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Abstract—Dense matching is an important step in radargramme-
try. As approximating epipolar lines in synthetic aperture radar 
(SAR) images is difficult, conventional dense image matching 
(DIM) algorithms are unsuitable for these images. This study 
proposes a DIM algorithm for unmanned aerial vehicle (UAV) 
SAR images that does not require epipolar rectification. The 
proposed algorithm uses tie-point matching results to construct a 
search window for corresponding points and utilizes an improved 
DAISY descriptor incorporating the ratio of exponentially 
weighted averages operator for cost calculation, which suppresses 
errors caused by speckle noise. Cost aggregation was performed 
using computationally efficient superpixel segmentation and the 
guided filter algorithm, and the winner-takes-all strategy was 
applied for dense matching. Finally, experiments were performed 
on six pairs of UAV SAR images containing different terrains 
and ground objects, and an average root mean square error of 
4.3 pixels was obtained, demonstrating that the proposed method 
is superior to conventional DIM algorithms and has excellent 
precision and accuracy. 
 
Index Terms—DAISY descriptor, dense matching, guided filter, 
superpixel segmentation, synthetic aperture radar, unmanned 
aerial vehicle. 

I. INTRODUCTION 

ITH the advent of civilian unmanned aerial vehicles 
(UAVs) and the miniaturization of synthetic aperture 

radar (SAR) systems, radargrammetry using UAV-borne SAR 
systems has become possible. These systems combine the 
flexibility, specificity, and cost efficiency of UAVs with the 
24-hour all-weather capabilities of SAR [1], making them 
tremendously useful in applications like geographic and emer-
gency surveys, as well as environmental monitoring [2]. 
Dense image matching (DIM) is an important step in radar-
grammetry for constructing digital surface models (DSMs) or 
digital elevation models (DEMs) [3]. As such, the precision of 
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DIM directly determines that of the DSM or DEM. UAV SAR 
images tend to have a large relative image distortion owing to 
their unique imaging characteristics, which makes DIM a chal-
lenging task. Therefore, a DIM method suitable for UAV SAR 
images is urgently needed. 

DIM methods for optical images have matured, with algo-
rithms falling into three categories: local matching, global 
matching, and semi-global matching (SGM). SGM algorithms 
combine the strengths of local and global matching algorithms 
and are thus accurate and computationally efficient [4]; there-
fore, most commercial DIM software packages use SGM algo-
rithms. The procedures of an SGM algorithm include epipolar 
rectification, cost calculation, cost aggregation, disparity com-
putation, and disparity refinement. The characteristics of SAR 
images based on optical DIM algorithms have been extensive-
ly researched. Some scholars' research is based on SGM to 
improve, such as using normalized cross correlation (NCC), 
absolute difference [5], phase-only correlation [6], sum of 
adaptive NCC [7] and other algorithms for cost calculation, or 
adding hierarchical pipeline [8] for DIM. There are also algo-
rithms such as improved scale-invariant feature transformation 
(SIFT) and multiscale coherent point drift [9] to estimate de-
formation field parameters, or geometric constraints and re-
gion matching [10], or improved Horn-Schunck flow algo-
rithms [11] to complete pixel-by-pixel matching between SAR 
images. 

Most of these methods require the generation of epipolar im-
ages prior to dense matching. However, unlike optical images, 
SAR images are captured in the slant range and therefore have 
object-dependent epipolar lines [12]. The epipolar correction 
of spaceborne SAR images is based on the assumption that the 
epipolar lines are straight lines, but this assumption does not 
apply to UAV SAR images [13]. 

Therefore, this letter works on UAV SAR images to explore 
how to achieve dense matching with better results without 
epipolar correction, and a method is designed. In radargram-
metry, tie-point matching is performed before dense matching, 
and the results can be used to define the cost-search window, 
thus avoiding the process of epipolar correction. The method 
incorporates the ratio of exponentially weighted averages 
(ROEWA) operator into the DAISY [14] descriptor's cost cal-
culations, enhancing speckle noise suppression [15]. Super-
pixel segmentation and a guided filter (GF) are employed for 
cost aggregation, producing smoother and more reliable re-
sults while maintaining computational efficiency. 

