
Relevance Logic and Concurrent Composition
Mads Dam

Department of Computer Science, University of Edinburgh

ABSTRACT

We show that the operation of relativising properties
with respect to parallel environments often employed in
obtaining compositionality in theories for concurrency
corresponds to a notion of (contraction—free) relevant
deduction. We propose to consider program logics in
which this notion of deduction is internalized by means
of the corresponding implication. The idea is carried
through for safety properties of a simple system of
SCCS-type synchronuous processes with an internal
choice operator. We present two completeness results;
first for a modal extension of positive propositional linear
logic w.r.t. the equational class of algebras containing the
safety testing quotient of our process system as its free
member, and secondly for the free algebra itself.

A central problem in successfully applying modal and
temporal logics to the development and verification of
concurrent programs is somehow to obtain composi-
tionality. We must be able to compose and decompose
properties in accordance with model structure [5,22].
In the context of parallel composition this is often
done by some form of “environment relativization” [cf.
1,5,12,14,19,20] by appealing to potential computations
rather than actual ones, and by indexing w.r.t. properties
of parallel environments.

Logically, context relativization amounts to the depen-
dency of properties on assumptions about the environ-
ment, a dependency admitting basic rules of deduction
such as reflexivity and cut. In fact the proper notion of
deduction is arelevantone [3,7]; once an assumption is
introduced, it must be used in deriving the conclusion.
We propose to consider program logics in which this
notion of deduction isinternalized, by adding to the logic
an operation of (relevant) implication. We illustrate this
idea by offering a clean logical account of a simple sys-
tem of SCCS-type synchronous processes [16], following
the suggestion of [11] to let logical properties govern
the choice of process combinators. When taken with the
safety testing notion of equivalence of [6], the system
coincides with the free algebra in an equational class
of algebras complete for a modal extension of positive

propositional linear logic [8] (our choice of modalities
bear no relation to those in [8]). To obtain completeness
for the free algebra, however, we have to add a number of
extra axioms as well as introduce a kind of intuitionistic
negation. In addition we show the safety testing preorder
to be characterized by the logic, in the sense that this
and the ordering induced by the logic, when interpreting
formulas directly over processes, coincide.

ENVIRONMENT RELATIVIZATION AS
LINEAR CONSEQUENCE

Consider the problem of “structured model checking”
where we have a satisfaction relation,p |= Φ, between
processesp and formulasΦ, and suppose there is an
operation· of parallel composition of processes. It is
hard to concieve of a operation⊙ which is tractable and
licences interesting deductions of the form

if p |= Φ andq |= Ψ thenp · q |= Φ ⊙ Ψ.

Consequently properties of concurrent programs are
usually proved either by analyzing out· in terms of
more primitive process combinators, resulting in “state
explosion” problems, or by “chasing derivations” using
the satisfaction conditions for formulas. In either case
compositionality is lost.

A proposal towards solving this problem is to in-
troduce, as in [20,22], a doubly indexed turnstile,|=′,
defined by

Φ,Ψ |=′ Γ iff wheneverp |= Φ, q |= Ψ then
p · q |= Γ.

Suppose we generalize this to allow arbitrary finite,
nonempty sequences on the left hand side of|=′ (using
p̄, Φ̄, etc. to denote sequences, extending|= pointwise):

Φ̄ |=′ Γ iff for all p̄, if p̄ |= Φ̄ then
∏

(p̄) |= Γ,

where
∏

(p1, . . . , pn) denotes, say,(p1 · (. . . (pn−1 ·
(pn)) . . .)), for n ≥ 1.

Then |=′ will satisfy

i. Reflexivity: Φ |=′ Φ,
ii. Permutation:Φ̄ |=′ Γ only if Ψ̄ |=′ Γ, Ψ̄ a

permutation ofΦ̄,
iii. Cut: Φ̄ |=′ Ψ and Θ̄,Ψ, ∆̄ |=′ Γ only if

Φ̄, Θ̄, ∆̄ |=′ Γ,

as in fact |=′ will for any commutative, associative
operation·.

So it makes sense to think of|=′ as a consequence
relation. In fact|=′ will be a linear consequence relation
[8,2] in the sense that it will fail

iv. Contraction:Φ̄,Ψ,Ψ |=′ Γ only if Φ̄,Ψ |=′ Γ, and
v. Weakening:Φ̄ |=′ Γ only if Φ̄,Ψ |=′ Γ.

Let us be slightly more bold and assume an identity,1,
for · (for instance1 will be NIL in CCS [15], and in
TCSP [4], when· is ‖(|||), 1 will be RUN(STOP)). Then
it is natural to stipulate that

∏
(ε) = 1, for ε the empty

sequence. This means thatε |=′ Γ iff 1 |= Γ.
Now the proposal is to consider logics in which this

|=′ is internalized, in the sense that there is an operation,
→, of linear implication, s.t.̄Φ,Ψ |=′ Γ iff Φ̄ |=′ Ψ → Γ.
One can show thatp |= Ψ → Γ iff for all q, if q |= Ψ then
p · q |= Γ. So the propertyΨ → Γ tells us something
about the behaviour of elements as·-contexts — one
could readΨ → Γ e.g. as “in everyΨ-context,Γ”.

