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1 Introduction

Abstract: Plotkin, [Plo77], ezamines the denotational semantics of
PCF (essentially typed A-calculus with arithmetic and looping). The stan-
dard Scott semantics V is computationally adequate but not fully abstract;
with the addition of some parallel facilities, it becomes fully abstract, and
with the addition of an existential operator, denotationally universal. We
consider carrying out the same program for &, the Scott models built from
flat lattices rather than flat cpo’s.

Surprisingly, no computable eztension of PCF can be denotationally
unwersal; perfectly reasonable semantic values such as supremum and
Plotkin’s “parallel or” cannot be definable. There is an unenlightening
fully abstract extension L 4(approx), based on Gédel numbering and syn-
tactic analysis. Unfortunately, this is the best we can do; operators defined
by PCF-style rules cannot give a fully abstract language. (There is a natu-
ral and desirable property, operational extensionality, which prevents full
abstraction with respect to &.) However, we show that Plotkin’s program
can be carried out for a non-confluent evaluator.

*This research was supported by an NSF Fellowship, also NSF Grant No. 8511190-DCR and
ONR grant No. N00014-83-K-0125.



When proposing a denotational semantics for an existing programming language,
one should ask how closely the denotations of constructs agree with their compu-
tational behavior. Plotkin, in his seminal paper LCF Considered as a Programming
Language [Plo77,Saz76], gave the paradigmatic treatment. PCF (more precisely
called L4, and less precisely called LCF), is a typed A-calculus with integers and
Booleans, and with enough arithmetic, logical, and fixed-point operators to give it
full computing power.

In general in semantics, we are trying to explain the behavior of computer pro-
grams. Following the A-calculus community, we restrict attention to programs which
read input and then produce output, such as sorting routines and TgX. We formalize
programs as terms of the simply typed A-calculus. Programs before linking corre-
spond to open terms; complete, executable programs correspond to closed terms.
Programs together with their inputs match closed ground terms; and outputs cor-
respond to numerals.?

A (typed A-calculus) language £ is a set of typed constants, and a set of rules
for evaluating terms built using them; details will be given later as necessary. An
L-term is a term of the typed A-calculus built using the constants of L.

One often wishes to reason about the behavior of terms other than closed ground
terms. A basic question to ask is, “when are two pieces of code the same?” The
fundamental answer in Computer Science is, “Two pieces of code are the same iff
they are interchangeable; i.e., if either can be substituted for the other in any pro-
gram and no difference can be observed.” This definition has two free parameters:
the language £ in which the programs are being used, and the aspects of program
behavior we consider important.

To build a theory, we choose a set O of predicates on L-terms, called observa-
tions, which we consider relevant. Observations should be at worst semidecidable
(recursively enumerable), or we will have trouble observing them on our computer
system. For our purposes, it suffices to only observe closed ground terms. Two
closed ground terms M and M’ are observationally similar, written M=, M’ , if
they agree on all observations. Two arbitrary terms M and M’ are observationally
congruent with respect to £, M=% M’ if they are observationally similar in all
contexts of £ which drive them to closed ground terms.

We, like Plotkin, will use the notions

Onum = {“Evaluates to ¢”|c is a numeral}

1We call the Boolean values tt and ff numerals for ease of discourse; the numerals are precisely
the ground constants.



as observations; we make the observations by running the program until it returns a
value, if ever. By the Church-Rosser theorem (which holds for many dialects of the
A-calculus), and the fact that the normal forms of closed ground terms are numerals,
it is worthwhile to define the function Eval(M) which completely evaluates closed
ground terms. With O,,,, as the notion of observation, M=, M’ iff M and M’
evaluate to the same numeral or both diverge; that is, if Eval(M) = Eval(N).

The operational theory of PCF and similar languages is quite rich. One im-
portant property is operational extensionality (also called the context lemma): if
two functions agree on all definable inputs, then they are congruent. Intuitively,
in an operationally extensional language, all the interpreter does to functions is to
pass them around and apply them to arguments. PCF is operationally extensional;
we will see an example of a language which is not operationally extensional below
[Mul86,BCL85,Mil77].

This definition is operational: it depends on the way that the computer evalu-
ates programs. Another, more abstract way to describe the behavior of programs
and terms is a denotational semantics, a mapping [-] into some mathematical space
of meanings. Preferably, the space will have some comprehensible structure; e.g.,
the meaning of a term of functional type ought to be a function, or something
with functional behavior. If we are to get anything useful from the denotational
semantics, it should have some connection with the operational semantics. A mini-
mal desirable property is computational adequacy, that closed ground terms should
evaluate the way that the semantics say they should; we restrict this discussion to
adequate semantics.

A computationally adequate semantics is appropriate for reasoning about the
behavior of code together with its input. If we can prove that two terms (of any
type, not necessarily closed) have the same denotation, then they are necessarily
interchangeable. The converse is generally false; it is quite common for programs
to have different denotations, yet behave the same under all circumstances. That
is, an adequate semantics allows us to prove things about program equality, but not
difference. The semantics are a sound model for the language. but not a complete
one. When the converse holds, the language is fully abstract.

Denotational semantics allows us to ask other questions as well. When designing
a programming language, one would like to be able to call it “universal” in some
precise and useful sense. Turing universality is not a particularly useful notion here;
most languages compute all partial recursive functions on integers. One must look
further to get a useful notion of universality. Scott-style denotational semantics fre-
quently allows one to define the notion of a computable semantic value. A language
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Figure 1: Domains of Booleans

is denotationally universal for a model if all computable values are definable.

Turing completeness implies that the language allows us to compute any first or-
der function that we could reasonably expect to compute. Denotational universality
implies that we have all functions and control structures that we could reasonably
hope to have, relative to the semantics.

Plotkin, [Plo77], investigates the questions of adequacy, full abstraction and
universality for PCF. The denotational semantics V is the type frame built with
flat cpo’s at base type and cpo-continuous function spaces (Figure 1). The base
language £, is already adequate for V, but not fully abstract. Adjusting the de-
notational spaces to achieve full abstraction is a difficult open problem [BCL85]
or involves a model involving a good deal of syntactic information [Mul85,Mil77].
It is possible to keep the spaces fixed and adjust the language; £ 4(pcond), which
is L4 with a parallel conditional operator added, is fully abstract.? The term
pcond B phen M plse N evaluates all its arguments simultaneously. If B returns true
or false, pcond B phen M plse N evaluates to M or N respectively. However, if M
and N evaluate to the same numeral ¢, then pcond B phen M plse N evaluates to ¢
as well — even if B diverges. Finally, £4(pcond + 3), which is L 4(pcond) with the
addition of a continuous approximation of the existential quantifier is denotationally
universal. These results are summarized in Figure 2.

Plotkin mentions two other models, V., and <>. Both of these are computa-
tionally adequate for £,4, but neither fully abstract nor universal. The addition of

2One use of denotational semantics is to guide language design. In this case, the semantics
suggests the addition of programming constructs to the language.
g8 prog g guag
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VtermsM, M’

[M] = [M'] implies M=5,, M’
Computational Adequacy | Equivalently, all three
Vclosed ground terms M, M’
[M] = [M'] iff M=, M’

Vterms M, M’

Full Abstraction II]M]] _ [[]W’]] i M=L MY L 4(pcond)
Denotational Universality | Ycomputablef JF.[F] = f L 4(pcond + 3)
.Operational Extensional- (VN MN= M N) implies all three
ity M=E£, M

Figure 2: Summary of Plotkin’s Results

parallel conditional does not change the situation for either model.

Voo, which is V with an extra integer co incomparable to all proper integers,
1s not particularly different from V. Adding a constant denoting oo and a test for
equality to co to L£4(pcond) gives a language fully abstract for V... Adding 3 to
that language makes it denotationally universal. These results are predictable from
Plotkin’s paper; the proofs are trivial modifications of those in the paper. Similar
results should hold routinely for arbitrary effectively presented flat domains with
suitable effective predicates and functions.

< is more interesting, mathematically and historically. It has flat lattices (Fig-
ure 1) at ground type, and cpo-continuous function spaces at higher type. It is
mathematically more tractable than V, because the semantic domains at all types
are lattices rather than merely cpo’s; all sets of values have suprema. This is quite
helpful when doing mathematics: our proofs of full abstraction and universality are
significantly simpler than Plotkin’s proofs for just this reason.