This letter is organized as follows. Section II describes the 
proposed DIM algorithm, while Section III provides and ana-
lyzes the experimental results obtained using this algorithm. 

W
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The conclusions are given in Section IV. 

Ⅱ. METHODS 

A DIM method typically includes cost calculation, cost ag-
gregation, disparity calculations and disparity refinement. 
First, the DAISY descriptor (including the ROEWA operator) 
is used to describe the reference and sensed images. After one 
descriptor is obtained for each pixel, cost-search calculations 
are performed on the projection matrix 𝐻  derived from tie-
point matching, thus producing the cost cube. Cost aggrega-
tion is then performed on each layer of the cost cube using 
superpixel segmentation and GF, using the winner-takes-all 
(WTA) strategy to calculate the cost and disparity of each pix-
el. Finally, left-right consistency checking (LRC) and median 
filtering are applied on the disparity matrix to produce the 
final disparity map. The process flow is shown in Fig. 1. 

  

Fig. 1. Process flow of the DIM algorithm, including cost cal-
culation, cost aggregation, disparity calculation, and disparity 
refinement. 

A. Cost calculation with improved DAISY descriptor 

In the DAISY descriptor, gradients in specific directions are 
convoluted with several Gaussian filters to compute the 
weighted sum of gradient norms [14]. As SAR images often 
contain high speckle noise, our algorithm uses the ROEWA 
operator for gradient norm calculations, which suppresses 
speckle noise in SAR image matching algorithms such as 
SAR-SIFT. 

To obtain DAISY descriptors, the eight orientation maps 
𝐺 (1 ≤ 𝑜 ≤ 8) for the given input image 𝐼(𝑥, 𝑦) must first be 
computed, where 𝐺 (𝑥, 𝑦) is the gradient norm for direction o. 

𝐺  is written as 𝐺 (𝑥, 𝑦) = , where (∙) = 𝑚𝑎𝑥{∙ ,0} . 

These orientation maps are then convolved with 𝜎 -
parameterized Gaussian kernels to obtain convolved orienta-
tion maps for different sized regions, 𝑂 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) ∗

𝒢 (𝑥, 𝑦). The local descriptor is defined as coefficients gener-
ated by convolved orientation maps located on concentric cir-
cles: 

ℎ (𝑥, 𝑦) = [𝒪 (𝑥, 𝑦), 𝒪 (𝑥, 𝑦),⋯ , 𝒪 (𝑥, 𝑦)]. (1) 

Since the DAISY descriptor has 𝑀 circular cells, its full ex-
pression can be obtained by concatenating the normalized vec-
tors: 

𝐷(𝑥, 𝑦) =

ℎ (𝑥, 𝑦),

ℎ 𝑑 (𝑥, 𝑦, 𝑅 ) ,⋯ , ℎ 𝑑 (𝑥, 𝑦, 𝑅 ) ,

ℎ 𝑑 (𝑥, 𝑦, 𝑅 ) ,⋯ , ℎ 𝑑 (𝑥, 𝑦, 𝑅 ) ,

⋮
ℎ 𝑑 (𝑥, 𝑦, 𝑅 ) ,⋯ , ℎ 𝑑 (𝑥, 𝑦, 𝑅 )

 (2) 

where 𝑑 (𝑥, 𝑦, 𝑅 ) is the location with distance 𝑅  from (𝑥, 𝑦) 
in direction 𝑗, 𝑗 = 1,2,⋯ , 𝑛. By using the improved DAISY 
descriptor to describe the image pair, descriptions for every 
pixel in these images are obtained. 

