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ADASR:An Adversarial Auto-Augmentation
Framework for Hyperspectral and Multispectral

Data Fusion
Jinghui Qin†, Lihuang Fang†, Ruitao Lu, Liang Lin, and Yukai Shi∗

Abstract—Deep learning-based hyperspectral image (HSI)
super-resolution, which aims to generate high spatial resolution
HSI (HR-HSI) by fusing hyperspectral image (HSI) and multi-
spectral image (MSI) with deep neural networks (DNNs), has
attracted lots of attention. However, neural networks require
large amounts of training data, hindering their application in
real-world scenarios. In this letter, we propose a novel adver-
sarial automatic data augmentation framework ADASR that
automatically optimizes and augments HSI-MSI sample pairs
to enrich data diversity for HSI-MSI fusion. Our framework
is sample-aware and optimizes an augmentor network and two
downsampling networks jointly by adversarial learning so that
we can learn more robust downsampling networks for training
the upsampling network. Extensive experiments on two public
classical hyperspectral datasets demonstrate the effectiveness of
our ADASR compared to the state-of-the-art methods.

Index Terms—Adversarial training, data augmentation, hyper-
spectral, multispectral, deep learning

I. INTRODUCTION

RECENTLY, there has been a growing interest in devel-
oping deep neural networks [1], [2], [3], [4], [5], [6]

for hyperspectral image (HSI) super-resolution which is a
task of producing HSIs from contiguous spectral information
in narrow spectral bands. The HSI can be expressed as 3D
tensors with 2 spatial dimensions and 1 spectral dimension [7].
Training a neural network robustly often relies on massive and
diverse data. However, unlike other image super-resolution
tasks with much more synthetic or real training samples,
hyperspectral image data is scarce, and the spectral dimension
of hyperspectral image data is very high. Therefore, it is non-
trivial to train a stable and effective deep neural network.

Nowadays, data augmentation (DA) is an efficient strategy
to lift up the model generalization performance by artificially
increasing the volume and diversity of the training data.
Conventional DA strategies, such as image rotation [8], image
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flip [9], etc., often rotate the input image randomly in a pre-
defined augmentation angle. Despite its effectiveness on image
classification and image super-resolution tasks, this conven-
tional DA approach may lead to insufficient training due to the
following reasons: 1) the network training and DA are regarded
as two independent phases without joint optimization; 2) the
same fixed image rotation augmentation is applied to all input
samples without considering the complexity of the samples.
Different samples need different rotation angles. Hence, it is
insufficient to apply conventional DA to augment the training
samples [10].

To improve the effect of hyperspectral and multispectral
image fusion by augmenting the input samples and train-
ing a more stable network, we propose a novel adversarial
automatic augmentation framework that jointly optimizes an
augmentor network and two downsampling networks, such that
the augmentor can learn to produce augmented samples by
rotating them at appropriate angles driven by their content
to make the two downsampling networks more stable for
training upsample network at the next stage. Specifically, in
the first stage, the augmentor network learns data variations
to enrich the input samples by using the loss from a spatial
downsampling network and a spectral downsampling network
as the feedback. Meanwhile, these downsampling networks
take charge of learning a degradation procession on ensuring
the generated augmented samples to be semantic-consistent
with low-resolution multispectral images so that these down-
sampling networks can generate appropriate and valuable
feedback to optimize the augmentor network. The augmentor
network and the downsampling networks are trained in the ad-
versarial learning setting. In the second stage, we train a spec-
tral upsampling network by using the low-spatial-resolution
multispectral images generated by the spatial downsampling
network and the high spatial resolution multispectral images
with reconstruction loss and consistency loss so that we can
take full advantage of the priors learned by downsampling
networks. The experimental results on two public classical
hyperspectral benchamrks demonstrate the effectiveness of
our method compared to the state-of-the-art HSI-MSI fusion
methods.

II. METHODOLOGY

The main contribution of this work is the adversarial
auto-augmentation framework that automatically optimizes
the augmentation of the input samples for more effective
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Fig. 1. Overview. (a) The adversarial auto-augmentation framework: We jointly optimize a data augmentor G and two downsampling networks, a speDnet Dy

and a spaDnet Dz at the first stage. The augmentor G learns to generate a sample-specific augmentation function that takes into account the transformation of
the image rotation angle, increasing the data diversity for training a better downsampling network. In the second stage, we optimize the spectral upsampling
network (SpeUnet) U with the help of the low-resolution multispectral images generated by the fixed downsampling network Dz . (b) The design of our data
augmentor G. The data augmentor G learns to predict the angle to augment the input sample for the degradation model learning.

