
Logic Programming In A
Fragment Of Intuitionistic Linear Logic

MS-CIS-92-33
LING LAB 221

Joshua S. Hodas
Dale Miller

University of Pennsylvania
School of Engineering and Applied Science

Computer and Information Science Department

Philadelphia, PA 19104-6389

April 1992

Logic Programming in a
Fragment of Intuitionistic Linear Logic *

Joshua S. Hodas and Dale Miller
Computer Science Department

University of Pennsylvania
Philadelphia, PA 19104-6389 USA

April 16, 1992

Abstract

When logic programming is based on the proof theory of intuitionistic logic, it is natural
to allow implications in goals and in the bodies of clauses. Attempting to prove a goal of
the form D > G from the context (set of formulas) I' leads to an attempt to prove the goal
G in the extended context r U {D). Thus during the bottom-up search for a cut-free proof
contexts, represented as the left-hand side of intuitionistic sequents, grow a s stacks. While such
an intuitionistic notion of context provides for elegant specifications of many computations,
contexts can be made more expressive and flexible if they are based on linear logic. After
presenting two equivalent formulations of a fragment of linear logic, we show that the fragment
has a goal-directed interpretation, thereby partially justifying calling it a logic programming
language. Logic programs based on the intuitionistic theory of hereditary Harrop formulas can be
modularly embedded into this linear logic setting . Programming examples taken from theorem
proving, natural language parsing, and data base programming are presented: each example
requires a linear, rather than intuitionistic, notion of context to be modeled adequately. An
interpreter for this logic programming language must address the problem of splitting contexts;
that is, when attempting to prove a multiplicative conjunction (tensor), say GI @ G2, from the
context A, the latter must be split into disjoint contexts A1 and A2 for which GI follows from
A1 and Gz follows from A2. Since there is an exponential number of such splits, it is important
to delay the choice of a split as much as possible. A mechanism for the lazy splitting of contexts
is presented based on viewing proof search as a process that takes a context, consumes part of
it, and returns the rest (to be consumed elsewhere). In addition, we use collections of Kripke
interpretations indexed by a commutative monoid to provide models for this logic programming
language and show that logic programs admit a canonical model.

1 Introduction

Fragments of intuitionistic first-order and higher-order logics are commonly used as specification
languages and logic programming languages. For example, first-order and higher-order versions
of hereditary Harrop formulas (formulas with no positive occurrences of disjunctions or existential
quantifiers) have been used both as specification languages for proof systems [ll, 12, 34, 381 and
as the basis of logic programming languages [13, 18, 24, 27, 291. Part of the expressiveness of such

*This paper has been accepted to the Journal of Information and Computation. Comments are welcome. The
authors can be reached at the address above, by e-mail at hodasQsau1. cis .upenn. edu and daleQcis .upenn. edu, or
by fax a t (215) 898-0587.

systems derives from the proof rule that states that in order to prove an implication D > G from
the context (set of assumptions) I', first augment the context with D and attempt a proof of G in
the new context. That is, the sequent I' - D > G has a proof if and only if U {D) - G has
a proof.

The stack-like left-hand side of sequents in intuitionistic sequent proofs can be exploited by
programs in many ways. In theorem provers, they can be used to store the current assumptions
and eigen-variables of a proof; in natural language parsers, they can be used to store assumed gaps
when parsing relative clauses; in data base programs, they can be used to store the state of the
data base; in logic programs, they can be used to provide a basis for modular programming, local
declarations, and abstract data types.

While intuitionistic contexts naturally address computing concerns in a large number of ap-
plications, in others they are too limiting. One problem that appears frequently is that, speaking
operationally, once an item is placed into a context, it is not possible to remove it , short of stopping
the process that created the context. Since the contraction rule is freely available in intuitionistic
logic, contexts can always be assumed to grow as the proof is developed from the bottom up. Such
monotonicity is problematic in numerous settings.

When using an intuitionistic meta-logic to design theorem provers it is na.tural to use the rneta-
logic's context to manage object-level hypotheses and eigen-variables [12, 341. With such an
approach, however, there is no logical way to specify any variations of the contraction rule
for the object logic: arbitrary contraction on all hypotheses is imposed by the meta-logic.

A proposed technique for parsing relative clauses is to first assume the existence of a noun
phrase (a gap) and then attempt to parse a sentence [32]. Intuitionistic contexts do not
naturally enforce the constraint that the assumed gap must be used while parsing the relative
clause and that the gap cannot appear in certain positions ("island constraints" [36]).

r Intuitionistic contexts can be used to manage a data base. While adding facts, querying facts,
and performing hypothetical reasoning ("if I pass CS121, will I graduate") are easy to model
using intuitionistic contexts, updating and retracting facts cannot be modeled straightfor-
wardly [4, 13, 261.