Despite these apparent advantages, the semantics community has moved toward
the use of cpo models rather than lattices. This paper gives formal support to
this movement, showing that in at least one context the lattice models are less
appropriate than cpo models: we will show that Plotkin’s program cannot be carried
out in <> as cleanly as it can in V. First, we define a minimal requirement for typed
A-calculi. Recall that PCF only does simple arithmetic; it may be thought of as
a higher-order desk calculator. It would be very disconcerting for PCF programs
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to have the possibility of returning more than one result. The essence of PCF is
single-valued; and we consider multi-valued variants of PCF undesirable.

In certain places, the evaluation is not deterministic, in that there are several
ways to evaluate a term. However, PCF is confluent (has the Church-Rosser prop-
erty); if it is possible for a term of any type to reduce in two ways, those ways can be
brought back together again. In particular this holds for closed ground terms, and
so PCF is single-valued. (Note that single-valuedness is weaker than confluence, as
higher-order terms may not conflue.)

Having chosen single-valuedness as an essential criterion for PCF-like languages,
we immediately find a flaw with the lattice model (Section 3). No single-valued
extension of £4 is denotationally universal for <.

Denotational universality is perhaps the least important of our criteria; we might
not be too unhappy with a merely fully abstract language. This is readily available
by a very general construction; we call the resulting language £,4(approx). In
section 4, we show £ A(approx) is fully abstract with respect to <.

On further consideration, £ 4(approx ) is unpleasant; it is a ruthless combination
of Godel numbering and syntactic analysis which breaks operational extensional-
ity. In fact, we show that any language which is fully abstract is not operationally
extensional. It is an instance of a general construction which makes any vaguely pli-
able language and domain fully abstract. It bears little resemblance to the tasteful
structured operational rules which define £4 and Plotkin’s extensions of it. Un-
fortunately, this cannot be repaired; for a suitable and very general definition of
“PCF-like”. (Sections 5 and 6): we show that there is no single-valued extension of
L4 by PCF-like operational rules which is fully abstract for <>. In particular, it is
not possible to add a single-valued “parallel conditional” to PCF to make it fully
abstract for <.

The impossibility results hinge on the fact that the evaluator is forced to re-
turn a single final answer in finite time, or to diverge. If we take a more liberal
interpretation of how a computation returns answers, we can achieve full abstrac-
tion and denotational universality for <> even more easily than Plotkin did for V;
the parallel conditional and a constant denoting T are all that is required, and the
existential quantifier 3 is not necessary. In Section 7. we give a nondeterminate lan-
guage L(pcond + T), and show that £(pcond + T) is fully abstract, denotationally
universal, and operationally extensional.

The cost is high. £(pcond + T) is severely non-single-valued; the constant T
reduces to every numeral. It is possible to change the notion of an observation, and
to have a confluent language for that notion, but in the resulting language most
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computations do not terminate even when they produce a value. The languages
L 4(approx) and £(pcond 4+ T) answer the theoretical questions, but are qualita-
tively different from usual functional languages.

In summary, this paper is the converse to [Plo77]. Plotkin showed how a well-
chosen denotational semantics can match an operational semantics, and demon-
strates that everything can work right. The results of this paper show that a
poorly-chosen denotational semantics can fail to match any good operational se-
mantics (although it can be tantalizingly close to matching), and demonstrates
that the success of Plotkin’s program is far from automatic.

2 Review of PCF and Scott Domains

The material in this section is standard: experienced readers may skip it.

Our core language, called PCF, is essentially Plotkin’s core language [Plo77,
Mil77]. PCF is simply typed A-calculus. with integers and Booleans as base types,
and enough constants to give it general computing power. The base or ground types
are ¢ and o, which will be used for the integers and Booleans respectively; if o and 7
are types, then o — 7 is the type of functions from ¢ to 7. As usual, — associates
to the right: 0 — 7 — pis read as 0 — (7 — p).

We fix disjoint, countably infinite sets of variables {7} of each type o. Let
C = {c7} be a set of typed constants. The terms and their typings of L£(C), typed
A-calculus over C, are given by the following rules. The phrase M : ¢ means that
M 1s a term, and it has type o. In this system, it is straightforward to prove that
each term has precisely one typing.

M:c—-7, N:o

(MN): 7

M:T

AP M:ioc—T
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n : ¢ for each integer n € N.
tt,ff: o truth and falsehood.
14,140 —
O=:1—>0
cond, 10— — ( — ¢
cond,:0—>0—0—o0
Y,: (0 w0)—0

Figure 3. Constants of £ 4

The constants in the core language of PCF are given in Figure 3. We write
L4(C) for the typed A-calculus with the core constants as well as those in C. For
convenience of notation, we use the mathematical integers and Booleans as numer-
als. A ground term is any term of type ¢ or 0. The notion of free and bound
variables is completely standard; a closed term is a term without free variables. We
are, ultimately, concerned only with closed ground terms: only they. in general, can
produce output of a form that we are willing to observe.3 In this paper, equations
between terms denote syntactic equality modulo renaming of bound variables; in
particular the symbol “=" is not used for 3-convertability.

The operational semantics is defined in the usual way. We define a one-step
reduction relation M — N between terms. with rules given in Figure 4. We will
investigate its transitive reflexive closure M —» N. M[r := N] is the term M
with IV substituted for free occurrences of x, with renaming of bound variables as
appropriate; see [Bar81]. We will write terms in a functional-programming style,

e.g.

let fay = M(f) +3
inif B then R else S

will abbreviate!

(/\f.(condBRS))(Y(/\f.)\:r./\y.1+1+1+(Mf))).

3As stated in the introduction, our primitive observations are the printing of integers: we may
see that the program M evaluates to 19. Other observations are possible; see [BR39].
4This let is often written letrec.



(A2 .M)N) — Mz := N]
cond tt then M else N — M
condff then M else N — N
1+n — n4+1
140 — {n—l n>0
n=20
n=20
O=n - { n#0

YM — M(YM)

M — M
(MN) = (3'N)

N N
(OIN) = (MN)

pcond tt phen M plse N — Af
pcond ff phen A/ plse N — N
pcond B phencplsec — ¢

Figure 4: Operational Rules of £ 4



Plotkin’s interpreter for £4 is different in two ways. The first is not substantial:
we define the predecessor of 0 to be 0; Plotkin does not define it. The advantage
of defining it is that the only closed ground normal forms are numerals. The more
important difference is that Plotkin’s interpreter is determinate, while ours is not:
that is, there is at most one way to reduce any given term in Plotkin's system. This
difference is irrelevant for the ultimate computational behavior of terms, because
our system is confluent: if M —» M; and A —» M, then there is some N such that
M, - N and M, - N. In fact, our system could be made determinate in such a
way that all of our theorems hold, at the cost of some added complexity.

We define the evaluator Eval, a partial function from closed ground terms to
numerals. Eval(M) is the unique numeral ¢ such that M —» c, if it exists. By
confluence, PCF is single-valued: if M —» ¢ and M —» d, then ¢ = d. We define
M=, N iff Eval(M) = Eval(N). (¢ = y if both « and y are defined and equal, or
neither is defined.)

The reduction rules give behavior to terms of all types. As the problem of
equality for general terms is tricky to define and undecidable to execute, we only
observe numerals: constants of type ¢ and o.

Deciding when two terms, or even normal forms, of arbitrary type ought to be
identified is nontrivial, and usually undecidable. Even choosing the criterion for
identifying them is nontrivial. There are several common criteria.

The first notion of identity we consider is the purely operational notion of con-
gruence. We first define L-conterts C = C[X;, ..., X,], which are simply £-terms
(which may contain the variables X;; we capitalize these variables for visual dis-
tinctiveness). Contexts are places in which code may be inserted. C[P,,...,P,] is
C[Xi,...,X,] with P; substituted for X;. as follows:

Definition 2.1 If C[Xy,...,X,] is a contest, then C[P,,..., P, is:
o IfC =X, then C[P,,..., P, = P,
o If C is a variable other than an X;, or a constant, then C[Py,.... P =C.
o IfC =C\Cy, then C[Py,... \P,] = Cy[P..... P)Cy[Pr...., Pu].
o IfC =A2.C", then C[P,,..., P, = Ae.C'[P,,...., P].

For example, if C[X] = Az.X, then Clz+y] = Ar.(x + y). By contrast, (C[X])[X :=

(z +y)] = Az.(z + y), as the bound variable was renamed to avoid capture.
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We say that terms M and N of the same type are congruent with respect to L,
M=%, N, iff, for all contexts C driving them to closed ground terms, C[M]=,5,C[N].
It is possible, for example, to show that Av.z and \y.y are congruent in this sense.

Another notion of program equivalence comes from a denotational semantics for
PCF, assigning appropriate mathematical values to all the terms of the language.
We choose meanings such that both Az.x and Ay.y in fact mean the identity function
on some set, and therefore are identified. It is nontrivial to find such a model for
PCF; in particular, it is hard to assign a meaning to the Y combinator that behaves
properly. Fortunately, Dana Scott [Sco69] and Plotkin, among others, have found
several models.