training of the spatial downsampling network. As shown in
Fig. 1, our adversarial auto-augmentation framework consists
of four modules, including an adversarial data augmentor
G, a spatial downsampling network (SpaDnet) Dy , a spec-
tral downsampling network (SpeDnet) Dz , and a spectral
upsampling network (SpeUnet) U . These modules will be
optimized in two training stages. At the first stage, G, Dy ,
and Dz are optimized jointly in the adversarial training setting.
The augmentor G takes charge of learning a sample-specific
rotation angle transformation to increase the data diversity for
optimizing downsampling networks Dy and Dz so that we
can generate high-quality low-resolution multispectral images
for upsampling. Meanwhile, the losses generated by the two
downsampling networks will be as feedback to optimize the
augmentor G. In the second stage, we optimize the speUnet U
with the help of the low-resolution multispectral images gen-
erated by the fixed spatial downsampling network Dz and the
high spatial resolution multispectral images by reconstruction
loss and consistency loss.

A. Downsampling Networks

Let the low-spatial-resolution HSI Y ∈ Rwh×C and the
low-spectral-resolution MSI Z ∈ RWH×Cm be the spatially
degraded version and spectrally degraded version of ground-
truth HR-HSI X ∈ RWH×C . Here, W , H , and C are the
width, height and spectral bands of X while w and h are
the width and height of Y, and Cm is the spectral band of
Z ( w ≪ W ,h ≪ H , Cm ≪ C ), respectively. Then, the
degradation models HSI and MSI can be modeled as follows:

Y = PX, (1)
Z = XS, (2)

where P ∈ Rwh×WH denote the spatial degradation pipeline,
which consists of a convolution operation using Point Spread
Function (PSF) and a spatial downsample operation, and S ∈
RC×Cm is a band-level spectral response in MSI Z. With the

Y and Z, the HSI-MSI fusion task targets at reconstructing the
latent X. In addition, the HSI Y’s spectrally degraded result
MY should be equal to the MSI Z’s spatially degraded result
MZ:

MY = YS = PZ = MZ, (3)

where MY ∈ Rwh×Cm and MZ ∈ Rwh×Cm.
To model the degradation process, we follow prior work [3]

to design the spectral downsampling network (SpeDnet) Dy

with one convolutional layer with the kernels shape Nk ×
Ci,in × Ci,o × 1 × 1 and stride size 1 to model the integral
procedure with Spectral Response Function (SRF), where Nk

denotes both the number of convolutional kernels in SpeDnet
and the band number of MSI Z. i is the index of the kernels.
Ci,in is determined by the number of hyperspectral bands that
are covered by each band’s spectral response in MSI Z. Ci,o

is constrained to 1. That is, each kernel generates only one
feature map. 1× 1 is each kernel’s spatial size. Therefore, the
SpeDnet can be modeled as follows:

MY(i,j) = SpeDnet(Y, θ) =

∑
t∈Θj

Yi,tωj∑
ωj

, (4)

where θ represents the weights of the SpeDnet, i and j repre-
sent the index of row and column, respectively. Θj represents
the j-th support set that the band of Y appertains, and ωj

represents the weights of the j-th Cin × 1 × 1 convolution
kernel.

Similarly, the spatial downsampling network (SpaDnet) Dz

is designed to act as PSF. Each band in the spatial dimension is
convolved with the same convolutional kernel of size 1×r×r
and stride r, where r (r = W/w = H/h) is the spatially
dimensional scale factor and the size of convolutional kernels.
The SpaDnet can be modeled as follows:

MZ = SpaDnet(Z, β), (5)

where β is the weight of SpaDnet.
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B. Sample Augmentor

To train the downsampling networks more effectively, the
augmentor G learns to generate a sample-specific image
rotation angle function for augmenting each input sample.
Our augmentor G takes HSI Y and MSI Z as input and
output the augmented samples YG and ZG respectively. The
overall architecture of our augmentation procedure is shown
in Figure 1 (b). First, a pixel-wise feature extraction unit is
deployed to extract features F ∈ Rŵĥ×Ĉ , where ĥ, ŵ, and Ĉ
denote the height of the feature map, the width of the feature
map, and the number of feature channels, respectively. Then,
the adaptive average pooling operation is applied to build a
one-pixel and multi-channels feature map F

′
. Furthermore,

a multilayer perceptron takes the F
′

as input to generate a
suitable rotated angle. Finally, the augmentor G generates
augmented samples with the affine transform and the generated
rotation angle. Meanwhile, we also use the same rotation angle
and affine transform on the ground-truth spatially degraded
version M, which is given in the training set, so that we
can train the downsampling networks and augmentor with
adversarial learning strategy. We label the augmented M as
MG. The augmented samples YG and ZG generated by our
augmentor can satisfy two following requirements to maximize
the network learning: (i) YG and ZG can be more challenging
than Y and Z for downsampling networks since they are
rotated and deformed; (ii) YG and ZG do not lose any semantic
information in the original Y and Z.