The logic we have thus defined is in fact the im-
plicative fragment of linear logic [8], and the model
and notion of satisfaction is but a slight variation of
the semilattice models of relevance logics of [21]—the
semilattice operation being idempotent, which· is not in
general.

In the remainder of the paper we pursue the idea in
detail, by building a logic for a concrete system of simple
processes.

SYNCHRONOUS PROCESSES WITH
INTERNAL CHOICE

Consider the following simple language of processesp ∈
P, whereα ∈ Act, a set of actions:

p ::= 0 | 1 | α(p) | p ⊕ q | p · q,

where⊕ is internal choice; and· synchronous parallel.
We assume Act to be structured—forming an abelian
group with unite, as in [16], such that the simultaneous
occurrence of actions can be accounted for.

In order to capture internal nondeterminism in a
synchronous setting, we split up the notion of reduction
into those of stabilizing and performing actions, as in
[18]. Stable terms,σ ∈ Σ ⊆ P, are generated by the
subprocess language

σ ::= 0 | 1 | α(p) | σ · σ,

and the stabilization relation,→, is the least s.t.

i. 0 → 0,
ii. 1 → 1,
iii. α(p) → α(p),
iv. p → σ only if p ⊕ q → σ andq ⊕ p → σ, and
v. p → σ, q → τ only if p · q → σ · τ .

For a p ∈ P let st(p) = {σ | p → σ}. The transition
relation between stable terms and processes is standard:

i. 1
e
→ 1,

ii. α(p)
α
→ p, and

iii. σ
α
→ p, τ

β
→ q only if σ · τ

αβ
→ p · q.

Define the family of predicatescan α, for α ∈ Act, by σ
can α iff there is ap s.t.σ α

→ p. Clearly, if σ can α, then
α is unique, and so is thep s.t. σ α

→ p. Let σ/α denote
this p, whenever it is defined. Sayp can α iff for some
σ ∈ st(p) σ can α, p live iff for all σ ∈ st(p) there is
an α s.t. σ can α, andp/α = {p′ | ∃σ ∈ st(p).σ

α
→ p′}.

Processes are identified according to the set of poten-
tial outcomes, when running them with a test [6]; an
outcome being either failure or success, depending on
whether or not the test is brought to termination. This
notion of equivalence (in fact its safety part, see below)
is closely related to the failure set model introduced in
[4]. There are finer (i.e. more discriminating) notions
of equivalence, notably the observational equivalence of
[15,10]. These, however, will not in general admit the
distribution laws desirable in the present context.

Testst ∈ T are finitely branching trees:0 ∈ T , and
for I finite and nonempty andti ∈ T for all i ∈ I then
∑

i∈I αiti ∈ T . Sets of outcomes are distinguished in
two different ways, according to whether or not they are
1. sometimes successful and 2. never unsuccessful. This
idea is formalized by the “may” and “must” notions of
test acceptance, defined by

i. p may 0 for all p ∈ P, and
p may

∑
i∈I αiti iff p → σ for someσ ∈ Σ s.t.

σ can αi andσ/αi may ti for somei ∈ I.
ii. p must 0 for all p ∈ P, and forI 6= ∅,

p must
∑

i∈I αiti iff for all σ ∈ Σ, if p → σ then
σ can αi for somei, and for all i ∈ I, if
σ can αi thenσ/αi must ti.

We then define the testing approximation relations,�i,
for i ∈ {1, 2, 3}, by

i. p �1 q iff for all t ∈ T , p may t only if q may t,
ii. p �2 q iff for all t ∈ T , p must t only if q must t,

iii. �3 = �1 ∩ �2.
Let ≃i = �i ∩ �i, for i ∈ {1, 2, 3}. We refer to�1

as the livenessand �2 as thesafety preorder. These
preorders can be characterized recursively much like the
weak equivalence of [13]. LetP ,Q,. . . (A) range over
finite, nonempty subsets ofP (Act). Extend�1,�2 to
setsP ,Q by definingP may t (P must t) iff for some
p ∈ P (for all p ∈ P) p may t (p must t). SayP must A
iff P must

∑
α∈A α0, and extend the notionscan, live

and ·/α to setsP,Q in the obvious way. Now define,
like for observational equivalence [15], the decreasing
chains{⊑i,n}n≥0,i∈{1,2} of relations by

i. P ⊑1,0 Q,P ⊑2,0 Q for all P,Q.
ii. P ⊑1,n+1 Q iff for all α, if P can α then

Q can α andP/α ⊑1,n Q/α.
iii. P ⊑2,n+1 Q iff for all A, α,

P must A only if Q must A, and
P live, Q can α only if P can α and

P/α ⊑2,n Q/α.
Let ⊑1 =

⋂
n≥0 ⊑1,n and⊑2 =

⋂
n≥0 ⊑2,n. We extend

operations to setsP , Q by pointwise extensions, e.g.
P · Q = {p · q | p ∈ P, q ∈ Q}.

Theorem 1.
i. For all i ∈ {1, 2}, �i=⊑i.
ii. For all i ∈ {1, 2, 3}, ≃i is substitutive.