A type frame is a collection of sets [o] indexed by types o, such that [o — 7] is
a set of functions from [o] to [7]. An environment p is a type-respecting mapping
from variables to values. An interpretation T is a type-respecting mapping from
constants to values. We may try to build a model of the typed A-calculus by giving
a family of functions [-] taking terms of type o and environments to values of type
o, satisfying:

[clp = I(c) (1)
Ll = plo) (2)
[(MN)p = ([M]p)[N]p) (3)
[Az.M]p = f where f(d) = [M]p[x > d] (4)

For an arbitrary type frame, it will not always be possible to find an f satisfying
(4); necessary and sufficient conditions are given in [Mey82]. We omit p and T
whenever possible.

We say that a model [-] is sound if

o [tt] # [ff]. This suffices to make the model nontrivial.
o If M — N, then [M] = [N].

A large number of sound models for PCF can be built using Scott domains.
We sketch the basic definitions, largely to state our choices between alternative
standard terminology; this material is developed in greater detail in, e.g., [Sco76,
S5co069,5to77,Bar81]. If S is a set, then S, is the partially ordered set S U {1}
ordered by L T x for every = and no other inequalities. A function f: C — D is
monotone iff, whenever « C y, then f(x) C f(y). A nonempty set X C D is directed
iff every pair of elements of X has an upper bound in X. A partially ordered set
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C is a complete partial order (cpo) iff C has a least element 1, and each directed
subset X of C' has a least upper bound | |X. A monotone function f between cpo’s
1s continuous iff, whenever X is directed, then f(||X) = |]f(X). The set C — D of
continuous functions from C to D is a cpo if C and D are cpo’s. It is straightforward
to show that, if f is continuous, then the sequence

L, f(L), FOF(L)), - -

is directed, and that its supremum is the least fixed point of f. In fact, the function
taking f to its least fixed point is itself a continuous function, allowing us to interpret

Y.

2.1 Denotational Semantics

Definition 2.2 A language £ with operational and denotational semantics is ade-
quate if, whenever M and N are terms with [\[] = [N], then M=%, N.

For our languages, there is a useful alternate characterization of adequacy. This
depends on the denotational semantics being compositional; that is, the meaning of
a composite term is a function of the meanings of the subterms. Models defined by
(1)-(4), including all models used in this paper, are necessarily compositional.

Fact 2.3 In a compositional model, observing numerals, adequacy is equivalent to the

statement that, for all closed ground terms M and N, M=,,N iff [M] = [N].

The converse to adequacy is in general false: the case in which it holds deserves
a name.

Definition 2.4 A language £ is fully abstract (with respect to a given denotational
semantics [-]) if, whenever M and N are arbitrary L-terms, M=% N iff [M] = [N].

obs

An essential feature of Scott domains for PCF is the existence of a countable
set of isolated values, also called finite, compact, and basic values:

Definition 2.5 The value e € D is isolated if. whenever | |[X T e for a nonempty
directed set X, then there is some element © € X such that v Je.

We remind the reader of the following standard facts of domain theory.
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Definition 2.6 Ifd € D and e € E. then the step function d\,e € D — E is given
by:
, e d3d
(d\e)d' = { L otherwise

Fact 2.7 1. Every element of D is the supremum of its isolated approzimants:

v =| [{e: e isolated. e C x}

2. Two elements x, y are different iff there is some isolated element approzimating
one of x, y but not the other.

3. The isolated elements of D — E have the form | |X, where X is a finite set of
compatible step functions d\,e with d and e isolated. (Two terms are compatible
if they have a supremum.)

4. In the domains used as models of PCF in this paper, the isolated elements have a
Godel numbering el at each type o. such that application, approzimation, com-
patibility, supremum, and infimum are effective in the indices of the elements.

We are now ready to define the models V and ¢. By analogy with S, we write
ST for SU{L, T}, ordered L C 2 C T for all z: the flat lattice on S. We refer to
as the flat lattice model despite the fact that only the base domains are actually flat;
however, all domains are complete lattices. The meanings of constants are given in
Figure 5.

Vlo] = {t.f}, O] = {tt.f}]
V] = {0,1.2,...}, Sl = {0,1,2,...}]
Vlie - 7] = Vo] - V[r] || Clo— 7] = O] — O[]

We say that a language £ is fully abstract for a model [-] if M=4, N iff [M] =
[N]. Full abstraction is a very intimate connection between a language and its
semantics, and is usually hard to achieve.

Definition 2.8 An element v € D is computable iff {n : ¢, C v} is recursively enu-
merable.

A denotational semantics is denotationally universal iff every computable element
in any of its semantic domains is definable: whenever v € [o] is computable, then
there is some term M, : o with [M,] = v.

13



Plotkin defines the constant 3, which is the best continuous approximation of
an existential quantifier:

t  f(n)=tt for some n
Blf= & f(L)=*£

1 otherwise
Theorem 2.9 ([Plo77,5a276])
o L4 is adequate for the models V and <.
o L4 is not fully abstract for either V or <$>.
o L(pcond) is fully abstract for V, and not for <.

L s(pcond) is not universal for either V or <.

L 4(pcond + 3) s universal for V, and not for .

3 Failure of Denotational Universality

One of the primary mathematical advantages of <> over V is that <> is a complete
lattice; all sets of elements, and in particular all pairs of elements, have suprema.
However, this is not true operationally: we will show that the curried supremum
function U : 0 — 0 — o is not definable, although it is clearly computable. Plotkin’s
function “parallel or” por is also not definable, with essentially the same proof. It is
more striking that Ll is not definable; the reason that <> is attractive is that suprema
exist. This foreshadows the disagreement between operational and denotational
semantics to come.

Let £ be any effective extension of £4 by the addition of typed constants, such
that there is some meaning function [-] giving meanings in <> to all terms of £,
agreeing with the definitions in [Plo77], which are repeated in figure 5.

For the moment, we will consider any possible evaluation mechanism for £. An
evaluation function for [-], Eval, is a partial recursive function from closed ground
terms of £ to numerals of £, such that -] is a computationally adequate denotational
semantics. By Fact 2.3, we know that [A/] = L iff Eval(M) diverges; also, [M] =
[n] = n for some standard integer or Boolean n iff Eval(M) = n. So, if there is an
L-term M with [M] = T, Eval(M) must be defined and cannot equal any standard
numeral; in this case, there must be a numeral T of £ denoting T.
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[n] = n

t] = t
[f] = &
T n="T
_ _ 0 n=20
(14l = n—1 n>0
1 n=_1
T n=T
[1+]n = n+1l neN
1 n=-341
T n=T
t n=0
[o=l» = f n>0
1l n=1
T b=T
[cond]bxy = ;: bz?f
1l b=1

[YIf = U{f"(L):n 20}

Figure 5: Meanings of Basic Terms



Theorem 3.1 Let £ be any language as above. There is no evaluation function Eval
for [-] for which there is an L-term P such that [P] = U:0 — 0 — o.

Proof: Suppose that P were such a term. [Pt#ff] = T, so the language must
include a numeral T : 0. If N is a closed Boolean term such that Eval(V) is defined,
then [N] # L. By definition, the ordinary conditional cond is doubly strict; that is,
[cond]bazy = b when b= 1 or b= T. So, computing in the domain, we discover that
if Eval(IV) is defined then [cond N then T else T] = T, and if Eval(V) is undefined,
then [cond N then T else T] = L.
Define
H = A\z.P tt (cond x then T else T). (5)

Straightforward calculations show that, for any N : o,
Eval(N) converges iff [HN] =T
Eval(NV) diverges iff [HN] =t

By adequacy, Eval(HN) converges for any closed Boolean term N, and N diverges
iff Eval(HN) = tt. The evaluator is able to solve the halting problem for £-terms.
Since £ includes PCF, £ has general computing power, and therefore an undecidable
halting problem. So, no term P with [P] = U exists. O

We could merely have shown that the function [H] is undefinable. We will use
the undefinability of Ul in the non-full-abstraction results of Section 5.

The theorem could be stated somewhat more generally: all that is important is
that Eval always halt on non-_L terms, and that the value it returns on terms meaning
tt be distinguishable from the value on terms meaning T. Note that this observation,
though precisely analogous to Plotkin’s choice of observation, is a bit peculiar: it
is non-monotonic. It can be argued that these observations are not appropriate,
that any observation which can be made about tt should also be possible to make
about T. In Section 7 we present such a system. The results of this paper may
be interpreted as an exploration of the horrible things which can happen if non-
monotone observations are allowed.