After tie-point matching between the reference and sensed 
images was performed (as in the SAR-SIFT algorithm [15]), 
the projection matrix 𝐻 can be computed. Any point 𝑖 in the 
reference image may be mapped to a point 𝑖′ in the sensed 
image with coordinates (𝑥, 𝑦)  and (𝑥′, 𝑦′) , respectively. A 
square window with an edge length of 2𝑟 + 1 centered on 𝑖′ 
can be constructed, which defines the cost-search window (see 
Fig. 2). 

 

Fig. 2. Search and calculation of matching cost. The grid in 
the sensed image represents the search range, and 𝐻  is the 
projection matrix. 

The matching cost of all pixels in the search window within 
the sensed image with respect to 𝑖 was then calculated. Match-
ing cost is given by: 

𝐶 𝑥, 𝑦, (𝑑𝑥, 𝑑𝑦) = 𝐸 𝐷 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦), 𝐷 (𝑥, 𝑦)  (3) 

where 𝐶 𝑥, 𝑦, (𝑑𝑥, 𝑑𝑦)  is the matching cost for the two 
points; 𝐷 (𝑥, 𝑦)  and 𝐷 (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦)  are the descriptors 
for the points on the reference and sensed images, respective-
ly; 𝐸  is the Euclidean distance between the two descriptors; 
𝑑𝑥 and 𝑑𝑦 are the difference in coordinates between the two 
points, i.e., the disparity between the two directions. Calculat-
ing the cost of each pixel in the reference image yields the cost 
cube, with the horizontal dimensions of the reference image 
and height equivalent to the number of pixels in the cost-
search window. The cost cube stores the matching cost of any 
pixel in the reference image with respect to all pixels in the 
cost-search window. 

B. Cost aggregation based on superpixel segmentation and 
the GF algorithm 

As cost calculation is solely concerned with local correla-
tion, the results are very sensitive to noise. The cost correla-
tion results cannot be directly used to calculate the optimal 
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disparity; therefore, cost aggregation is necessary. This is per-
formed by applying filters to the cost cube. In this work, cost 
aggregation was performed using superpixel segmentation and 
the GF algorithm. 

Superpixel segmentation is a process where adjacent and 
perceptually similar pixels are grouped to form local structures 
that are approximately uniform in size, which are then used to 
replace the image’s grid structure. This algorithm makes use 
of the image’s textural information to facilitate the representa-
tion of its characteristics by a relatively small number of su-
perpixels instead of many pixels, which simplifies subsequent 
procedures. In this work, the simple linear iterative clustering 
superpixel algorithm was used to segment the reference image 
into superpixel blocks [17]. 

GF is a nonlinear filter used for image smoothing [18], 
which can be used for cost aggregation on superpixels. The 
filtered result is represented by the following equation: 

𝑞 = 𝐼 ∙
1

|𝑤|

𝜎

𝜎 + 𝜖
∈

+
1

|𝑤|
1 −

𝜎

𝜎 + 𝜖
𝜇

∈

 (4) 

where, 𝑞  is the filtered result, 𝐼 is the guidance image, 𝑁  is 
the window in a layer of the cost cube, |𝑤| is the number of 
pixels in the window, 𝜎  is the variance in 𝑁, 𝜇  is the mean 
inside 𝑁, and 𝜖 is the smoothing coefficient. A new cost cube 
is obtained by applying GF to the superpixel blocks in each 
layer of the cost cube. 

C. WTA-based calculation of disparity 

Every pixel in the cost cube has a cost for every disparity 
(𝑑𝑥, 𝑑𝑦) after cost aggregation. Since then the WTA strategy 
is used to eliminate excess disparity by searching the mini-
mum cost value. 

The disparity calculation produces a pair of disparity maps 
with the same dimensions as the reference image, wherein the 
pixel values correspond to disparities in two distinct direc-
tions. 

D. Disparity refinement with LRC and median filtering 

The disparity maps require further refinement, as they may 
contain errors and noise. To this end, LRC and median filter-
ing are used for refinement.  

LRC is based on the uniqueness constraint for disparity, i.e., 
each pixel can only have one correct disparity. LRC is per-
formed by swapping the image pair after its initial disparity 
map was computed, and then re-computing the disparities. If 
the sum of calculated disparities is lower than a given thresh-
old, they are assumed to be correct; otherwise, the calculated 
disparity is invalidated and the disparity value at this pixel will 
be obtained by interpolation. 