Proof: i. For ⊆ show for i = 1, 2 respectively that
�i⊆⊑i,n for all n ≥ 0. For the converse assume e.g.
for i = 2 that P must t but notQ must t, and proceed
to show that thenP 6⊑2,n Q for somen.
ii. It suffices to show⊑i,n substitutive for alln ≥ 0 and
i ∈ {1, 2}. We take only the case fori = 2 and ·. So
assumeP1 ⊑2,n+1 P2. If P1 · Q must A thenP1 must
{α1 | P1 can α1, ∃αQ.Q can αQ, α1αQ ∈ A} = A1.
ThenP2 must A1, whenceP2 ·Q must A. Suppose that
P1 · Q live andP2 · Q can α. ThenP1, Q live andP2

can α1, Q can α2 for someα1, α2 s.t. α1α2 = α. Then
P1 can α1 whenceP1 · Q can α. Also wheneverP2

can α1, Q can α2 and α1α2 = α then P1/α1 · Q/α2

⊑2,n P2/α1 · Q/α2 by the induction hypothesis. But
then, as for alln,P ,P ′,Q if P ⊑2,n Q and P ⊆ P ′

thenP ′ ⊑2,n Q, we obtain(P1 ·Q)/α ⊑2,n (P2 ·Q)/α,
whenceP1 · Q ⊑2,n+1 P2 · Q and we are done.

SYNCHRONOUS ALGEBRAS

The three preorders,�i, i ∈ {1, 2, 3}, have simple (in-
)equational axiomatizations, in terms of “synchronous
algebras”.

These are structuresA = 〈A,≤, 0,⊕, ·, 1,Act〉, where
i. 〈A,≤, 0〉 is a poset with0 least and≤ substitutive

w.r.t. ⊕ and ·,
ii. 〈A,⊕〉 is a semilattice,
iii. 〈A, ·, 1〉 is a commutative monoid with· preserving

⊕ and0, and
iv. Act is an abelian group as above of operators onA

s.t. eachα ∈ Act preserves≤ and⊕, and s.t. the
following equations hold:

a. α(x) ⊕ 0 = α(x ⊕ 0) ⊕ 0
b. α(x) · β(y) = (αβ)(x · y)
c. e(1) = 1

If ⊕ is the inf(sup) w.r.t.≤ we sayA is asafety(liveness)
algebra and denote the⊕ by ⊓(⊔). Clearly the safety
(liveness) algebras form an equational class—definex ≤

y (y ≤ x) iff x ⊕ y = x. Note that if A is a safety
or liveness algebra, a. is redundant. LetC3 denote the
class of all synchronous algebras, andC2(C1) the class
of safety(liveness) algebras.

All three classes admit free algebras—letF1(F2)
denote the free liveness(safety) algebra, andF3 the
free synchronous algebra. These algebras have simple
representations in terms of sets of irredundant paths.

A path, s, is a pair〈ᾱ, i〉, with ᾱ ∈Act∗ andi ∈ {0, 1};
and s = 〈ᾱ, i〉 is irredundant, if e is a suffix of ᾱ only
when i = 0. We assume all paths below irredundant,
unless otherwise specified. We order paths by〈ᾱ, i〉 ≤
〈β̄, j〉 iff either i = 1 = j and ᾱ = β̄, or i = 0 and
ᾱ is a prefix ofβ̄. Sets,S1, S2, of paths are ordered by
S1 ≤1 S2 iff ∀s1 ∈ S1∃s2 ∈ S2 s.t. s1 ≤ s2, S1 ≤2 S2

iff ∀s2 ∈ S2∃s1 ∈ S1 s.t s1 ≤ s2, and≤3 = ≤1 ∩ ≤2.
A set, S, of paths islower(1), if s ∈ S and s′ ≤ s
implies s′ ∈ S, it is upper(2), if s ∈ S and s ≤ s′

implies s′ ∈ S, and it is convex(3), if s1, s2 ∈ S and
s1 ≤ s ≤ s2 implies s ∈ S. Let cli, i ∈ {1, 2, 3} denote
the corresponding closure operators. A closed set,S, of
paths isfinitely generated(f.g.), if S is the closure of
a finite set—clearly a 1- or 3-closed f.g. set is finite.
Note that generating sets are closed under intersections—
hence every f.g. set contains a unique least generating
set.

Prefixing of paths is defined byα(〈ᾱ, i〉) = 〈(αᾱ), i〉,
if α 6= e or 〈ᾱ, i〉 6= 〈ε, 1〉, and e(〈ε, 1〉) = 〈ε, 1〉.
Multiplication of paths is defined similarly. Then the op-
erators, fori ∈ {1, 2, 3}, are defined by0i = cli{〈ε, 0〉},
1i = cli{〈ε, 1〉}, αi(S) = cli{α(s) | s ∈ S}, S1 ⊕i S2 =
cli(S1∪S2), andS1 ·iS2 = cli{s1 ·s2 | s1 ∈ S1, s2 ∈ S2}.

Let thenDi = {S | S is ani-closed, f.g. and nonempty
set of irredundant paths}, andDi denote theDi ordered
by ≤i with operations as defined above, fori ∈ {1, 2, 3}.
We obtain

Theorem 2. For all i ∈ {1, 2, 3}, Fi
∼= Di.

Proof: See appendix.

Then processes modulo the three preorders are charac-
terized by

Theorem 3. For all i ∈ {1, 2, 3},
〈P/ ≃i,�i / ≃i〉 ∼= Fi.

Proof: See appendix.

Thm. 2 and 3. automatically gives us a fully abstract
semantics,[[·]]i, for i ∈ {1, 2, 3}, from P ontoDi.