<> is mathematically appealing because suprema always exist. Unfortunately,
this cannot be reflected into the programming language: even the simplest supre-
mum function is not definable. Although both the failure of universality and the
way in which it fails are disappointing, they are not enough to condemn <»>. Univer-
sality is the least often used of our relations between operational and denotational
semantics; and we usually do not expect all mathematically-useful functions to be
definable. We might be content with a fully abstract language.
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4 Full Abstraction

Full abstraction seems on first glance to be a quite strong connection between
an operational and denotational semantics. A more detailed look shows that the
situation is complex. Full abstraction not in general a monotone relation: if Ly is
a fully abstract language for some model, and £, is a perfectly reasonable-looking
extension of £, which can be interpreted in that model. £, may fail to be fully
abstract. Full abstraction is a delicate balance between the expressive power of a
language and its distinguishing power, its ability to tell its own terms apart. When
operations are added to the language. hoth sorts of power increase, and the balance
may be lost. There are at least three ways a language may be fully abstract for a
Scott model:

Expressively: It could have enough power to define all isolated elements in the
model. For example, PCF with pcond is fully abstract for V, observing nu-
merals, in this sense: all isolated elements are definable. If two functional
terms F' and G have different meanings, we can give them enough arguments
to drive them to have different meanings at ground type.

Introspectively: It could have enough power to observe all distinctions that the
semantics makes; i.e., tests for approximation to isolated elements are all
definable, even though not all of the isolated elements themselves are. If F
and G have different meanings, it is because there is some isolated value e
which approximates one of them and not the other. Applying the test T, for
approximation by e to F and G will therefore give observably different results.
The general construction described below gives this sort of full abstraction, 5

Inhibitedly: It could be so weak that it cannot describe the distinctions that the
semantic domains make. For example, in the simply typed pure A-calculus
(without constants), the set-theoretic model built from an infinite set is fully
abstract for observing normal forms [Fri75]; although the model makes non-
trivial use of higher-order functions. the language cannot define many of them
and cannot test for most elements it cannot define.

Plotkin’s proof of full abstraction for V showed that parallel conditional makes
PCF expressively fully abstract for V; all isolated elements are definable. However,

5This method of distinguishing terms is of course possible for an expressively fully abstract
language.
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we already know that some isolated elements, such as U, are not definable in <>, so we
cannot use Plotkin’s method. Adding certain constants makes PCF introspectively
fully abstract for <.

Recall that two denotational values are different iff there is an isolated element ¢
which approximates only one of the two. So, if all of the tests e C [M] for isolated
e and closed M were definable — e.g., if there is a term 7. : 0 — o such that
Eval(T. M) = t if e C [M] and T, M diverges otherwise — then we could distinguish
all pairs of semantically different terms. If [M] # [N], then we proceed as follows.
Let x4,...,z, be the variables appearing in M or N, and let C,[Z] = Az1,...,2,.2.
C1[M] and C;[N] are closed terms with different meanings, and so there is an isolated
e which approximates only one of the two. Let C,[Z] = T.C, [Z]; then C3[Z] is a
context distinguishing M and N. So, PCF is fully abstract if all of the 7.’s are
definable.

It happens that the tests can be computed by a syntactic analysis of the closed
terms M without recourse to terms with value €. We introduce constants approx? :
t = 0 — o, with the intended meaning:

T n=T
[approx]nf =4 &t ¢ C f
1 otherwise

The meanings of all PCF terms are recursively enumerable elements of the s
mantic domains, i.e., for each M, testing e, C [M] is uniformly semidecidable in
n. We must show that this is semidecidable uniformly in both M and n.

The interpreter evaluates approx N M by the following program. It first evalu-
ates IV until it yields an integer, n. (If N evaluates to T, approx N M returns T.)
If M is not closed, it then stops.

When M is closed, the evaluator converts M to combinatory form [Bar81]. If M
is a constant (including the combinators S, K. Y and the new constant approx),
the evaluator uses a built-in rule to decide if €7 C [M]. Lemma 4.1 will show that
this is uniformly decidable in n and the constant Af.

If the combinatory term M is not a constant, it must be an application M;M,.
In this case, e C [M] iff there is an integer k such that (ei\e7) C [M;] and ef C
[M:]. So, the interpreter performs a dovetailed search over all such k, computing
apPTox (So,rkn) M1 and approx k M, (where s, ;4. is the code of €r. \.e7; note that
So,rkn 18 a recursive function of o, 7. k and n.) If there is no such %, then the
dovetailed search will diverge as desired:; otherwise, it will return tt. It is possible to
program this procedure as a set of reduction rules (F igure 6) which branch on the
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structure of their arguments and do some nontrivial side computations on Godel
numbers; this system is not confluent, though it is single-valued.

Lemma 4.1 The set {(n, M) : €7 C [M],M a combinatory constant of L s(approx )}
is decidable.

Proof: The following lemmas give a decision procedure for 7 C [M] where M is a
constant. Recall that application, equality, and, approximation of isolated elements
are recursive in the codes of the elements: Lemma 4.3 shows that the fixed point
of an isolated element is computable. The lemmas reduce ¢ C [M] to decidable
questions. O

From the fact that =\ (yUz) = (\y)U(z\,2), it follows that each isolated
element can be expressed in a simple form. If 6 = ) — 0y — -+ — oy, then there
are k and aj; such that

ez = U{(Lli\‘a2l‘\ e \CL”' . Z = 1.. .. ,k}

and furthermore, such a k and the codes of the a ji are recursively computable from
n. Call this an r-representation of ¢?. (In general, there will be many such represen-
tations, but this will not concern us. It is possible to compute an r-representation
of 7 uniformly from o and n. which we will call the r-representation. )

Every type o can be written as 0y — 0, — --- — o, with o, a base type, and
this is the most frequently used r-representation of types. In this section, we will
use some shorter representations..

Lemma 4.2 The following are necessary and sufficient conditions for approzimation
to the constants of PCF, and S and K combinators.

o e C [K] iff for every a\\b\.c in the S-representation of e°

n’

we have ¢ C «.

o ¢; T [S] iff for every a\\b\,c\.d in the 4-representation of e?, we have d C
ac(be).

o ¢ T [cond] iff for every a\,b\.c\\d in the 4-representation of eZ, one of the
following holds:

—a=1andd= 1
—a=ttanddC b
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—a=fanddCc
— a=T and d is arbitrary.

o e T [1+4] iff for each a\b in the 2-representation of €, we have b T a+1,
and similarly for the other arithmetic operators.

o ¢;777° C [approx ] iff for every a\b\,c in the 3-representation of €7, we have
eithera=T ora=c=1 or bC ¢7 and ¢ C t.

o Lett =(0 — o) = 0. Then e}, T [Y,] iff for each a\\b in the 2-representation
of e}, we have b C [Y]a

Proof:

We show this for K; the others are similar. €7 C [K] iff for all z,y we have
ey C [K]zy = x. Suppose that ¢ C a for each a\,b\,c in the 3-representation 7
of €7; then

erry = Yc:aExand bC y and a\b\,c€ T}
Ufa:aCzand bC y and a\,b\,c € T}
L{a: e C x}

T

i1

Conversely, if a\,b\,c C e’ C [K], then
(aN\bN\ec)ab=cC [K]ab=a

as desired. O

Lemma 4.3 Least fized points of isolated elements are computable: given an integer
n and a type o, it is possible to compute an integer n’ such that e7, is the least fized
point of €777

Proof:

Let e = 777 = | J{a\bi: 1 =1,..., k} be the 2-representation of the isolated
element. By general domain theory, e has a least fixed point [Y]e. Since [Y]e =
e([Y]e), the value [Y]e s in the range of the function e. However, ¢ is the supremum
of a finite set of step functions, and there are only a finite number of values it can
take; the range of e is at most {|J{b;: j € J}:.J C {1,...,k}}. So, we can simply
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approx’n(MN) — cond (approx”™ s, ,rn,M) then approx kN else

one such rule for each k

approx’nS — f,gn
approx’nK — f,kn
approx’nY — f,yn

where f, 5 is a term of type ¢ — ¢ which returns tt if €7 C [6].

Figure 6: Rewrite Rules for approx

search this finite set for the least value b such that b = eb: and this is the least fixed
point. O

The construction used to generate £ 4(approx ) is fairly independent of the con-
stants actually available in £, as long as the set of isolated approximants of the con-
stants is always uniformly recursively enumerable. We refrain from giving precise
necessary and sufficient conditions under which the approx construction is appli-
cable, but it is a very general construction. The same constants approx, changing
only the details of the coding of isolated elements, will be fully abstract for V and
V. It fulfills our general technical requirements, but it is neither informative nor
satisfying.