A notion of state encapsulation (as in object-oriented programming) can be approximated
using intuitionistic logic [20] by representing an object's state with assumptions in a context.
Updating that state, however, means changing those representative assumptions, and the only
change allowed with intuitionistic contexts is augmentation. Thus, as computation progresses,
an object's state becomes progressively more non-deterministic: seldom the desired notion of
state.

Each of these problems can be addressed by adopting a more refined notion of context. In this
paper, which is a revision and extension of a paper given at the 1991 Logic in Computer Science
Symposium [21], we present a fragment of linear logic that rnakes a suitable logic programming
language and permits very natural solutions to all of the above problems.

For the purposes of this paper we will characterize logic programming languages by concentrat-
ing only on logical connectives and quantifiers of first-order logic. We will not address notions of
control: in particular, we will equate the "execution" of logic programs with the non-deterministic
bottom-up search for certain kinds of proofs. We shall mostly ignore the large number of issues
that are involved in converting specifications of computations, of the sort given here, to real com-
putations. These issues are currently being studied by the authors.

2 Logic programming language design

Not all logics appear to be appropriate as the foundation of a logic programming language: while
a weak logic such as Horn clauses clearly is appropriate for such a use, many richer logics do not
seem to be. In a sense, logic programming should be based as much on a notion of "goal-directed
search" as on the fact that it makes use of the syntax and semantics of logic. Full first-order logic,
for example, does not support this notion of goal-directed search. In previous work goal-directed
search was formalized using the concept of uniform sequent proof 126,291. In this section we review
the definition of uniform proofs and present a logic programming language based on intuitionistic
(actually minimal) logic that significantly extends Horn clauses. It is this logic programming
language that we shall refine with linear logic connectives in the next section.

It has been argued in various places, for example [26, 291, that evaluation in logic programming
is the search for certain simple, cut-free, sequent proofs. In such a view, a sequent r --+ G denotes
the state of an interpreter that is attempting to determine whether the goal G follows from the
program I'. Goal-directed search is characterized operationally by the bottom-up construction of
proofs in which right-introduction rules are applied first and left-introduction rules are applied
only when the right-hand side is atomic. This is equivalent to saying that the logical connectives
in a goal are decomposed uniformly and independently from the program: the program is only
considered when the goal has a non-logical constant for its head - that is, when it is atomic. This
idea is formalized for single conclusion sequent systems with the following definitions.

Definition 1 A cut-free sequent proof is a uniform proof if for every occurrence in the proof of a
sequent whose right-hand side is not atomic, that sequent is the conclusion of a right-introduction
rule.

Definition 2 Let 2) and G be (possibly infinite) sets of fo~*mulas. The triple (V,G, t-) is an (ab-
stract) logic programming language i f for every finite subset I' C V and for every G E 6, the
sequent I' - G has a proof in the proof system t- if and only .if it has a uniform proof in I - .
The set 2) represents those formulas that are taken to be program clauses and the set G are those
formulas that are taken to be goals.

Clearly, full first-order classical and intuitionistic logics are not logic programming languages.
That is, if 2) and (2 are taken to be all first-order formulas and t- is taken to be either classical
or intuitionistic provability, then the triple (V, G, I-) is not a logic programming language, since in
each case there are provable sequents, such as p V q - q V p, that have no uniform proofs.

An intuitionistic sequent calculus Z for the logical connectives true, A , 3, and Q is given in
Figure 1. Here, the left-hand side of a sequent is intended to be a set: thus the structural rules of
exchange and contraction are not needed. This follows from the fact that the pattern r , a (denoting
the set union of r and {a)) matches the set {a, b, c) in two ways: one assigns I' to { a , b , c) and the
other to { b , c) . Because of the form of the identity inference, the structural rule for weakening is
also not required. It should be noted that it is possible to formulate this logic with multisets of
formulas (rather than sets), in which case the structural rules (except for exchange) would need to
be made explicit. That formulation is relevant to the first formulation of linear logic in the next
section.

The expression I' G denotes the proposition that there is an 2-proof of the sequent I' - G.
Gentzen's proof of cut-elimination [14] can be used to show that the cut rule in Figure 2 is admissible
in Z. Although it is possible to require I' = I" in the cut rule, the more general form given is useful
in showing certain model-theoretic results. Cut will be stated in a similar form for the proof system

identity trueR
r , B - B I' ---, true

provided that y is not free in the lower sequent.