From this point onwards we shall deal solely with the
safety case — henceD, [[·]], �, etc. shall denote the
corresponding safety entities.

A RELEVANT LOGIC OF PROCESSES

We treat safety properties as filters rather than ideals, in
contrast to [11]: for safety propertyΦ, if p |= Φ and
p � q then q |= Φ; and if p |= Φ and q |= Φ then
p ⊓ q |= Φ (where⊓ is ⊕ in the safety case).

As formulasΦ ∈Form we take
Φ ::= X | Φ → Φ | Φ ∧ Φ | Φ ∨ Φ | (α)Φ | (α)Φ

| t |⊥,
whereX ∈Var, some set of propositional variables,→ is
relevant implication,∧/∨ are extensional (“additive”, in
the terminology of [8]) and/or,(α) a future,(α) a past, or
reverse modality,t is intensional (“multiplicative”) truth
and ⊥ is extensional falsehood. The operations⊤, ¬,
↔ and (α) are defined by⊤ def

=⊥→⊥, ¬Φ
def
= Φ →⊥,

Φ ↔ Ψ
def
= (Φ → Ψ) ∧ (Ψ → Φ), and(α)

def
= (α)⊤.

Initially we interpret formulas over safety algebras. A
model is a pairM = 〈A, V 〉, whereA is a safety algebra
andV a valuation of propositional variables s.t. for each
X ∈Var, V (X) is a filter inA.

Then satisfaction|=M is defined inductively by (we
suppress subscripting ofM):

x |= X iff x ∈ V (X),
x |= Φ → Ψ iff for all y ∈ A, if y |= Φ then

x · y |= Ψ,
x |= Φ ∧ Ψ iff x |= Φ andx |= Ψ,
x |= Φ ∨ Ψ iff x |= Φ or x |= Ψ or there are

x1, x2 ∈ A, s.t.x1 ⊓ x2 ≤ x, x1 |= Φ and
x2 |= Ψ,

x |= (α)Φ iff there is anx′ ∈ A s.t. α(x′) ≤ x,
x′ |= Φ,

x |= (α)Φ iff α(x) |= Φ,
x |= t iff 1 ≤ x, and
x 6|=⊥.

So the→ is the operation of relativizing w.r.t.·-contexts
introduced above. For the∨ note that the standard
satisfaction condition (x |= Φ ∨ Ψ iff x |= Φ or x |= Ψ)
will not work with our interpretation of properties as
filters — here, anx will have the propertyΦ ∨ Ψ iff
it dominates an “internal branching” (i.e. inf) of two
elements either of which satisfies eitherΦ or Ψ.

Validity is defined by:Φ valid in M, |=M Φ iff
1M |=M Φ (cf. sec. 2). We obtain

Theorem 4. For all Φ ∈Form, [[Φ]] = {x | x |= Φ} is
a filter.

Proof: Induction on the structure ofΦ. We take only the
case forΦ = Φ1 → Φ2 — the other cases are similar.
Let x |= Φ1 → Φ2 and x ≤ y. Let z |= Φ1. Then
x · z |= Φ2 andx · z ≤ y · z by the monotonicity of·,
whence by the induction hypothesisy ·z |= Φ2. But then
y |= Φ1 → Φ2. Next, if x, y |= Φ1 → Φ2 and z |= Φ1

then x · z, y · z |= Φ2. Now x · z ⊓ y · z = (x ⊓ y) · z,
and by the induction hypothesisx · z ⊓ y · z |= Φ2, and

we have shownx ⊓ y |= Φ1 → Φ2. Thus [[Φ1 → Φ2]] is
a filter.

For the free safety algebra, the defining clauses for|=
may be strengthened by replacing≤ by = throughout.
This makes our clause for∨ vaguely similar to the
corresponding one in [11], as well as the one for+ in
[9]. Notice that inD each element is the inf of the set
of primes (= one-element sets) above it (anS is prime
if wheneverS1 ⊓ S2 ≤ S then S1 ≤ S or S2 ≤ S). In
fact we obtain

Theorem 5: For all S ∈ D, Φ,Ψ ∈ Form,

i. S |= Φ iff for all prime S′ ∈ D, S ≤ S′ only if
S′ |= Φ,

ii. S |= Φ ∨ Ψ iff for all prime S′ ∈ D, S ≤ S′ only
if S′ |= Φ or S′ |= Ψ.

Proof: Straightforward.

The property 5.ii is reminiscent of the barring in
Beth models for intuitionistic logic. We can use this
property to give an account of satisfaction directly on
the processes themselves. Notice that anS ∈ D is prime
iff it is the image of some trace, where a trace is a process
not containing occurrences of⊕. Define satisfaction,| .=,
of variable-free formulas by

p |
.
= Φ ∨ Ψ iff for all traces σ of p, σ |

.
= Φ or

σ |
.
= Ψ,

p |
.
= (α)Φ iff for all tracesσ of p, σ can α,

σ/α |
.
= Φ,

p |
.
= t iff for all tracesσ of p, σ can e, σ/e |

.
= t,

and the other clauses being identical to those of|=.
Then one can show that our logic characterizes the safety
ordering in the sense that

Theorem 6. For all p ∈ P,

i. For all variable-freeΦ ∈Form, p |
.
= Φ iff [[p]] |= Φ,

ii. p � q iff for all variable-freeΦ ∈Form, p |
.
= Φ

impliesq |
.
= Φ.