5 No PCF-like Fully Abstract Extension

It is not possible to add informative and satisfying operators to PCF to make it
fully abstract for ¢&. We formalize the notion of “informative and satisfying” in two
ways. Our formalizations are generous: many things will be formally acceptable
but still be neither informative nor satisfying. This makes the theorems stronger;
they cover languages which are tolerable only formally. '

The first formalization is operational extensionality. Extensionality of mathe-
matical functions is the statement that. if Vz.fr = gz, then f = ¢g. Operational
extensionality is the analogous property of terms; we give the full definition below.
Note that £4(approx) is not operationally extensional; the terms M, and My be-
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low behave the same on all arguments, but differ in the context C[X] = approxnX
where n is a code of the isolated element [1].

The second formalization, in Section 6. is a way of saying that the language has
a mnice interpreter. PCF is defined by clean-looking structured operational rules;
we generalize the form of those rules. We will show that any language defined by
“PCF-like” rules is operationally extensional. This adds weight to the claim that
“PCF-like” languages are not unpleasant; by the previous paragraph, it also shows
that that they cannot be fully abstract for the flat lattice model.

Definition 5.1 Two closed terms of the same type are applicatively congruent,
M=,,M', if whenever N is a vector of enough closed arguments to drive M and
M’ to ground type, then MN=,,,M'N .

A language L is operationally extensional if all applicatively congruent terms are
observationally congruent.

Intuitively, a language is operationally extensional if the only thing it can do to
a function is to apply it to a term, and pass it around as an argument. Any
language with a universal and adequate semantics is operationally extensional; in
Section 6, we will show that any PCF-like language, universal or not, is operationally
extensional.

Theorem 5.2 If L is an operationally eztensional extension of L4 with an r.e. eval-
uator, then L is not fully abstract with respect to <>.

Proof: Recall that LI is not definable in any extension of £4 with an r.e. evaluator.
We construct terms M, and M; of type (0 — 0 — 0) — o such that

[M]e = [M{]x T #U
[MJu =
[U\/If]]LJ = ff

M; and My check their argument at all the places where U is tt or ff: 2 Ltt, xtt L, and
ztttt should all evaluate to tt, and similarly for f. Any monotone function z which
agrees with LI at all these places must be equal to U; for example, L 1 C zltt = tt
andxll Czlff= 1, hencexll = 1. If the argument passes these six tests, then
M; returns tt and My returns ff. If it fails any of them, then M, and M s diverge or
return T together. This is similar to Plotkin’s construction in [Plo77].
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M, and M; agree on all definable arguments. and by operational extensionality
are congruent. However, they have different denotations. Therefore, the semantics
is not fully abstract. O

6 Rules and Operational Extensionality

Operational extensionality is a reasonable-sounding property. but it is not instantly
obvious that a given language — even one with a reasonable-sounding definition —
will be operationally extensional. In this section, we give rather generous conditions
on the form of the language definition which guarantee operational extensionality.

LCF is defined by clean-looking rules. We shall see that the very form of the rules
guarantees that LCF, and a large class of extensions, are operationally extensional.
We start by discussing a relatively simple and familiar form of rule, adequate for all
the operators of Plotkin’s paper except 3. We then consider a more powerful and
less standard type of system, an observation calculus, in which 3 can be defined.
We show that observation calculi are operationally extensional, and that they are
conservative extensions of simple LCF-like systems; so the simple and more familiar
systems are operationally extensional as well.

The rewrite rules of Figure 6 almost fit our format, but by the theorems of this
section must depart from it. Indeed, the first rule (the reduction starting from
approx“n(MN)) looks too deeply at the structure of its arguments; it determines
that the second argument is an application. This is enough to violate operational
extensionality.

6.1 Simple LCF-like Systems

A rule in a programining language is essentially the same as an axiom (or inference
rule) scheme in logic. This is not the place for giving a precise definition, but some
terminology will be helpful. A rule may have some typed place-holding variables:;
the intent of the rule is that every well-formed instantiation of those variables by
terms shall be an axiom.

The following definition is adequate for all the rules of LCF, including pcond but
not 3.

Definition 6.1 A simple LCF-like rule p for the constant & is a rule of the form:
6Xy... X, — P[#:= X]
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satisfying the following conditions. FEach X; is either a place-holding variable or
a numeral. The X;’s which are place-holders must be distinct. P is a term with
FV(P) C {zy,...,z,}.

We define I = I, to be the set of indices ¢ such that X; is a numeral.

For example, the rule
cond tt then M else N — M

1s a simple LCF-like rule for cond, with X = tt and X, and X placeholding variables
M and N. See Figure 4 for examples; note that rule 3 is not a simple LCF-like
rule, but the Y-rule is.

We say that a term M satisfies p if M = §M and M; = ¢; for each i € I,. For
example, pcond tt phen tt plse tt satisfies two of the rules for pcond. The rule p is said
to define ¢ despite the fact that there will usually be several rules defining the same
6.

We allow tests for equality to constants because we started by considering con-
stants observable; we do not allow other sorts of tests, because we do not consider
them observable. Most reduction rules proposed for LCF in the literature are simple;
e.g., all first-order functions (taking only arguments of ground type) are definable
by simple rules. Some, such as 1+, may require infinite sets of rules; in most
circumstances, infinite recursive sets are preferred.

To illustrate the restrictions, consider the rules:

61.¥_Y — {t
0(Ae.Z) —

where X : v — «. é; gives us a test for syntactic equality, and so we may distinguish
between Az.r and Az.~14+1+x, which should be equal. &, allows us to see if a
term reduces to an abstraction; ~1+ and Az.~1+z differ under the &, operation.
It is possible that a system including rules like §; or &, could behave sensibly, e.g.,
have V or something else reasonable as a model; see [MC88] and [BR89] for such
systems. We do not claim that such systems are senseless; however, their sensibility
is a nontrivial theorem (typically adequacy) rather than a consequence of the form
of the rules via the metatheory of this section.

We use substitution for variables P[# := X] rather than substitution in a context
C[X] to be sure that variables occurring in the X's are treated correctly. It is not
clear that this is necessary, given our choice of observations and reduction rules:
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open terms cannot be directly observed, and we do not reduce inside of A-bindings.
There is no difference for closed terms X, as such terms have no free variables to
be accidentally captured. However. one is occasionally interested in the derived
equational theory, interpreting a reduction rule M — N as an equation M = N
and using ordinary equational reasoning. The operation 63X — Ay.X can capture
a free y in X; the equational theory of &3 is inconsistent. Adding a side condition to
fix it leaves the simple LCF-like framework, and is tantamount to using P [z := X].

We could prove operational extensionality directly for languages defined by sim-
ple rules. Since we need the same theorems for a more powerful sort of language,
we will prove them only for that language. The argument that operational exten-
sionality for simple rules follows from that of general rules requires several theorems
arguing that the general rules are still reasonable.

6.2 Observation Calculi and General Rules

We give a more general form of rule. powerful enough to express 3. Plotkin’s rules

for 3 are these:
fn—»t

3]‘ — tt

fQ—»f
df - ff
Notice that these rules involve - as well as simply —.

In this study of LCF, our only observation is M —» ¢ for closed ground terms
M. However, our reduction rules give much more behavior to far more terms: the
forking and joining reduction paths of open higher-order terms are visible in the
calculus, and it is not clear why we are ignoring all of this behavior. In fact, we can
pay some attention to it and get a coherent theory; see for example [BR89).

We propose an alternate form of LCF and operational semantics in general,
called observation calculi, so called because they do neither more nor less than
calculate observable facts about terms. By contrast, the ordinary typed A-calculus
computes behavior of terms which we do not want to observe. We do care that
(Afyz.f(fz))(14)(1+3) evaluates to 6; we do not care that the reduction graph (as
PCF is presented in this paper) of this term forks three times, nor that all the paths
from start to end are length 5.

In this paper, we will describe the observation calculi relevant to LCF. Other
authors have used similar systems [Plo38]. It is straightforward to give a observation
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calculus for other sorts of observations; the lazy A-calculus of Abramsky [Abr] and
Ong [Ong88] is an observation calculus. Observation calculi will be described further
in later work, and their virtues and vices examined. In this paper, it suffices that the
calculi described here are a conservative (with respect to our choice of observation)
and proper extension of simple rules, and that they are operationally extensional.

The basic judgment of a LCF-like observation calculus is that a closed ground
term M evaluates to the numeral ¢; we write this M % c¢. The rules will be
written in a style in which only this sort of judgment appears; see Figure 7 for the
observation-calculus versions of some LCF rules. This definition is intended only
for observing constants; a more general definition will appear elsewhere.