C. Adversarial Learning in First Stage

To maximize the network learning and generate more
challenging samples, we train the augmentor G and the two
downsampling networks Dz and Dy with adversarial learning
strategy [11]. The augmentor G and the two downsampling
networks Dz and Dy are trained alternately and iteratively.

To train the augmentor G, Dz and Dy are fixed. The
hyperspectral HSI Y, high-spatial-resolution MSI Z are fed
into data augmentor G and generate new augmented images
YG and ZG. Then the YG is fed into the SpeDnet Dy to
generate low-spectral version MYG

while the ZG is fed into the
SpaDnet Dz to generate low-spatial version MZG

. Finally, we
constrain MYG

, MZG
, and MG to be consistent by minimizing

the following loss:

LG = ρL (MYG
) + ρL (MZG

) , (6)

where

L (MYG
) = log

(
1

whCm
∥MYG

− MG∥1

)
, (7)

L (MZG
) = log

(
1

whCm
∥MZG

− MG∥1

)
, (8)

ρ is an adjustable hyperparameter.
Similarly, to train the Dz and Dy , we fix the augmentor G.

Then, the original sample Y and its augmented sample YG

are fed into SpeDnet Dy to obtain MY and MYG
while the

original sample Z and its augmented sample ZG are fed into

SpaDnet Dz to obtain MZ and MZG
. Finally, we adopt L1 loss

to optimize these two downsampling networks as follows:

LD = ∥MY − M∥1 + ∥MYG
− MG∥1

+ ∥MZ − M∥1 + ∥MZG
− MG∥1 ,

(9)

D. Spectral Upsample Network in Second Stage

The low-spatial-resolution version MZ can be produced by
applying the spatial degradation pipeline P in Eq (3) to the
MSI Z, where MZ ∈ Rwh×Cm . From Eq (2) and Eq (3), MZ
and Z are generated by applying the same spectral degradation
operation S to Y and X, respectively. The latent HR-HSI X
can be reconstructed if we apply the spectral inverse mapping
from ow-spatial-resolution version MZ to hyperspectral HSI
Y, which is learned in the low resolution, to high-spatial-
resolution MSI Z. Therefore, we use the MZ to learn the
inverse mapping of the spectrum from MZ to Y by a SpeUnet.
It can be modeled as follows:

ŶMZ = SpeUnet (MZ) , (10)

where the SpeUnet contains 1 × 1 convolution kernels. To
optimize the SpeUnet, we apply L1 loss to learn spectral
inverse mapping as follows:

LU1 =
1

whC

∥∥∥Y − ŶMZ

∥∥∥
1
, (11)

With an appropriate optimization, HR-HSI X̂ can be re-
constructed coarsely by inputting Z into SpeUnet. However,
there exist limitations to the performance of the learned low-
resolution spectral inverse mapping. For reconstructing fine-
grain HR-HSI X̂, we also use the paired Z and X as training
data to train the SpeUnet while introducing a consistency
loss to optimize SpeUnet for improving its reconstruction
performance on high resolution. The consistency loss can be
modeled as follows:

ẐXZ = SpeDnet (SpeUnet (Z)) , (12)

LU2
=

1

WHCm

∥∥∥Z − ẐXZ

∥∥∥
1
, (13)

Finally, SpeUnet is optimized as follows:

LU = LU1 + αLU2 , (14)

where α is an adjustable hyperparameter.
To obtain the final HR-HSI X̂ , we applied the learned

SpeUnet to the original MSI Z as follows:

X̂ = SpeUnet (Z) . (15)

III. EXPERIMENTS

A. Datasets, Baselines, and Metrics

Datasets. To evaluate the efficiency of our design strategy,
we adopted two widely used hyperspectral datasets. The first
one called Houston18 for short has 48 bands with wave-
lengths ranging from 380 to 1050 nm. This dataset contains
1202 × 4172 pixels with a spatial resolution of 1 m. The
second one, named Chikusei for short, has 128 bands with
wavelengths ranging from 363 to 1018 nm and contains
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TABLE I
QUANTITATIVE PERFORMANCE OF VARIOUS METHODS ON CHIKUSEI AND HOUSTON18 DATASETS