Proof (sketch): i. Induction in the structure ofΦ. Use
thm. 3, 4 and 5. ii. The “only if” direction follows from
i. and thm. 4. For the converse direction, note that an
S ∈ D has a simple representation,R(S), in the logic,
depending on the least generating subset ofS:

R(cl({〈ε, 0〉})) = ⊤,
R(cl({〈ε, 1〉})) = t,
R(cl({〈(αᾱ), i〉})) = (α)R(cl({〈ᾱ, i〉})),
R(cl({s1, · · · , sn}))

= R(cl({s1})) ∨ · · · ∨ R(cl({sn})), for n > 1.

Then one shows by induction on the complexity of the
least generating set ofS that for allS′ ∈ D, S′ |= R(S)
iff S ≤ S′. Now the result follows, for ifq |

.
= R([[p]]),

then [[q]] |= R([[p]]) by i., whence[[p]] ≤ [[q]], sop � q by
thm. 3.

A COMPLETENESS RESULT FOR SAFETY
ALGEBRAS

In this section we exhibit a Hilbert-type axiomatization
of the ⊥-free fragment of our logic w.r.t. validity in all
models.

Axioms: 1. ⊢ Φ → Φ
2. ⊢ (Φ → Ψ) → ((Γ → Φ) → (Γ → Ψ))
3. ⊢ (Φ → (Ψ → Γ)) → (Ψ → (Φ → Γ))
4. ⊢ (Φ → Ψ) ∧ (Φ → Γ) → (Φ → Ψ ∧ Γ)
5. ⊢ Φ ∧ Ψ → Φ
6. ⊢ Φ ∧ Ψ → Ψ
7. ⊢ (Φ → Γ) ∧ (Ψ → Γ) → (Φ ∨ Ψ → Γ)
8. ⊢ Φ → Φ ∨ Ψ
9. ⊢ Ψ → Φ ∨ Ψ
10. ⊢ Φ ↔ (t → Φ)
11. ⊢ (α)(Φ ∨ Ψ) → (α)Φ ∨ (α)Ψ

12. ⊢ (α)Φ ∧ (α)Ψ → (α)(Φ ∧ Ψ)

13. ⊢ Φ → (α)((α)Φ)

14. ⊢ (α)((α)Φ) → Φ

15. ⊢ (α)((β)Φ → Ψ) ↔ (Φ → (αβ)Ψ)

Rules: m.p. ⊢ Φ → Ψ, ⊢ Φ only if ⊢ Ψ
adj. ⊢ Φ, ⊢ Ψ only if ⊢ Φ ∧ Ψ
(e)-nec. ⊢ Φ only if ⊢ (e)Φ

(e)-nec. ⊢ Φ only if ⊢ (e)Φ
(α)-mon. ⊢ Φ → Ψ only if ⊢ (α)Φ → (α)Ψ

(α)-mon. ⊢ Φ → Ψ only if ⊢ (α)Φ → (α)Ψ.

Notice that our axiomatization of the modal-free frag-
ment (axioms 1–10, rules m.p., adj.) is just a standard
axiomatization of the (→, ∧, ∨, t)-fragment of linear
logic. Incidentally the semilattice ordered monoids un-
derlying our notion of safety algebra are closely related
to the models for BCK- and related logics of [17]. Note
also that we shall not obtain completeness for the free
algebra; e.g. inF , (α)Φ∧(β)Ψ is unsatisfiable whenever
α 6= β, whereas this is not true in general. We obtain

Theorem 7. ⊢ Φ iff for all safety modelsM, |=M Φ.
Proof (sketch): Soundness is proved in the standard way
(note that |= Φ → Ψ iff for all x, x |= Φ implies
x |= Ψ). Completeness is obtained by a simple Henkin-
type construction. Atheory∇ is any (!) set of formulas
s.t. Φ ∈ ∇ and⊢ Φ → Ψ only if Ψ ∈ ∇, andΦ, Ψ ∈ ∇
only if Φ ∧ Ψ ∈ ∇. For any set,S, of formulas, there
is a least theoryth(S) containingS. We build a safety
algebra from theories, by taking⊓ to be∩, 0 to ∅, and

∇1 · ∇2 = {Ψ | ∃Φ ∈ ∇2.Φ → Ψ ∈ ∇1}
= {Ψ | ∃Φ ∈ ∇1.Φ → Ψ ∈ ∇2},

1 = {Φ |⊢ Φ},
α(∇) = {Φ | (α)Φ ∈ ∇} = th{(α)Φ | Φ ∈ ∇},

and define the valuation,V , by ∇ ∈ V (X) iff X ∈ ∇.
The check that the operations are well-defined and that
we indeed do obtain a safety algebra in this way is a
straightforward application of the axioms and rules. As
an example we show· associative. So assume thatΦ ∈
∇1 ·(∇2 ·∇3). Then there is aΨ ∈ ∇1 s.t.Ψ → Φ ∈ ∇2 ·
∇3, and then there is aΓ ∈ ∇2 s.t.Γ → (Ψ → Φ) ∈ ∇3.
Using 1–3 and m.p. it is easy to show, that

⊢ Ψ → (Γ → ((Γ → (Ψ → Φ)) → Φ))

and then(Γ → (Ψ → Φ)) → Φ ∈ ∇1 · ∇2, whence
Φ ∈ (∇1 · ∇2) · ∇3 as desired. It is straightforward also
to check that∇ |= Φ iff Φ ∈ ∇, and we are done, for
if 6⊢ Φ then Φ /∈ 1, and then1 6|= Φ in the canonical
model.