Figure 1: The proof system Z for a fragment of intuitionistic logic.

I ' T , B - - + C
cut , provided I? I". r1 -+ c

Figure 2: The cut-rule for 1.

given in Figure 7 and that form of cut will be used to advantage in Section 6 where a semantic
result is presented.

Proposition 1 The triple (No,No, I T) , where & is the set of all formulas built from the logi-
cal constants true, A, 3 , and V , and where is intuitionistic provability, is a logic programming
language.

This proposition is proved by showing that given an Z-proof it is always possible to permute
enough inference rules to make it uniform. For a closely related proof see [26]. The main proof in
[29] is concerned with a much stronger language that includes some forms of function and predicate
quantification.

It is possible to constrain uniform proofs in this logic even more and still not lose completeness.
In particular, it is apparent from the proof of the last proposition that left-introduction rules are
only needed to support backchaining. This observation involves two parts: first, backchaining is
a composition of several left-introduction rules and second, when an atomic goal is to be proved,
there must be some particular formula on the left that can be processed completely to provide a
subproof of that atomic goal. By extending this observation, Andreoli has developed an interesting
generalization of backchaining, called focusing [I].

These observations about backchaining are captured in the following proof system. Let B be a
formula over the logical constants true, A , > , and V, and define B 1 to be the smallest set of pairs
such that

1. (0,B) E IBI,

2. if (A,BI A B2) E IBI then both (A,Bl) E IBI and (A , B 2) E lBJ,

3. if (A,VX.B') E IB[then for all closed terms t , (A, B1[t /x]) E 1 BI, and

4. if (A,G > B') E IBI then (A U {G), B') E (B(.

provided n 2 0, A is atomic, B E r , and ({GI,. . . ,G,), A) E 131.

Figure 3: Backchaining for 1

Informally, if (A,A) E IB(then the formula B can be used to establish the formula A if each of
the formulas in the set A can be established; that is, A might be proved by backchaining over B.
Furthermore, backchaining can be limited to the case where the formula A is atomic. Let 1' be the
proof system that results from replacing the identity, > L, AL, and VL rules in Figure 1 with the
backchaining inference rule in Figure 3.

Proposition 2 Let r U { B) be a set of formulas over true, A , 3, and V. Then, the sequent I' -i B
has a proof i n Z i f and only if it has a proof in Z'.

Again, the proof of this follows from the permutability inference rules. Note that there is only
one left-rule in Z', namely BC, and proofs in 1' are necessarily uniform since BC applies only to
sequents with atomic right-hand sides. The 1' proof system provides a useful starting point for the
implementation of an interpreter for this logic programming language.

Since it is only the impermutability of the left-hand rules for disjunction and existential quan-
tification that keep uniform proofs from being complete for full first-order intuitionistic logic, it
is possible to introduce disjunctions and existential quantifiers as long as they never need to be
introduced on the left. This is possible if they have only positive occurrences in (cut-free) proofs:
that is, if they appear only positively in formulas on the right of sequents and negatively in formulas
on the left of sequents. There are at least two ways that such a restriction can be maintained.

First, define the sets Do and Go to be the D and G-formulas given by the following mutual
recursion:

D := true 1 A I Dl A D2 I G 3 D I Vx.D
G := true (A 1 GI A GZ (GI v G2 1 3x.G / D II G 1 Vx.G.

If the 1-proof system is extended with the introduction rules for V and 3, the triple (Do , Go, kl)
is a logic programming language. The proof of this does not differ significantly from the proof
of Proposition 1. It is, in fact, this language that is referred to as first-order hereditary Harrop
formulas in [29].

Alternately, we can use a slightly higher-order variant of the logic over just true, A , 3 , and V to
"define" part of the meaning of disjunctions and existential quantifiers. In particular, consider the
three higher-order Horn clauses (see [31] for a treatment of such clauses):

VPVQ [P 3 (P v Q)] VPVQ[Q 3 (P v Q)1 vBvT[(B T) 3 3Bl

Here, V and 3 are treated as non-logical symbols that have the types (as in Church's Simple Theory
of Types [9]) o -+ o -+ o and (i -, o) i o, respectively, where o is the type of propositions and i
is the type of individuals. These clauses encode the right-introduction rules for disjunctions and
existential quantifiers. In order to enforce the fact that these three clauses are to act as definitions,
it is necessary to restrict occurrences of the non-logical constants V and 3 as in the paragraph
above: V and 3 can have no negative occurrences in a goal and no positive occurrences in program
clauses other than the three clauses displayed above. This ensures that the only clauses that can be

used to prove a disjunctive or existential goal are those given above. These two approaches amount
to a description of the same logic programming language.