Methods

× 5 × 8

Chikusei houston18 Chikusei houston18

SAM↓ ERGAS ↓ PSNR↑ RMSE↓ CC↑ SAM↓ ERGAS↓ PSNR↑ RMSE↓ CC↑ SAM↓ ERGAS↓ PSNR↑ RMSE↓ CC↑ SAM↓ ERGAS↓ PSNR↑ RMSE↓ CC↑

HySure 1.1953 1.0697 42.4036 0.0081 0.9974 1.5485 0.6756 43.0993 0.0052 0.9989 1.5365 0.8894 40.0119 0.0107 0.9968 2.1120 0.5719 40.2963 0.0070 0.9984

FUSE 1.3413 1.2055 41.1566 0.0094 0.9967 1.6768 0.9117 40.5935 0.0072 0.9979 1.4428 0.8323 40.5532 0.0098 0.9972 1.8498 0.5673 40.7906 0.0066 0.9980

G-SOMP+ 1.2874 1.3306 41.2452 0.0091 0.9945 1.4909 0.6880 42.8371 0.0054 0.9989 1.5247 1.0934 38.8789 0.0117 0.9914 1.8978 0.5429 40.5534 0.0068 0.9984

CSU 1.4397 1.7031 39.8464 0.0097 0.9898 1.4980 0.6912 42.5571 0.0054 0.9987 1.6817 1.1877 38.3814 0.0117 0.9879 1.9006 0.5476 40.3440 0.0068 0.9981

CNMF 1.0918 1.0752 42.6555 0.0079 0.9964 1.2197 0.6054 43.9170 0.0047 9.9991 1.2458 0.9126 39.8480 0.0105 0.9951 1.5856 0.4972 41.3301 0.0063 0.9986

STEREO 0.8801 0.8282 49.7968 0.0043 0.9968 1.0094 0.3691 51.0273 0.0028 0.9994 1.0282 0.5957 48.8520 0.0050 0.9958 1.1090 0.2525 50.4403 0.0030 0.9992

CSTF 1.2306 1.3534 45.1193 0.0059 0.9932 1.4285 0.5509 46.9136 0.0037 0.9988 1.2458 0.8431 45.1089 0.0060 0.9930 1.4539 0.3513 46.8232 0.0038 0.9988

DHIF-Net 1.4113 1.6151 39.6355 0.0096 0.9904 1.4108 0.6578 42.8076 0.0052 0.9987 1.7132 1.3255 37.7378 0.0118 0.9841 1.7075 0.5127 40.8392 0.0064 0.9979

CUCaNet 1.0353 0.8356 48.4793 0.0054 0.9973 1.7031 0.7984 42.2861 0.0066 0.9986 0.8561 0.4843 49.6982 0.0044 0.9974 1.7450 0.4818 43.2826 0.0064 0.9987

UDALN 0.7127 0.6851 52.3858 0.0037 0.9980 0.8770 0.6698 42.6841 0.0053 0.9994 0.7504 0.4574 49.2979 0.0045 0.9976 0.8896 0.5452 40.2321 0.0070 0.9994

ADASR(OUR) 0.7032 0.5742 53.6463 0.0035 0.9983 0.8234 0.3132 53.5342 0.0024 0.9995 0.7395 0.4347 52.0179 0.0038 0.9977 0.8438 0.2007 53.1627 0.0025 0.9995

2517 × 2335 pixels with a spatial resolution of 2.5 m. After
removing some noisy and water absorption bands, the sub-
images of 240× 240× 46 on Houston18 and 240× 240× 110
on Chikusei are chosen for the test. The two sub-images are
acted as reference images for comparison. In synthesizing the
RGB images from the Houston18 and Chikusei datasets, we
used 46th and 110th spectral bands as red-band, 30th and 75th
spectral bands as green-band, and 14th and 30th spectral bands
as blue-band.
Baselines. To demonstrate the effectiveness of our ADASR,
we compare our ADASR with 10 SOTA HSI-MSI fu-
sion methods, including 1 Bayesian representation based
method (FUSE [12]), 4 matrix factorization based methods
(HySure [13], CNMF [14], CSU [15] and G-SOMP+ [16]),
2 tensor factorization based methods (CSTF [17] and
STEREO [1]), 1 supervised deep learning method (DHIF-
Net [4]), 2 unsupervised deep learning methods (CUCaNet [2]
and UDALN [3]). We abbreviate our method as ADASR in
the following description.
Metrics. We deploy 5 metrics, including spectral angle mapper
(SAM), error relative to the global adimensional synthe-
sis (ERGAS), peak signal-to-noise ratio (PSNR), root mean
square error (RMSE), and correlation coefficients (CC) to
evaluate the performance.

