2, UNet-MNT-S2 and Fusion-UNet. a) Sentinel-2 false colour composition
(R: B8 - G:B4 - B:B3); b) UAV digital terrain model; c) reference water level;
d) UNet prediction (S2); e) UNet prediction (S2 + DTM); and f) Fusion-UNet
prediction

B. Contribution of the loss function

We first evaluated the contribution of the perception loss
in the computation of the compound loss. We evaluated the
perception loss computed for various positions of the VGG
network from low to high abstraction levels. The first layers
(low) indeed concentrate fine-scale structures, while deeper
layers (high) extract more global scales. We observed that each
layer used separately could not significantly reduce alone the
MAEadj value contrary to the use of the mix of each layer
(Table IV-B).

TABLE II
PERFORMANCE COMPARISON (MAEadj IN METER) BETWEEN THE USED

OF DIFFERENT VGG LAYERS FOR THE COMPUTATION OF THE PERCEPTION
LOSS.

Low Mid Mid-High High Mix

MAEadj 0.13 0.13 0.13 0.13 0.11

Then we analyzed the efficiency of content vs perception
losses, i.e. ℓcont. and ℓpercep. proposed in relations (3) and (2).
To this end, we train a network with λc = 1− λp and λs = 0
for a set of values of λp ∈ [0, 1] (Fig. 3). This experiment
shows that the perception loss is better optimized with λp

tending to 1, i.e. higher weighting for this component in the
compound loss, contrary to the content loss and the MAEadj

metric which are optimal for around 0.5-0.6, i.e. with an equal
mix. The segmentation loss shows no trend in the variation of
the λp coefficient and therefore does not seem to be influenced
by the mixture of these two components.

Fig. 3. Losses and metrics comparison for various weighting of the content
and perception loss.

Fig. 4. Losses and metrics comparison for various weighting of the segmen-
tation loss.

Finally, we evaluated the contribution of the segmentation
loss ℓseg. with λc = λp = 1 and a set of values of λs ∈ [0, 1]
(Fig. 4). We observed that this component in the compound
loss has no significant influence on the MAEadj metric but
enhances the distinction between water and no-water surface
as the segmentation loss is minimized with λs equal to 0.5,
moreover it slightly reduces the perception and content losses.

V. CONCLUSION

The proposed approach exploits the super resolution based
on CNNs to map water levels at fine resolution from S2
satellite data. This approach allowed to improve water level
mapping in wet grasslands and to derive indicators of ecosys-
tem status for better management.

The Fusion-UNet and UNet-MNT-S2 models make restor-
ing physically exploitable patterns possible, but the former
provided more visually realistic results. A sensitivity study on
the different components of the compound loss function has
allowed to improve the results and to show the interest in
crossing content, perception and segmentation losses.

Future research should focus on exploiting SAR data as
well, in order to avoid the cloud constraint and to increase the
acquisition time series. Domain adaptation methods should be
used to jointly process these heterogeneous data through a
single model.
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