Throughout this discussion, the cut-elimination theorem has not played a major role, since
computation in logic programming has been identified with the search for cut-free proofs. As we
shall show in Section 6, the cut-elimination theorem plays the important "external" role of providing
canonical models for logic programming languages.

3 A linear logic programming language

It is possible to assume, without loss of generality, that Z1-proofs have the following property: if the
sequents I' - B and I?' - 3' have occurrences on the same path in a proof, with I' - B being
closer to the endsequent, then I' C I". Thus, as a computation builds a proof from the bottom
up, the left-hand sides of sequents do not decrease. This limitation on the sort of changes that
are allowed means that intuitionistic contexts are too simplistic for many desired uses of contexts
in logic programming. The reason that contexts can be assumed to be non-decreasing is that
formulas in them are available for backchaining on any number of times; they represent unbounded
resources for constructing proofs. Linear logic offers a natural setting where notions of bounded
and unbounded resource can be developed.

In order to refine the logic programming language described in Section 2, we consider the linear
logic connectives T, &, @, -0, !, and V. Proof rules for these connectives are given in Figure 4 and a
cut rule for this proof system is given in Figure 5. Here, the left-hand side of sequents are multisets
of formulas. As a result, the structural rule for exchange need not be explicitly stated. The
structural rules of contraction and weakening are given as the inference rules ! C (for contraction)
and ! W (for weakening), but they are only available for formulas of the form ! B. The syntactic
variable ! A denotes the multiset {! C (C E A). We write A k L L B if the sequent A - B has
a proof in the proof system of Figure 4. Because all sequents in Figure 4 are single conclusion
sequents, we shall be working completely within the "intuitionistic" fragment of linear logic.

It is easy to see that linear logic, even over just the logical connectives considered here, is not
an abstract logic programming language. For example, the sequents a 8 b - b @I a, !a - ! a@!a,
! a & b - !a, and b @ (b -o ! a) - ! a are all provable in intuitionistic linear logic but do not
have uniform LL-proofs. The problem here is that @R and ! R do not permute down over all the
left-introduction rules. For this reason, we consider, instead, a fragment of linear logic that contains
neither ! nor @ as connectives, although it retains some of their functionality. We do this by making
two changes to the formulation of linear logic given in Figure 4. First, sequents will be of the form
I'; A -4 B where B is a formula, I' is a set of formulas, and A is a multiset of formulas. Such
sequents have their context divided into two parts: the unbounded part, I?, that corresponds to the
left-hand side of intuitionistic sequents, and the bounded part, A , which corresponds to left-hand
side of sequents of the purely linear fragment of linear logic (no !'s). Contraction and weakening
are allowed in the unbounded part of the context, but not in the unbounded part. As we show
below, the sequent B 1 , . . . , B,; C1, . . . , C, - B can be mapped to the linear logic sequent

Given this style of sequent, it is natural to make a second modification to linear logic by introducing
two kinds of implications: the linear implication, for which the right-introduction rule adds its
assumption to the bounded part of a context, and the intuitionistic implication (written +), for
which the right-introduction rule adds its assumption to the unbounded part of a context. Of
course, the intended meaning of B =+ C is (! B) -a C.

identity
3 -+ B A - T

T R

provided that y is not free in the lower sequent.

Figure 4: The proof system LL for a fragment of linear logic

A - B A1,B- - tC
cut

A, A' -+ C

Figure 5: A cut-rule for LL.

So far, only the logical connectives -o and + have been motivated. Consider a sequent in which
the bounded formulas are atomic. If the only logical connectives are -o and + then every formula
in the bounded part of the context must be used exactly once: that is, they must be accounted
for in some identity inference rule by matching them with the same formula on the right of a
sequent. Such rigid control of resources is limiting for most uses. For example, if a data base is
held in the bounded part of a context, then querying the data base about an item makes that item
unavailable elsewhere. Also, before a computation on the data base can be finished, it is necessary
to "read" all items in this way. If, however, we add the connectives T and &, we have the ability to
erase parts of the bounded context (using T) and to duplicate bounded contexts (using &). Thus,
non-destructively reading a value from a data base can be achieved by first making a copy of the
data base from which we destructively read one item and delete the rest: the original data base is
untouched. See Section 5.6 for an example of this kind of data base program specification.