Definition 6.2 A observation-calculus é-rule is a rule 8 of the form

C','[.‘?] i foriel
§X ¢

(6)

where § is a constant, X is a vector of distinct typed placeholding variables such

that §X is of ground type; each C;[-] is a typed \-calculus contexzt such that C,‘[X‘]
is of ground type, and ¢ and c; are numerals. There must be at least one antecedent
Ci[X] % ¢; unless 6 is a numeral.

An observation calculus F consists of a set of typed constants, and a set of
observation-calculus rules over those constants. That is, each § and C; is a con-
stant or context over the set of operators. We say that “M is a term of F” if M is
a term of typed \-calculus over F s constants.

In designing languages, or classes of observation calculi suitable for programming
languages, it may be desirable to impose some restrictions on the structure of an
observation calculus. For example, it may be desirable that the set of rules applying
to a given term be recursive, or that the number of antecedents of a given rule be
finite, or that the set of rules be consistent in that they give a single-valued evaluator.
For the moment, we will not impose any such restrictions.

The observation calculus version of the 3-rule

Mz := N]A % d (7)
(Az.M)NA % d

deserves discussion. First, note that it is a rule scheme with an instance for each
constant d as well as for each M and N. Like the A-calculus, there are neither
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de d

Bett, Mad
cond B then M else N & d

M(YM)A + d
YMA S d

M d
140  (d+1)

M+ d, Nd
pcond B phen M plse N & d

Figure 7: Typical Observation Calculus Rules for PCF

substition operators or metavariables ranging over numerals within the language.
Second, note that we cannot simply say that (Az.M)N evaluates to M|z := NJ; the
notion of “evaluates to” is only defined for ground terms, and even ground terms can
only evaluate to numerals. For convenience, we build this rule into the definition of
an observation calculus.

There are no operator and operand evaluation rules. If we need to evaluate
something, we evaluate it fully as a hypothesis of a rule. This makes the most
natural interpreter — which simply searches for a proof tree — rather inefficient; if
we need the value of a term twice, we evaluate it twice. However, efficiency is not
a concern in this study.

An observation calculus computes by building proof trees. The definition of
a proof tree is standard, and we omit the details. If 7 is a proof tree, we write
™ D M % c to indicate that the conclusion of 7 is the fact that M o c.

We define || to be the depth of the proof tree 7, which may in general be an
infinite ordinal. The clause that there must be antecedents is a technical trick to
make the only depth-0 proofs be those showing that d 3 d.
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The notions of congruence and applicative congruence can be defined quite nat-
urally in an observation calculus.

Definition 6.3 M =%, N iff M and N are arbitrary terms of the same type, and for
each contert C[-] we have C[M] & ¢ iff C[N] % c.
M ng’r N iff M and N are closed terms of the same type, and for each vector

of arguments A “driving them to ground type and each numeral ¢, we have MA % ¢
iff NA b c.
=7, is the natural notion of congruence for an observation calculus; =27 is the

natural notion of applicative congruence. As desired, the two coincide. (cf. [Mil77])

Theorem 6.4 (Operational Extensionality of Observation Calculi) IfF is an
observation calculus, then for closed terms M and N, M =, N iff M =7 N |

The proof is deferred to the appendix, Section A.

6.3 Connections between Simple and General Rules

Our mathematical justification of observation in this paper will be restricted to
showing that they are a conservative extension of simple LCF-like rules, in an
appropriate sense. The basic result is an adequacy theorem: M — ¢ iff M % ¢ for
closed ground terms.

Definition 6.5 Two simple LCF-like rules py and p,
pi 1 6X;... X, = B[T:= X]

are consistent iff ng = ny and, whenever M satisfies both py and py, then

-

Py[@ := M) = P,[7 := M)]

where equality is as usual syntactic equality up to renaming of bound variables. Rules
defining different constants are always consistent. A set of rules is consistent if every
pair of rules is consistent.

For example, pcond tt phen tt plse tt matches both the rules pcond tt phen M plse N —
M and pcond B phen tt plse tt — tt. In both cases. the result is tt as required. It is
no surprise that these rules are consistent.

N
(0]



For the remainder of this section. let £ be typed M-calculus over a set C of
constants with operational rules given by a consistent set of simple LCF-like rules.
(PCEF itself is such a system.) L’s operational semantics are clear: £+ M — N iff
there is a proof of M — N from the rules of £, the 3-rule, and the rules of operator
and operand evaluation. As we are not doing much proof theory of £, we will not
formalize these proofs. '

L! will be the corresponding observation calculus. £! has a rule scheme p!
corresponding each rule p of £. If

p:6X — P[7:=X]
(where X; = ¢; for ¢ € I and X; a placeholding variable otherwise) then for each
numeral ¢ £! has the rule scheme p!:
X; ¢ foreachi € I, P[7:=X]d % c
bXA ¢

Where Ais a vector of enough placeholding arguments to drive §X to ground type;
if 6% is already ground type. A will be an empty vector. We will refer to instances
of this scheme as p! as well when no confusion can arise. The operator and operand
evaluation rules are unnecessary in an observation calculus.

Theorem 6.6 If M is a closed ground term of £, then M —» c iff M % ¢ in L.

Proof: An easy consequence of Lemmas B.2 and B.4; the full proof appears in
appendix B. O

6.4 Summary of Syntactic Theory
Theorem 6.7 1. If F is a observation calculus, F is operationally eztensional.

2. If £ is a consistent language defined by simple LCF-like é6-rules, then L is
operationally extensional.

Proof: The first claim is Theorem 6.4. The second follows easily from the first and
Theorem 6.6. O

The point of this excursion into syntactic theory for this paper is the following:

Theorem 6.8 No extension of LCF with an r.e. evaluator. either by a consistent
set of simple LCF-like rules or an observation calculus, can be fully abstract for <.

Proof: Immediate from Theorem 5.2. O
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7 LCF Can Be Topped

The negative results in Sections 3 and 5 hinged on a recursion-theoretic argument.
The evaluator had to halt and return tt on HN if N diverges, and halt and re-
turn T if N converges. We will avoid this difficulty with a non-confluent language
L(pcond + T). The non-confluence is pervasive and drastic: there are terms of all
types which do not conflue, and there are built-in numerals which reduce to all val-
ues at their types. It is hard even to justify calling this a functional programming
language. One branch of the reduction of HN, for example, will almost immediately
return tt; another will try to evaluate IV, and if that evaluation ever terminates will
return T.

L(pcond + T) includes all of L4, together with constants T, and pcond, for
each ground type o. Predictably, T, denotes T of type 0. pcond is a parallel
conditional, the most often proper-valued conditional function; its denotation is
given in equation (8). The operational rules are those of £4(pcond), together with
the rules in Figure 8. It is only necessary to define pcond at ground type.

My b= 1
x b=t

[pcond]bzy = y b= f (8)
Uy b=T

A minor variation on Plotkin’s proof for £ 4 shows that £(pcond + T) is compu-
tationally adequate. A program M will reduce to all constants ¢ with [¢] C [M]. As
before, we can observe the fact that M — c. We cannot observe the fact that M-4d,
because this is not semidecidable and we insist on having a computer program as
interpreter.

In most semantics for A-calculus, M — N implies [M] = [N]. This does not
hold in £(pcond + T), but a similar fact does hold, and in fact can be seen by
inspection of the rules:

M — N implies [M] 3 [N]

Note that the multi-valuedness is of a rather restricted form: if M reduces to two
distinct integers, then it reduces to all integers and T as well. There are no terms
which reduce to, say, 0 and 21 without reducing to 1-20 as well, and such terms
could have no meaning in <.
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pcond tt phen M plse NV M
pcond ff phen M plse N

pcond M phen c plse ¢

._1('3

pcond T phen ¢ plse d where ¢ # d
To

14T

1+T

0=T

cond T then Af else V

A

H 4 -

c and d range over numerals.
Figure 8: Additional rules for £(pcond + T)

The basic observation is still M —» ¢, which still makes sense despite the fact
that £(pcond + T) is not confluent. For example, the definition of M=, N is that
for all numerals ¢, M -» ciff N —» c.

Theorem 7.1 L£(pcond + T) is adequate for <>. That is, [M] 3 [c] (where c is a
numeral and M a closed ground term) iff M —» c.

The proof is by Tait’s method, and and closely follows [Plo77]. We defer it to
appendix C.

7.1 Full Abstraction and Universality

The following lemma will be useful for both full abstraction and universality. Recall
that e is an enumeration of the isolated elements of type o.