COMPLETENESS FOR THE FREE SAFETY
ALGEBRA

Finally we exhibit an axiomatization of the logic with
falsehood, but without propositional variables, complete
for F .

First we have the standard axioms for⊤ and⊥:

16. ⊢ Φ → ⊤
17. ⊢⊥→ Φ

We strengthen 13. and 14. to

13’. ⊢ Φ ↔ (α)((α)Φ)

14’. ⊢ Φ ∧ (α) ↔ (α)((α)Φ)

Then the additions are

18. ⊢ t ↔ (e)t
19. ⊢ Φ ∧ (Ψ ∨ Γ) → (Φ ∧ Ψ) ∨ Γ
20. ⊢ ¬Φ → (Ψ → ¬Φ)

21. ⊢ ¬(β)((α)Φ), for α 6= β
22. ⊢ ¬((α)Φ) ↔ ¬Φ
23. ⊢ ((α)Φ →

∨
β∈B(β)Ψβ) →

∨
β∈B((α)Φ → (β)Ψβ)

24. ⊢ ¬(⊤ →
∨

α∈A(α)Φα)

25. ⊢ ⊤ → (α)⊤
26. ⊢ ¬¬Φ ∧ ((α)Φ → (β)Ψ) →

(β(α−1))(Φ → Ψ)

Note:
i. Axiom 18 makes rules(e)-nec.,(e)-nec. redundant.
ii. Axiom 19 (distributivity) marks a departure from

linear logic.
iii. Axiom 20 reveals the strong nature of the negation

(x |= ¬Φ iff for all y, y 6|= Φ).

To summarize, our axiom system consists of axioms 1–
12,13’,14’,15–26 plus rules m.p., adj.,(α).-mon. and
(α)-mon. Provability,⊢, from now on denotes provability
in this system.

Completeness is proved via a normal form theorem
for formulas. Note first, that we have

Theorem 8. Let Φ ≡ Ψ iff ⊢ Φ ↔ Ψ. Then≡ is a
congruence.

Proof: The equivalence property of≡ follows from
axioms 1, 2, 5, 6 plus m.p. and adj. We show that≡
is respected by the operations. E.g. for→, if Φ ≡ Ψ
thenΦ → Γ ≡ Ψ → Γ, Γ → Φ ≡ Γ → Ψ by axioms 2,
3, 5, 6 plus m.p. and adj. The other cases are similar.

Theorem 9. For all variable-free formulas,Φ ∈Form,
⊢ Φ iff |=F Φ.

Proof (sketch): Soundness is proved as usual, using the
representation in thm. 2. For completeness, define the set
NF ′ inductively by

i. t,⊤ ∈ NF ′,
ii.

∨
α∈A(α)Φα ∈ NF ′, if
a. A is a finite, nonempty subset of Act,
b. e ∈ A, Φe = t only if card(A) > 1, and
c. for all α ∈ A, Φα ∈ NF ′,

and then we letNF = NF ′ ∪ {⊥}. In order to apply
axiom 26 note that:

Lemma 1. If Φ ∈ NF ′ then⊢ ¬¬Φ.
Proof: By induction on the structure of normal forms.
First, we have⊢ Φ → ¬¬Φ. Hence, ifΦ = ⊤ or Φ = t,
by ⊢ ⊤, ⊢ t we have⊢ ¬¬⊤, ⊢ ¬¬t. By axiom 22,
⊢ ¬((α)Φ) → ¬Φ, hence if⊢ ¬¬Φ also⊢ ¬¬((α)Φ).
Additionally, if ⊢ ¬¬Φ, ⊢ ¬¬Ψ then⊢ ¬¬(Φ∨Ψ). This
handles the inductive case and we are done.

Now one can show by a long structural induction and
an inner induction on the modal depth of formulas (note
only we assignt the modal depth0), that each formula
Φ can be rewritten into aΨ ∈ NF , s.t. Φ ≡ Ψ. We
outline the proof forΦ = Φ1 → Φ2. By the induction
hypothesis,Φ1, Φ2 can be rewritten into normal form
— suppose thatΦ1 ≡

∨
α∈A(α)Φα ∈ NF and Φ2 ≡

∨
β∈B(β)Φ′

β ∈ NF . Using 2,3,7,8,9 and 23 we obtain
⊢ Φ ↔

∧
α

∨
β((α)Φα → (β)Φ′

β).
For eachα ∈ A, Φα ∈ NF ′, hence⊢ ¬¬Φα by lemma
1. Using 26 we can obtain

⊢ Φ ↔
∧

α

∨
β(β(α−1))(Φα → Φ′

β).
By the inner induction hypothesis we can obtain for each
α ∈ A, β ∈ B a Ψα,β ≡ Φα → Φ′

β s.t. Ψα,β ∈ NF .
By thm. 8 we obtain⊢ Φ ↔

∧
α

∨
β(βα−1)Ψα,β. We

can assume, that for allα ∈ A there is aβ ∈ B s.t.
Ψα,β 6=⊥, for otherwise⊢ Φ ↔⊥ and we are done. By
19 we obtain

⊢ Φ ↔
∨

f :A→B

∧
α(f(α)α−1)Ψα,f(α).