Figure 6 presents a proof system L for the logic connectives T,&, -o, a, and V. We write
I'; A kL 3 if the sequent I?; A - B has a proof in C. Notice that the bounded part of the left
premise of the + L inference rule is empty: this follows from the structure of an LL-proof with an
application of - o L to a formula of the form !B -o C. Notice as well that we assume without loss
of generality that the identity inferences of this system apply only where the right-hand side is an
atomic formula. This technical restriction is used in the proof of Proposition 3 below.

Figure 7 presents the two cut rules for C. Girard's proof of the cut-elimination theorem for linear
logic [15] can be adjusted to show that these two cut rules are admissible over E L . This particular
presentation of the cut-rules will be useful in Section 6 when we characterize their admissibility in
Proposition 9.

I ' ,B;A,B -+ C
identity absorb

r ; A - A ~ , B ; A - c r ; n - ~
TR

I ' ;Al-B I ' ;A2,C-E I?; A, B -+ C
- o L -OR

I ' ;A l ,A , ,B+C -+ E r ; A - B - o C

provided that y is not free in the lower sequent.

Figure 6: C: A proof system for the connectives T, &, -o, +, and V. The formula A in the identity
rule is restricted, for convenience only, to be atomic.

; A - B I'; A2, B - C rl;O- B I',B;A - C
cut cut!

r1;A,,A2 --t C r";A - C

Figure 7: Two forms of the cut rule for C. Both rules have the proviso that I' C I"

Proposition 3 Let B be a formula, I? a set of formulas, and A a multiset of formulas, all over the
logical constants T , &, -o,+, and V. Let B0 be the result of repeatedly replacing all occurrences of
C1 + CP in B with (! Cl) -o C2. (Applying O to a set or multiset offormulas results in the multiset
of O applied to each member.) Then r; A t-L B if and only i f !(rO), AO k L L BO.

The proof in each direction can be shown by presenting a simple transformation between proofs in
the two proof systems.

Proposition 4 Let B be a formula, r a set formulas, and A a multiset of formulas all over the
logical connectives T , &, -o, +, and V. The sequent I?; A --+ B has a proof in C if and only if it
has a uniform proof in L.

Proof. In the reverse direction, the proof is immediate, since a uniform C-proof is certainly
an C-proof. In the forward direction we provide a non-deterministic algorithm that converts an
arbitrary C-proof to a uniform C-proof of the same endsequent. A non-uniform rule occurrence
is any occurrence of a left-rule in which the right-hand side of the conclusion is not an atomic
formula. We also note that the absorb rule is considered a left-rule. The rank of a non-uniform
rule occurrence is the height of the subproof of the right-hand premise if the rule occurrence is
either -oL or + L or is the height of the subproof of the sole preruise for any other left-lialld rule
occurrence. The algorithm is given as follows:

1. If the proof is uniform, terminate; otherwise, go to the next step.

2. Select a non-uniform rule occurrence with the property that the sub-proof(s) rooted at
premise(s) of the rule are uniform. (That such a choice can be made is immediate given

the assumption that identity inferences have only atomic right-hand sides.) Let C be the
non-atomic right-hand side of the conclusion of this non-uniform rule occurrence.

3. One premise of the rule selected will be the conclusion of a right-rule that introduces the logical
constant for C. There are only 25 such combinations of left-rules below right-introduction
rules possible in an C-proof. For all of these cases, it can be checked that the left-rule permutes
up through the right rule. We will only illustrate one case, where an instance of -oL occurs
below an instance of &R, as displayed below:

where we assume 31, 3 2 , and E3 are uniform proofs of their respective endsequents. This
proof structure is converted to one of the form:

At this point, it is necessary to call this procedure recursively on the sub-proofs rooted at the
premises of the new final rule, since new non-uniform rule occurrences may have been created
immediately above. Fortunately, since such new occurrences of non-uniform rules will have
strictly smaller ranks, this recursion will terminate. With the termination of the recursion(s),
the number of non-uniform rule occurrences in the overall proof has been reduced by one.

4. Go to step 1.

Since each pass through the outer-loop of this algorithm reduces by one the number of non-uniform
rule occurrences, the algorithm yields a uniform proof when it terminates. Thus, any sequent
provable in ,C can be proved by a uniform L-proof. I

Let Nl be the set of all first-order formulas over the logical connectives T, &, -o, +, and Q . It
follows immediately from Proposition 4 that the triple (N; , NI , kL) is an abstract logic programming
language. (Here, we assume that formulas in Nl can occur in both the bounded and unbounded
parts of a sequent's left-hand side.)