Lemma 7.2 For each type o, there is a term E? : « — o such that for all integers n,
[E7n] = €7

31



and a term G? : t — 0 — o such that for all integers n and f € [o]

t f3e
1 otherwise

(7] = {

Proof:
Let

MUN { pcond T phen M plse N at base type

Az?.((Mz)U(Nz)) at type o — 7
MandthenN = cond M then N else 2

It is straightforward, given the Godel-numbering of isolated elements, to find
recursive functions L, S and T such that

en " = HeGni\eTni 1 1 <0 < L)

The definitions of E and G at base type are trivial. At higher type, they are
almost trivial; the existence of suprema in both model and language makes this
programming exercise much easier than the corresponding exercises in [Plo77]. To
compute E77"nz?, take the suprema of the €7, such that + 3 €% ., using G to
perform these tests. To compute G°=7n f°=7 take the conjunction of the answers
to the questions “Is f(e%,;) 3 e7,;?", using G™ and E° to perform these tests.

E?=Tna? =
let loop i =
if 1 =0 then Q
else
(if G?(Sni)z then E™(Tni) else Q)
U
loop(v — 1)
in loop(Ln)

and

Gld—b‘rnl,fd—*‘r —
let loop 1 =
if : =0 then tt
else



(G™(Tni)(f(E°(Sni))))
andthen
loop (1 — 1)
in loop(Ln)
O

From this fact, the desired properties follow easily.
Theorem 7.3 f(pcond + T) is a fully abstract language for the interpretation <.

Proof:

If M and N are terms of the same type with different meanings, let # be a list
of their free variables, and C[X] = A7.X. C[M] and C[N] are closed terms of some
type o with different meanings; let € be an isolated element approximating one
and not the other. Then C’[X] = G°nC[X] is a context which distinguishes M and
N.

Conversely, let M and N have the same meaning. Induction on the structure
of contexts shows that for all C[X], C[M] and C[N] have the same meaning. By
adequacy, M and N are congruent. O

Theorem 7.4 L(pcond + T) is denotationally universal for <.

Proof:
Suppose that f is an r.e. element of type o. There is a recursive and therefore
programmable function N :/ — ¢ such that

f=|He%i:i=0,1,2,...}.
Let F be the term defined by the functional program
Fn = (E7(Nn))U(F(n+1))

Then
f=1[F0]

O

Theorem 7.5 ﬁ(pcond + T) is operationally extensional.
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Proof: The isolated elements are dense in the Scott topology at each type, and so
two functions agree on all isolated elements iff they are equal. All isolated elements
are definable. So, if M and N agree in all applicative contexts. they agree at all
isolated elements, and so [M] = [N]. By adequacy, M and N are congruent. O

It is worth noting that the analog of Theorem 7.4 does not hold in £ 4; Plotkin
must introduce an extra operator 3 to define all computable elements. The proofs
of Lemma 7.2 and Theorem 7.4 are much easier than Plotkin’s proofs of the corre-
sponding facts for £4; the fact that suprema always exist, and that the supremum
operator is definable, pay off here.

8 Conclusion

< is a mathematically attractive model. All suprema exist at all types, making
proofs and reasoning simpler. Adding the supremum operator to the programming
language makes the language universal as well as fully abstract; in contrast, the cpo
model requires a new and fairly subtle operator 3 to achieve universality.

This mathematical beauty conceals peril. We have examined four desirable
properties of programming languages and their semantics: full abstraction, deno-
tational universality, operational extensionality. and single-valuedness. For the flat
lattice model <>, the four are not attainable simultaneously. In contrast, the flat
cpo semantics V admits all four properties.

Plotkin’s paper [Plo77] is in part an example of how a well-chosen denotational
semantics can inform programming language design. The results in this paper
exemplify the dual fact: how a poorly-chosen denotational semantics can confound
programming language design. The designer has a choice of three unappealing
alternatives, listed in Figure 9. There is no obviously correct choice among these
alternatives. The better choice seems to lie outside them, in the use of cpo or other
more appropriate models.
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L 4(approx) | L4(PCF-style) | L(pcond + T)
Universality - - yes
Full Abstraction yes —~ yes
Op. Extensionality - yes yes
Single-Valued yes yes -

Figure 9: Choices of Semantic Properties

APPENDIX

A Proof of Theorem 6.4

Theorem A.1 If F is an observation calculus, then for closed terms M and N,
M=L NifM="N,

Proof:

Trivially M =Z, N implies M =7 N. Suppose that M =7 N and D[X] is
a context driving M and N to ground type, such that 7 > D[M] % d for some
proof 7. We must show that D[N] & d. The proof is of course by induction on |r]|
simultaneously for all contexts D. and then cases on the structure of D[X];

The only depth-0 proofs are those of the form d % d. In this case, either
D[X] = d or both D[X] = X and M = d. In both cases the argument is trivial.

Suppose that 7 is depth « for some ordinal o, and that the theorem is true for
all contexts, and all proofs of depth less than o. We say that a proof is shallow if
it is of depth less than a.

Case 1: If

D[X] = (Ay.Do[X])D:1[X]... D[ X]

then the only rule applicable to D[A{] is the B-rule. If D[M] 9 d, then 7 contains
a shallow proof of
Dy, [A[]DQ[A[] ce Dk[ju'] > d

where Do [M] = Doly := D,[M]][M] (Recall that M is closed; there is no substitu-
tion into M itself.) By induction (taking the context D'[X] = Do [X]D,[X]... Di[X],
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and realizing that Do;[N] = Do[N][y := D,[N]]) we have Do;[N]D2[N]... Di[N] o
d, and therefore D[N] % d.
Case 2: If
D[X] = 6D1[X]... Di[X]

then m must start with some use of a rule 6 for §. There are shallow proofs for each
of the antecedents of §:

C,[Dl[]u],,Dka]] I ¢ 1€ 1.
By induction, we know that
C,[Dl[N],,DL[:V” ¢ rel

and so rule 6 gives us D[N] % d.
Case 3: The other possibility is that

D[X] = XDy[X]... Dy[X]
Define
D'[X] = MD,[X]... Di[X]

As D[M] = D'[M], clearly D'[M] % d. Note that D'[X] is of form 1 or 2, and hence
by the previous cases
D'[N] % d.

We therefore have
D'[N] = MD;[N]...Dy[N] % d.

Recall that M =% N. Thus we conclude
D[N] = NDy[N]... Di[N] & d

as desired. O

B Proof of Theorem 6.6
Theorem 6.6 If M is a closed ground term of a simple LCF-like language L, then
M —»ciff M & c.

Theorem 6.6 follows easily from two lemmas, B.2 and B.4, which we now prove.
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First we must develop some basic properties of + in £!. We say that the closed
ground term M is single-valued iff, whenever M & ¢ and M % d, then ¢ = d. If
M is single-valued and M % ¢, then by definition M =% ¢, and, by operational
extensionality, M =£' c.

Lemma B.1 All closed ground terms are single-valued in L!.

Proof:

Let © be a proof of M 4 ¢. We proceed by induction on both the structure of
M and the depth of 7, with the hypothesis that if 7/ D M’ % ¢ where either M’ is
a subterm of M or 7’ is shallower than 7, then M’ is single-valued.

The base step is M = c or |x| = 0, which happen to be equivalent as we have
defined L£!. By the definition of 9+, ¢ ¢ implies ¢ = ¢ as desired.

The inductive step is a case analysis on the structure of M. M must be a closed
ground term other than a constant, and so is either of the form ()\:c R)SA or 6R. If

= (A\z.R)SA, then M 9 d iff R[z := S]4 %> d. As Rz := S]A % ¢ by a subproof
of 7, Rz := S]A is single-valued; therefore M is single-valued.

Otherwise M = 6R. Let p! be the main rule of 7; so R; & ¢; for each i € I,
and P[# := R] % c. Suppose that some other rule p'! also applies to M, proving
that M & ¢’. Then the antecedents of p'! are satisfied: R; % ¢, for each ¢’ € I’ and
P'[Z:= R] % ¢. We must show ¢ = ¢

As each R; for i € TUI' is a subterm of M, each is single-valued. So, ¢; = ¢!
when ¢ € I N I'. Define

(e J el
SJ' = CS' Jer
R; otherwise

For j € TUI' we know R; & Sj; for other j, R; and S; are the same term. So, for
each j, we have R; =£! §;. Contexts of congruent terms are congruent; in particular
P[7:= R] =* P[7:= §] and P'[¢ := R] =% P'[# := 3.