Besides erroneous disparities, the disparity map may contain 
a number of outlier values, i.e., noise. After multiple trials, we 
determined that smoothing the disparity map via median filter-
ing with a window size of 11 × 11 was effective for reducing 
noise. In addition, bilinear interpolation fills the gaps left by 
the invalidation of erroneous disparities. These procedures 
yield the final disparity map. 

Ⅲ. EXPERIMENTS 

Dense matching experiments were performed on six pairs of 
UAV SAR images taken in Dengfeng, Zhengzhou. These im-
ages were obtained using a drone-borne Ku-band MiniSAR 
system. All experimental images had a resolution of 1000 × 
1000, and contained various types of terrain and ground ob-
jects. The sampling interval was 0.12 m in range and 0.06 m in 
azimuth. The basic information of the experimental images is 
provided in Table Ⅰ. 

TABLE I 
DETAILS OF UAV-SAR IMAGES 

Image 
pair No. 

Central angle 
of incidence 

Terrain Ground object 
Date of 
images 

1 
61.8° 

Flat Residential areas 
March 
2022 55.6° 

2 
62.7° 

Flat 
Farms + vegetation 

+ roads 
March 
2022 57.3° 

3 
56.2° 

Hilly Vegetation + roads 
March 
2022 47.8° 

4 
67.1° 

Flat 
Residential areas + 

roads 
June 
2021 58.8° 

5 
66.7° 

Flat Vegetation + roads 
June 
2021 58.3° 

6 
51.7° 

Hilly Farms + vegetation 
November 

2021 36.2° 

To test the performance of our method, it was compared 
with the original DAISY descriptor, an improved DAISY-
SGM descriptor and the original SGM algorithm. The DAISY 
descriptor was configured with default parameters, where the 
cost-search radius was 10 pixels. The time complexity of the 
first two methods is 𝑂(𝑁 𝐷)  and the latter two is 𝑂(𝑁𝐷) , 
where 𝑁 is the number of pixels in the reference image, and 𝐷 
is the number of pixels searched in the sensed image. DIM 
was performed using the four aforementioned methods to gen-
erate disparity maps for the six pairs of images, as shown in 
Fig. 3. 

 Our method DAISY 
Improved 

DAISY-SGM 
SGM 

(a) 

    

(b) 

    

(c) 

    

(d) 

    

(e) 
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(f) 

    

 
 

Fig. 3. Disparity maps generated from different DIM methods, 
where (a)-(f) represent image pairs 1-6. The colorbar at the 
bottom represents the corresponding relationship between the 
color and disparity value (in pixels). 

All four methods include the entirety of the DIM process, 
but our method produced smoother-looking disparity maps. 
Due to the characteristics of SAR images, SAR disparity maps 
cannot show the approximate contours of the terrain and 
ground objects, unlike those of optical images. To assess the 
accuracy of the DIM methods, over 40 pairs of control points 
were manually selected for each pair of images, and the root 
mean square error (RMSE) of each method was calculated. 
The results are shown in Table Ⅱ. 

TABLE Ⅱ 
ACCURACIES OF THE DIM METHODS (IN PIXELS) 

Method 
Our 

method 
DAISY 

Improved 
DAISY-SGM 

SGM 

Image pair 1 4.2 5.1 17.8 33.4 

Image pair 2 5.3 6.6 7.4 16.4 

Image pair 3 3.2 3.3 7.6 9.4 

Image pair 4 4.4 5.2 10.6 36.0 

Image pair 5 5.1 6.1 9.1 30.3 

Image pair 6 3.5 3.5 7.1 27.5 

Table Ⅱ shows that our method had the best accuracy with 
errors generally less than six pixels. Compared with the com-
parative method, the average accuracy of this method is at 
least 13% improved. Therefore, the disparity maps produced 
by our method are good reproductions of the image pairs’ dis-
parities. Comparing the results of our method to those of the 
original DAISY operator confirms that the inclusion of the 
ROEWA operator improved our method’s suitability for UAV 
SAR images. Furthermore, the results of SGM and the im-
proved DAISY-SGM algorithm show that our descriptor can 
also be used with the SGM algorithm, and the overall structure 
is better than the traditional DIM algorithm that requires epi-
polar lines estimation and correction. 