As with system Z1 it is possible to restrict uniform proofs even further in the sense that the use
of left-hand rules can be restricted to a form of backchaining. Consider the following definition. Let
the syntactic variable B range over the logical formulas containing just the connectives T, &, -0~5,

and V. Then llBll is the smallest set of triples of the for~n (I?, A, B') where I? is a set of formulas
and A is a multiset of formulas, such that

1. (0 7 0, B) E IIBII,

2. if (r, A,Bi & B2) E llBll then both (r , A , B1) E IlBll and (r, A, B2) E 11~11,

3. if (1', A,Vx.Bf) E llBll then for all closed terms t , (T, A, B1[t/x]) E IIBJ],

4- if (r, A, BI =+ 3:) E llBll then (r U { B * } , A , Bz) E 11 BII, and

5. if (I', A, B1 -o B;) E llBll then (I', A kl {BI}, B2) E I(B(1. (Here, kl denotes multiset union.)

0 - B ... r ; @ - Bn r ; A 1 -Cl ... I?; Am - Cm
I ';Al, ..., A m , B - A

BC

provided n , m 2 0 , A is atomic, and ({BI, . . . , B,}, {CI, . . . , Cm), A) E IIB]I.

Figure 8: Backchaining for the proof system C

Let C' be the proof system that results from replacing the identity, -L, + L, &L, and VL rules
in Figure 6 with the backchaining inference rule in Figure 8.

Proposition 5 Let B be a formula, I? a set of formulas, and A a multiset of formulas, all over
the logical constants T , &, -0, +, and V . The sequent r; A - B has a proof in C i f and only i f it
has a proof i n L'.

Proof. In the reverse direction it is easy to show that each occurrence of a BC rule in C' can be
converted t o (possibly) several occurrences of the &L, -oL, =+ L, V L , and identity rules in C. The
proof in the forward direction is more involved.

Let E be an C-proof of I'; A - B. Mark certain occurrences of formulas in the bounded part
of some sequents in 5 as follows. The unique formula in the bounded part of the conclusion of
every identity rule is marked. By referring to Figure 6 we then mark additional formula occurrences
using induction on the structure of proofs as follows:

a If the B; formula occurrence in the & L rule is marked, then mark the occurrence of B1 & B2
in its conclusion.

a If the B[t /x] formula occurrence in the VL rule is marked, then mark the occurrence of Vx.B
in its conclusion.

a If the C formula occurrence in the right-hand premise of the -oL rule is marked, then mark
the occurrence of B -o C in its conclusion

a If the C formula occurrence in the right-hand premise of the + L rule is marked, then mark
the occurrence of B C in its conclusion.

As in [26], an occurrence of a left-introduction rule is simple if the occurrence of the formula
containing the logical connective introduced is marked. A uniform proof in which all occurrences
of left-introduction rules are simple is called a simple proof.

Now observe two facts about simple proofs. First, if Z is simple, then Z can be transformed
directly into an C'-proof: simply collapse all chains of left-introduction rules (following the marking
process) into one BC inference rule. Second, by permuting inference rules, any uniform C-proof can
be transformed into a simple proof. The proof of this is similar to the proof of Proposition 4. Find
a non-simple occurrence of a left-introduction rule for which the subproofs of its premise(s) are
simple proofs. One of the premises of this non-simple occurrence of a left-introduction rule must
also be a left-introduction rule. Permute these two left-introduction rules. Consider, for example,
the following case where these two left-introduction rules are +L.

Figure 9: Additional rules for positive occurrences of 1, @, $, !, and 3.

Here we assume El , E2, and Z3 are simple proofs. This proof structure is then converted to the
following proof by permuting these two inference rule occurrences.

It may be necessary to continue permuting inference rules in this fashion since, in this case, the
subproof of the sequent I?; a l , A2, B1 -0 B2 - C1 may not be simple. The result of continuing
this process is then a simple proof of the sequent I?; A1, A2, A3, B1 -o B2, C1 * C2 - E. In this
way, all non-simple occurrences of left-introduction rules can be eliminated, giving rise to a simple
proof, which can, as noted, be converted to an L' proof. I

Note that, unlike the system Z', proofs in C' are not necessarily u~lifornl due to the presence
of the absorb rule, which may act on sequents with non-atomic right-hand sides. Nevertheless,
it is easy to see that all uses of this rule can be pushed up a proof tree so that they occur only
immediately below instances of BC. Such L' proofs are then uniform.

As was noticed in Section 2, since we are only interested in cut-free proofs, it is possible to
permit different sets of formulas to occur on the left and right of the sequent arrow. As in Section 2,
there are at least two ways to do this. We can expand the logic by allowing some occurrences of
additional logical constants, or we can use higher-order quantification with respect to the given
logic to "define" the additional constants.