B. Implementation Details

The ADASR is implemented by using PyTorch [18], and
trained on the Linux server with an NVIDIA Titan XP GPU.
We set the training step as 40,000 and deployed the Adam [19]
optimizer with a learning rate of 0.0001. In addition, in
Equation 14, we set the parameter α to 0.3. To train the
downsampling networks, we take the HSI and MSI pairs as
input and use trainable PSF and SRF for downsampling
networks. To reduce model oscillations [11], we follow the
prior work [20] and train the downsampling networks Dz and
Dy by using mixed original and augmented training samples
rather than using original training samples only.

C. Main Results

The quantitative results for the Housoton18 and Chikusei
datasets with scale factors of 5 and 8 are shown in Table I.
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Fig. 2. Visual results generated by different methods on the Housoton18 and
Chikusei datasets in the scale factor 8. The 1st row shows the reconstruction
results for the whole image, the 2nd row shows the MAE heatmap, and the
3rd row shows the SAM error heatmap.

From the results, we can observe that our method outperforms
all baselines on both two datasets. The improvements (%) on
SAM/ERGAS/PSNR/RMSE/CC metrics for Houston18 and
Chikusei datasets in the scale 8 are 5.1/20.5/5.4/16.7/0.01
and 1.5/5.0/5.5/15.6/0.01, respectively. Meanwhile, the im-
provements (%) in the scale 5 are 6.1/15.1/4.9/14.3/0.01
and 1.3/16.2/2.4/5.4/0.03. These quantitative improvements
demonstrate the superiority of our method. Besides, we also
conduct the qualitative analysis by showing the synthetic
RGB images of HR-HSI and the mean absolute error (MAE)
heatmap and SAM heatmap between the reconstructed HR-
HSI and the reference HR-HSI as in the Fig. 2. We can see that
our method can achieve better SAM and MAE. The qualitative
results also show the reconstruction superiority of our method
to reconstruct details more efficiently.
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D. Ablation Study

1) The effects of the data augmentation and the consistency
loss: In our framework, the data augmentor G and the
consistency loss LU2 are two key components, so we conduct
ablation studies on these two components. The experimental
results are shown in Table II. We can observe that either the
auto data augmentation or the consistency loss can improve
the performance, while the best performance can be achieved
by applying both auto data augmentation and the consistency
loss.

TABLE II
ABLATION STUDY OF DIFFERENT COMPONENTS. ‘-’ MEANS THE

COMPONENT IS REMOVED

Model
Metric

SAM↓ ERGAS↓ PSNR↑ RMSE↓ CC↑
-G-LU2

0.8655 0.5891 43.9732 0.0046 0.9995
-G 0.8591 0.3602 52.3446 0.0028 0.9995

-LU2
0.8255 0.3160 53.5126 0.0024 0.9995

ADASR 0.8234 0.3132 53.5342 0.0024 0.9995

2) Can the learned augmentor G work better?: We also
explore whether our learned augmentor G can work better
than the conventional image augmentation method - random
rotation augmentation or without any image augmentation.
The results on the Houston18 dataset are shown in Table
III. We can observe that the conventional image augmentation
method can not improve the performance, while our method
can improve the performance on all metrics. These results
show the effectiveness of our adversarial auto-augmentation
framework.

TABLE III
STUDY OF THE EFFECTIVENESS OF DATA AUGMENTOR

Method
Metric

SAM↓ ERGAS↓ PSNR↑ RMSE↓ CC↑

No augmentation 0.8591 0.3602 52.3446 0.0028 0.9995
Random rotation 0.8452 0.3351 53.0553 0.0025 0.9994

ADASR 0.8234 0.3132 53.5342 0.0024 0.9995

IV. CONCLUSION

In this letter, to improve the effect of hyperspectral and
multispectral image fusion by augmenting the input samples
and training a more stable network, we propose a novel adver-
sarial automatic augmentation framework ADASR that jointly
optimizes an augmentor network and two downsampling net-
works so that the augmentor network can augmented samples
automatically by rotating them at appropriate angles driven
by their content to make the two downsampling networks
more stable for training upsample network at the next stage.
Specifically, the augmentor network and the downsampling
networks are trained by reconstructing low-spatial resolution
multispectral images in the adversarial learning setting. Then,
we train a spectral upsampling network by both high spatial
resolution multispectral images and their generated low spatial
resolution multispectral images with reconstruction loss and
consistency loss, so that we can take full advantage of the

priors learned by downsampling networks. The experimental
results on two public classical hyperspectral datasets demon-
strate the effectiveness of our ADASR compared to the state-
of-the-art HSI-MSI fusion methods.
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