There is no clear ranking between the six image pairs in 
terms of DIM accuracy. Although image pairs 3 and 6 had 
somewhat higher DIM accuracies, the DIM accuracies of pairs 
1, 2, 4 and 5 were comparable to each other. Although image 
pairs 3 and 6 were images of hilly regions, they contained no 
occluded areas or small central angles of incidence. The 
ground objects in these images were farms, roads and trees, 
which have relatively mild variations in elevation and clearly 
defined textures. Image pairs 1 and 4 had large central angles 
of incidence, and ground objects with large variations in ele-
vation, such as buildings and roads. Furthermore, some houses 
had repetitive textures and occluded each other. Image pairs 2 
and 5 also had large central angles of incidence, and their 

ground objects included vegetation and trees. However, there 
were large differences in elevation between the trees and 
roads, and image pair 2 also contained a high voltage tower; 
these ground-objects caused sudden changes in disparity, 
which increased matching errors. Overall, DIM accuracy de-
pends on the image’s central angle of incidence, types of 
ground objects, and variations in elevation and texture. Accu-
racy generally decreased with an increased central angle of 
incidence, variability in elevation, and monotonity in texture. 

To intuitively illustrate the matching results of our method, 
100 points were randomly selected on each reference image, 
and their corresponding coordinates in the sensed images were 
then calculated using disparity maps, as shown in Fig. 4. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 
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Fig. 4. Random selection of densely matched corresponding 
points, where (a)-(f) represent image pairs 1-6. 

The left and right sides in Fig. 4 correspond to the reference 
and sensed images. The magnified parts of these images are 
shown in red and green rectangles, respectively. Matching was 
better in areas where the features were pronounced. However, 
each image was taken from different strips, with different an-
gles of incidence, brightness, ground objects and levels of 
occlusion, which all contributed to matching errors. Our 
method succeeded in the DIM of corresponding points in 
UAV SAR images in most situations. However, its accuracy 
decreased in areas with monotonous textures and poorly de-
fined features. 

The improved DAISY descriptor used in this study contains 
many configurable parameters, which may alter the perfor-
mance of the algorithm [14], particularly the variance of the 
convolution kernel. To assess the effects of convolution kernel 
variance, different variances were compared for the six image 
pairs. The results are shown in Fig. 5. 

 

Fig. 5. Matching accuracy with different convolution kernel 
variances. 

As shown in Fig. 5, matching accuracy varied somewhat 
with variance, albeit without a clear pattern. Nonetheless, 
overall accuracy was found to be highest with a variance of 
five, implying that the descriptor is most stable and general-
izable with this value of variance. Therefore, a variance of five 
was used in all experiments. 

Ⅳ. CONCLUSION 

This study proposes a DIM method that can produce the dis-
parity map of two UAV SAR images without epipolar rectifi-
cation. In this method, the results of tie-point matching were 
used to estimate the initial positions of the corresponding 
points and define the cost-search window, which avoided er-
rors and information loss caused by the estimation and 
resampling of epipolar lines. The DAISY descriptor was used 
with the ROEWA operator in the algorithm, which suppressed 
the effects of speckle noise. The average RMSE of our method 
can reach 4.3 pixels through experiments on six pairs of UAV 
SAR images, which contained different ground objects and 
were taken at different times and locations. This letter pro-
vides substantial theoretical support for DIM of UAV SAR 
images and makes certain contributions to UAV SAR image 
processing. Future work will focus on further improving the 

accuracy and efficiency of the algorithm to adapt to applica-
tions in large amounts of data. 
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