Using 14’,16,21,22 and(α)-mon one can show for all
Γ1,Γ2, ⊢ ¬((α)Γ1 ∧ (β)Γ2), wheneverα 6= β. Hence
if for all f : A → B there areα1, α2 ∈ A s.t.
f(α1)α

−1
1 6= f(α2)α

−1
2 , then ⊢ Φ ↔⊥. Otherwise a

little bit of manipulation establishes a finite, nonempty
setC ⊆ Act and for eachγ ∈ C a Γγ ∈ NF ′ s.t.

⊢ Φ ↔
∨

γ∈C(γ)Γγ .
If for all γ ∈ C, Γγ =⊥ then⊢ Φ ↔⊥ by 22. Otherwise,
using 22 again, we can assume for eachγ ∈ C, that
Γγ 6=⊥. If C = {e} andΓe = t then by 18,⊢ Φ ↔ t.
Otherwise

∨
γ∈C(γ)Γγ ∈ NF ′ and we are done.

Now we are almost home, for it is easy to show that
for Φ ∈ NF , |= Φ iff Φ “contains ane-trace” (that is,
Φ = t, Φ = ⊤ or Φ =

∨
α∈A(α)Φα, e ∈ A and Φe

contains ane-trace). But for suchΦ it is very easy to
construct a proof — thus ending the proof of thm. 9.

Notice, that the rewriting procedure used in the proof
of thm. 9 gives us a procedure for deciding in one go

i. Validity: Φ valid iff |= Φ iff 1 |= Φ,
ii. “Universal” validity: Φ “universally” valid iff for all

x ∈ F , x |= Φ, iff Φ ≡ ⊤, and
iii. “Satisfiability”: Φ “satisfiable” iff there is anx ∈ F

s.t. x |= Φ, iff Φ 6≡⊥.

CONCLUDING REMARKS

Of course lots of questions remain to be answered.
First on the axiomatization of section 6: Can one add
falsehood,⊥, to the axiomatization? Properties such as
x · 0 ≤ 0 seem hard to obtain, due to peculiarities of
our negation. Also it does not seem possible to obtain
a complete axiomatization with future modalities alone.
However, one can choose to add the “fusion” (intensional
conjunction) instead of the past modality.

Secondly, how do we deal with the liveness case?
One idea could be to let the disjunction induce under-
specification, or “Hoare-type” nondeterminism [4] into
the process system, enabling a treatment similar to the
safety case—maintaining our identification of properties
as filters. But more generally it remains to be seen
how these ideas can cope with various extensions of the
process language, primarily external choice.

Acknowledgements. The present work was supported
by the Danish Technical Research Council, grant no. 16-
3809.E. Thanks to my Ph.D. supervisor, Colin Stirling
for innumerable valuable discussions on the subject.

APPENDIX

Proof of theorem 2: First check, that for eachi ∈
{1, 2, 3}, Di ∈ Ci. Next each mapping,f : Di → A,
determines a unique mapping,f †, from finite, nonempty
sets of (irredundant) paths intoA, defined by

f †({s1, . . . , sn})
= f(cli({s1, · · · , sn}))
= f(cli({s1}) ⊕A · · · ⊕A cli({sn})),

for n ≥ 1. Further,f is a homomorphism ifff † satisfies
i. f †({s1, · · · , sn}) = f †({s1}) ⊕A · · · ⊕A f †({sn}),

for n > 1,
ii. f †({〈ε, 0〉}) = 0A,
iii. f †({〈ε, 1〉}) = 1A, and
iv. f †({〈αᾱ, j〉}) = αA(f †({〈ᾱ, j〉})),

and any suchf † determinesf . The “only if” direction is
straigthforward. For the converse direction, note first that
any element in the range off † is equal to a sum

∑
◦ X,

for X a finite, nonempty set oftraceswhich are elements
obtainable using only0, 1 and operatorsα ∈Act. Next
note that whenevercli(S1) = cli(S2), for S1, S2 finite,
nonempty, thenf †(S1) = f †(S2). Thirdly, if s1, s2 are
paths, andf † satisfies i.–iv.,f †({s1 · s2}) = f †({s1}) ·
f †({s2}). Then we check, thatf is a homomorphism—
we take only the case for·:

f(S1 · S2) = f †({s1 · s2 | s1 ∈ S′
1, s2 ∈ S′

2, S
′
1(S

′
2)

is finite and generatesS1(S2)})
=

∑
◦ A{f

†({s1 · s2}) | s1 ∈ S′
1, s2 ∈ S′

2}
=

∑
◦ A{f

†({s1}) · f
†({s2}) | s1 ∈ S′

1,
s2 ∈ S′

2}
=

∑
◦ A{s1 · s2 | s1(s2) a trace of
f †(S′

1)(f
†(S′

2))}
= f †(S′

1) · f
†(S′

2)
= f(S1) · f(S2).

Then we are done, for i.–iv. determinesf †, and hence
f , uniquely. The check, thatf preserves≤i is straight-
forward.