However, 65 satisfies both p and p’. Therefore by consistency, P[ §]
P& := S] Thus, we have P[7 := R] =" P'[# := R), and so P[7 .= R] + . As
P[Z := R] % ¢ by a subproof of , we l\now that P[7 := R] is single-valued. Hence

¢ = c as desired. O

Lemma B.2 If M — N and M is closed, then M =£' N.

=g 4
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Proof: By operational extensionality, it suffices to show that M A 9 ¢ iff NA 9 c.
The proof is by induction on the structure of M, and then cases on why M — N.
The only nontrivial case is for a rule

p:6X,... X, — P[7:= X]

—

in which case M = 6R,...R,,Vi € .R; = ¢;,and N = P[7:= R|. f NA & c, it
is trivial to construct a proof that M A4 & c. Suppose, then. that 7 D M4 & ¢; we
must show VA & c.

The dncﬁculty in this case comes from the fact that rules other than p! will be
applicable to M A; we use consistency to prove the desired fact. The main rule of =
is some é-rule p'!| the observation-calculus form of the rule

piéX, ... X, - P[7:=X]

where X; = ¢, for i/ € I'.
The proof 7 contains proofs that R; % c¢; for each i/ € I’, and a proof that
P'[# := R] % c. By single-valuedness of £!, if i € I N I', then ¢} = ¢;. Define

’ ’
SJ‘:{CJ Jel

R; otherwise

- =

Then R; =£! S; and hence P'[7 := R]A =£ P'[#:= §]4 and P[7 :
S]A. Therefore, P'[7:= §]A + c.

Both p and p’ apply to 65, and by consistency we have P[z:=S] = P'[7:= S,
and so N4 = P[Z := §]A & ¢ as desired. O

8

R)A =£ P|

We have shown that computations in £! include those of £. We now show the
converse; first, we need to know a little about the proof theory of £!. If M is a
closed ground term which evaluates to a numeral m, and C[M] does something,
then C[m] does the same thing with no more effort than C[M] took.

Lemma B.3 Let M be a closed ground term. If M % m and ©# D C[M] % ¢, then
there is a proof 7' of C[m] 9 ¢ such that |x

Proof: The proof is by induction on |r|. It is trivial for |r| = 0. Otherwise, we

must examine the context: C[X] is either X, 5C[TX’], or (A\z.R[X])S[X]A[X]. The
first case follows from Lemma B.1 and the fact that the proof of ¢ % ¢ is depth 0;
the others are trivial. O



Lemma B.4 Let M be a closed ground term. If M 9 c then M —» c.

Proof: Let 7 be a proof of M % ¢; we induct on the cLepth of m. If 7 is trivial, then
M = c already. Otherwise, M is either of the form §R or (Az.R)SA. In the former

case, 7 has main rule p!. The hypotheses R; % ¢; for i € I and P[Z := K] % ¢ are
proved by subproofs of 7, and so we have R; - ¢;. Let

_Ja el
Si‘{R,» igT

Note that R; =£' S;. As P[Z := R] & ¢ by a proof shallower than 7, Lemma B.3
guarantees that there is a proof 7” of P[7 := S] % ¢ which is shorter than 7. By
induction,

P[T:= 5] »c (9)
It is straightforward to assemble these pieces into a reduction M —» c.
M =8R85 — P[g:=5] » ¢

The first reduction sequence is justified by operand evaluation rules; the next part
by rule p; and the last by equation 9.

If M = (Az.RS)A, then a subproof of 7 shows that R[X := S]A & c¢. By
induction

R[X := S|4 —»¢

and the conclusion follows easily by the 3-rule. O

C Proof of Theorem 7.1

Theorem C.1 L(pcond + T) is adequate for <. That is, [M] 3 [c] (where c is a
numeral and M a closed ground term) iff M - c.

Definition C.2 A term M is polite iff:

® M is a closed term of base type, and for each numeral ¢ of that type, [M] 3 [c]
implies M —» c.

® M is a closed term of type 0 — 7, and for all closed polite terms N of type o,
MN s polite.
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o M is an open term, and every substitution instance of M, replacing all free
variables by closed polite terms, is polite. We call such an instantiation a polite
instantiation.

Definition C.3 Q, = Y(\2?.2) is the standard divergent term of type o; we omit the
typeo. Let Q' = (A\z.2)Q. YO = Q, and YU = \f. f(Y"™) f) are the approzimants
of Y.

Note that QM always diverges, and that @ — ' — Q is the only reduction
sequence of (2.

Lemma C.4 For any closed term M, M is polite iff for all vectors N of closed polite
terms such that M N is of ground type, MN 1is polite. Also, if M —» M' where M' is
polite and [M] = [M'], then M is polite.

Proof: Easy. O

Lemma C.5 Every term is polite.

Proof: This is a proof by induction on the structure of terms. The distinctive
feature of Tait’s method is that that the “polite” predicate is defined by induction
on types.

Variables are trivial. Whenever M is polite and the right type, z[x := M| = M
is polite.

Applications: Let M and N be polite terms. If M N is open, then any substi-
tution instance by polite terms is of the form M’'N’. M’ and N’ are polite instanti-
ations of M and N, and therefore M’ and N’ are polite. The application of polite
closed terms is polite; so M’'N’ is polite for every polite instantiation as required.

Abstractions: Let M be a polite term. To show Az.M polite, we must consider
an arbitrary polite instantiation Az.M’. This term is polite iff for every closed
polite N, (Az.M')N is polite. (Az.M')N — M’'[z := N], and M'[z := N]is a
polite instantiation of M and hence polite. As usual, [(Az.M')N] = [M'[z := N]J.
Therefore, Az.M is polite by Lemma C.4.

Constants must be checked individually. We present 1+ as a typical constant,
and Y which is the only atypical constant. To show that 1+ is polite, we consider
an arbitrary closed polite M; we must show that [1+M] 3 [c] implies 14+M —» c.
If c =T, then [14+M] = T, then we must have [M] = T and (since M is polite)
M —» T; consequently 1+M —» 1+T — T as required.
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If ¢ = n, then we must have [M] = T or [M] = n — 1. In the first case
1+4M » 14T - 14(n—-1) —»n

and otherwise
1+M » 1+(n—-1) - n

The rest of the first-order constants are polite by a similar case analysis. Y is
nontrivial. It suffices to prove that, for each tuple Nof polite closed terms grounding
Y, that L = YN is polite. Let L") = YW N, Y© = Q is clearly polite; Y+ is
built from 2 by A-abstraction and application and is therefore polite. and so L("t1)
is polite as well.

Suppose, then, that [L] 3 [¢]. [L] = U, HL(")]L. All chains in the domains at
ground type are finite — the longest are of length three — and so any directed set
must contain its limit. Therefore, for some n, we must have [[L(")H J[c]. As L™

is polite, we have L(" — ¢. By Lemma C.9 below, L —» ¢ as well, concluding the
proof. O

Corollary C.6 (Adequacy) <& isa computationally adequate model of L(pcond 4+ T).
That s, for any closed ground term M of L(pcond + T) and numeral ¢, [M] 3 [c]
iff M —» c.

We are finished, except for a missing lemma showing that Y behaves correctly.
This requires some detailed examination of reductions. We define < on terms of
the same type inductively:

1. @ X M and ' < M for all M.

[\

LYW <Y
3. MM
4. f M < M" and N < N’ then Ae. M < Az. M’ and MN < M'N".

In other words, M < M’ if M is M’ with some Y’s changed to Y(™’s and some
other subterms replaced by ’s or Q"’s. This weak form of syntactic approximation
will help prove that Y(") is truly an approximation of Y.

Lemma C.7 If ¢ X M where ¢ is a numeral, then M = c.

41



Proof: What else could M he? O

Lemma C.8 If M <X N and M — M’ then there is some N' such that N - N’ and
M < N'.

Proof:

By structural induction on M and tedious case analysis on why M — M’
Assume inductively that the lemma holds for all subterms of M, and that M — M’
and M <X N; we will find N’. We present only one case.

If the rule proving M — M’ was the rule for true conditional, then M =
cond tt then P else Q@ and M’ = P. Now, M is neither , ', nor Y™ and since M <
N, either N = M, in which case the lemma clearly holds, or N = cond B then P’ else Q’
with t < B, P < P’ and Q < Q'. In the latter case, tt < B, then B = t; and so the
conditional rule gives us N — P’. P’ is the desired N'. O

Lemma C.9 If YN — ¢ for some numeral ¢, then YN —» c.

Proof: Note Y®WN < YN. Look at the derivation of YW N —» ¢. For each term
L; in this sequence, there is a descendant M; of YN such that L; < M;:

YN - L, — - = L,=c
YN —» M, -» ... —» M,

By lemma C.7, M,, = c as required. O
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