Using the first approach, consider the following definition of two classes of formulas over the
logical constants T, 1, &,@I, $, -o, +, !,V, and 3.

Here, R-formulas, called resource formulas, can appear in either part of the proof context (on the
left of a sequent) while G-formulas, called goal formulas, can appear on the right of sequents. Given
this extension, it is necessary to add to the proof system C' right-introduction rules for 1, $, @, !
and 3. Let L" be the proof system that results from adding the right-introduction rules in Figure 9
t o L'. (Notice that since 1 is logically equivalent to ! T , it could be dropped from this definition.)
In this same setting, it is also possible to use a more restrictive definition for resource formulas
(R-formulas) :

R := T (A I R1 & R2 I G A 1 V x . R . (*>
Although such a simplification does not change the expressiveness of the logic much, it makes the
presentation of backchaining simpler, as will be seen in Section 7.

The second approach does not extend the logic by adding these logical constants directly but
instead axiomatizes their right-introduction rules using higher-order quantification (as in the higher-
order Horn clauses of [31]). The following clauses are appropriate definitions for these constants.

If we assume that there are no negative occurrences of any of these constants within a proof (except
in these defining forniulas) then this amounts to the same restriction as in the first approach.

4 An embedding of hereditary Harrop formulas

Girard has presented a mapping of intuitionistic logic into linear logic that preserves not only
provability but also proofs [15]. On the fragment of intuitionistic logic containing true, A , 3, and
V, the translation is given by:

(A)' = A, where A is atomic,
(true)' = 1,

(B1 A B2)O = (B1)O & (Bz)',
(BI > B2)O = -0 (B2)0,

(V2.B)' = Vx.(B)'.

However, if we are willing to focus attention on only cut-free proofs in 1' and C", it is possible to
define a "tighter" translation. Consider the following two translation functions.

(A) + = (A)- = A, where A is atomic
(true)+ = 1
(true)- = T

(B1 A B2)+ = (Bl)+ @ (Bz)+
(B1 A B2)- = (B1)- & P 2) -

(B1 3 B2)+ = (B1)- * (B2)+
(B1 2 B2)- = (B1)+ -0 (B2)-

(Vx.B)+ = Vx.(B)+
(Vx.B)- = Vx.(B)-

If we allow positive occurrences of V and 3 within cut-free proofs, as in proofs involving the
hereditary Harrop formulas, we would also need the following two cla.uses.

Proposition 6 Let B be a formula and I' a set of fornzulas! all over the logical constants true, A , 3 ,
and V . Define I?- = {C- (C E I?}. Then, r t-T B if and only if the sequent I'-; 0 - B+ has a
cut-free proof in C".

Proof. First observe that if B is a formula over the logical constants true, A, >, and V then
(A,A) E IBI if and only if (0,A+, A) E JIB-11. Let E be an 1'-proof of r - B. This proof can
be converted to a proof z0 of I?-; 0 - B+ by converting the inference rules trueR, AR, > R, and
VR to the L" inference rules l R , @R, + R, and VR. Furthermore, instances of the BC rule of 1'
need to be converted to BC paired with absorb in L". For the converse, let E0 be an C"-proof of

I'-;0 - B+. As was mentioned in the last section, we can assume that the only occurrences of
the absorb rule are such that their premise is the conclusion of an instance of the BC rule. Such
a proof can be converted to a proof in C" by reversing the conversion mentioned for the first case.
(Girard has pointed out to us that this proposition should be provable directly within his LU proof
system [17].) 1

A consequence of this proposition is that 1'-proofs involving Horn clauses or hereditary Harrop
formulas are essentially the same as the L"-proofs of their translations. This suggests how to design
the concrete syntax of a linear logic programming language so that the interpretation of Prolog
and AProlog programs remains unchanged when embedded into this new setting. For example, the
Prolog syntax

A. : - A1, ..., A,

is traditionally intended to denote (the universal closlire of) the formula

(A1 A ... A A,) > Ao.

Given the negative translation above, such a Horn clause would then be translated to the linear
logic formula

(A1 @ . . . @ A ,) -oAo.

Thus, the comma in Prolog denotes @ and : - denotes the converse of 4.

For another example, the natural deduction rule for implication-introduction, often expressed
using the diagram

(A)

can be written as the following first-order formula for axiomatizing a truth predicate (see [12, 341):

VAVB((true(A) 3 true(B)) 3 true(A imp B)),

where the domain of quantification is over propositio~lal formulas of the object-language and imp
is the object-level implication. This formula is written in XProlog using the syntax

t r u e (A imp B) :- t r u e A => t r u e B .