Proof of theorem 3: Thm. 2 gives homomorphisms
[[·]]i : P → Di for eachi ∈ {1, 2, 3}. We must show
these semantics to be fully abstract, i.e. that for all
p, q ∈ P, p �i q iff [[p]]i ≤i [[q]]i, i ∈ {1, 2, 3}. For the
if-direction it suffices to show the (in-)equations valid
w.r.t. the�i — this is straightforward. For the converse
direction note first that there are obvious relations of
“may” and “must”, inducing the relations�D

i , defined
on the Di. Using thm. 2 and the if-direction it may
be shown thatp �i q iff [[p]]i �D

i [[q]]i. To complete
the proof we assume[[p]]i 6≤i [[q]]i and show that then
[[p]]i 6�D

i [[q]]i. The case fori = 3 reduces to those for
i ∈ {1, 2}. We outline the proof fori = 2. So, letS1, S2

be upper, f.g. and nonempty sets of irredundant paths,
and assumeS1 6≤2 S2. Then there is a paths2 ∈ S2

s.t. for all s1 ∈ S1, s1 6≤ s2. We proceed by induction

on the complexity of the least generating subset ofS2.
We take only the case wheres2 = 〈α2ᾱ2, j2〉. Then
every s1 ∈ S1 must have the form eithers1 = 〈ε, 1〉
or s1 = 〈α1ᾱ1, j1〉. As S1 is f.g. we can find a finite,
nonempty setA ⊆Act s.t.S1 must

∑
A andα2 ∈ A. For

k = 1, 2 let S′
k = {〈ᾱ, k〉 | 〈α2ᾱ, k〉 ∈ Sk}. If S′

1 = ∅ all
we have to do is to find a testtα2

s.t. notS′
2 must tα2

. If
S′

1 6= ∅ note thatS′
1, S

′
2 ∈ D2 and thatS′

1 6≤2 S′
2. It may

be seen, that the complexity ofS′
2 is strictly less than

that of S2, hence we can apply the inductive hypothesis
to find a testtα2

s.t. S′
1 must tα2

and notS′
2 must tα2

.
This is then combined withA, obtaining a test separating
S1 andS2, and we are done.

REFERENCES

[1] K. R. Abrahamson, “Decidability and expressiveness
of logics of processes,” Ph.D. thesis, University of Wash-
ington, 1981.

[2] A. Avron, “The semantics and proof theory of linear
logic,” tech. rep., University of Edinburgh, ECS-LFCS-
87-27, 1987.

[3] A. R. Anderson and N. D. Belnap, “Entailment, the
logic of relevance and necessity,” Vol. 1, Princeton
University Press, 1975.

[4] S. Brookes, C. Hoare and A. Roscoe, “A theory of
communicating sequential processes,”J. ACM31 (1984)
560–599.

[5] H. Barringer, R. Kuiper and A. Pnueli, “Now you may
compose temporal logic specification”,Proc. ACM Symp.
on Theory of Computing(1984), 51–63.

[6] R. de Nicola and M. Hennessy, “Testing equivalences
for processes,”Theor. comp. sci.34 (1984), 83–133.

[7] J. M. Dunn, “Relevance logic and entailment,” in: D.
Gabbay, F. Guenthner (eds.),Handbook of phil. logic,
Vol III (D. Reidel, Dordrecht, 1986), 117–224.

[8] J.-Y. Girard, “Linear logic,” Theor. comp. sci.50
(1987), 1–101.

[9] S. Graf and J. Sifakis, “A logic for the description of
nondeterministic programs and their properties,”Inf. and
contr. 68 (1986), 254–270.

[10] M. Hennessy and R. Milner, “Algebraic laws for
nondeterminism and concurrency,”J. ACM 32 (1985),
137–162.

[11] M. Hennessy and G. Plotkin, “Finite conjunctive
nondeterminism,” in: K.Voss, H.J.Genrich, G.Rozenberg
(eds.),Concurrency and nets, (Springer, Berlin, 1987).

[12] C. Jones, “Specification and design of (parallel)
programs,”Proc. IFIP (1983), 321–332.

[13] J.K.Kennaway, “Formal semantics of nondetermin-
ism and parallelism,” Ph.D. Thesis, Univ. of Oxford
(1981).

[14] K. Larsen, “A context dependent equivalence be-
tween processes,”Lecture notes in comp. sci.194
(Springer, Berlin, 1985) 373–382.

[15] R. Milner, “A calculus of communicating systems,”

Lecture notes in comp. sci.92 (Springer, Berlin, 1980).
[16] R. Milner, “Calculi for synchrony and asynchrony,”
Theor. comp. sci.25 (1983) 267–310.

[17] H. Ono and Y. Komori, “Logics without the contrac-
tion rule,” J. symb. logic50 (1985) 169–201.

[18] G. Plotkin, “Algebras for internal and external
nondeterminism,” manuscript, University of Edinburgh
(1987).

[19] C. Stirling, “A generalization of Owicki-Gries’s
Hoare logic for a concurrent while language,”Theor.
comp. sci.To appear.

[20] C. Stirling, “Modal logics for communicating sys-
tems,” Theor. comp. sci.49 (1987) 311–347.

[21] A. Urquhart, “Semantics for relevant logics,”J.
Symb. Logic37 (1972) 159–169.

[22] G. Winskel, “A complete proof system for SCCS
with modal assertions,”Lecture notes in comp. sci.206
(Springer, Berlin, 1985) 392–410.