Given the above proposition, this formula can be translated to the formula

VAVB((true A + true B) -o true (A imp B)) ,

which means that the XProlog symbol => should denote +-. Thus, in the implication introduction
rule displayed above, the meta-level implication represented as three vertical dots can be interpreted
as an intuitionistic implication while the meta-level implication represented as the horizontal bar
can be interpreted as a linear implication.

Notice that when building Cf'-proofs of sequents translated from intuitionistic logic, the bounded
part of sequents is non-empty only at the point that the backchaining rule is applied. If we relate
this observation to the construction of normal A-terms, where backchaining corresponds to the
application of a typed constant or variable, we draw the (obvious) conclusion that every normal
A-term has exactly one head symbol.

In order to present several examples in the next section, we shall make use of the following
syntactic conventions for specifying resource formulas and goal formulas. These conventions are
motivated by the last proposition so that the syntax of Prolog and XProlog embed naturally into
the extended language. The symbols , (comma), t r u e , =>, and : - of Prolog and XProlog will be
used here to represent @, 1, J , and the converse of 4, respectively. In addition, we allow formulas
to have occurrences of &, bang, erase, -0, and <=, which denote, respectively, &, !, T, -o, and
the converse of +. We shall also adopt the standard convention that a token with an initial upper
case letter that is not explicitly quantified in a formula is intended to be universally quantified
(respectively, existentially quantified) around a resource formula (goal formula) with outermost
scope. Finally, the clauses of a program are assumed to reside in the unbounded portion of an
initial proof context.

5 Some example programs

5.1 Context management in theorem provers

Intuitionistic logic is a useful meta-logic for the specification of provability in various object-logics.
For example, consider axiomatizing provability in propositional, intuitionistic logic over the logi-
cal symbols imp, and, or , and false (denoting object-level implication, conjunction, disjunction,
and absurdity). A reasonable specification of the natural deduction inference rule for implication
introduction is:

pv (A imp B) :- hyp A => pv B .

where pv and hyp are meta-level predicates denoting provability and hypothesis. (This specification
of implication introduction is similar to that given in the preceding section.) Operationally, this
formula states that one way to prove A imp B is to add the object-level hypothesis A to the context
and attempt a proof of B. In the same setting, conjunction elimination can be expressed by the
formula

pv G :- hyp (A and B), (hyp A => hyp B => Pv G).

This formula states that in order to prove some object-level formula G, first check to see if there is
a conjunctive hypothesis, say (A and B), in the context and, if so, attempt a proof of G from the
context extended with the two hypotheses A and B. Other introduction and elimination rules can
be specified similarly. Finally, the formula

pv G :- hyp G .

is needed to actually complete a proof. With the complete specification, it is easy to prove that
there is a proof of (pv G) from the assumptions (hyp HI), . . ., (hyp H i) in the meta-logic if and
only if there is a proof of G from the assumptions H i , . . ., H i in the object-logic.

Unfortunately, an intuitionistic meta-logic does not permit the natural specification of provabil-
ity in logics that have restricted contraction rules - such as linear logic itself - because hypotheses
are maintained in intuitionistic logic contexts and hence can be used zero or more times. Even in
describing provability for propositional intuitionistic logic there are some drawbacks. For instance,
it is not possible to logically express the fact that a conjunctive or disjunctive formula in the proof
context needs to be eliminated at most once. So, for example, in the specification of conjunction
elimination, once the context is augmented with the two conjuncts, the conjunction itself is no
longer needed in the context.

pv (A and B) :- pv B & pv A.
pv (A imp B) :- hyp A -0 pv B.
pv (A o r B) :- pv A .
pv (A o r B) :- pv B .
pv G :- hyp (A and B), (hyp A -0 hyp B -0 pv G) .
pv G :- hyp (A o r B), ((hyp A -0 pv G) & (hyp B -0 pv G)).
pv G :- hyp (C imp B), ((hyp (C imp B) -0 pv C) &

(hyp B -0 pv GI).
pv G :- hyp f a l s e , e rase .
pv G :- hyp G, e ra se .

Figure 10: A specification of an intuitionistic propositional object-logic

pv G : - hyp ((C imp D) imp B) ,
((hyp (D imp B) -0 pv (C imp D)) & (hyp B -0 pv G)).

pv G :- hyp ((C and D) imp B), (hyp (C imp (D imp B)) -0 pv G) .
pv G :- hyp ((C o r D l imp B), (hyp (C imp B) -0 hyp (D imp B) -0 pv GI.
pv G :- hyp (f a l s e imp B) , pv G .
pv G :- hyp (A imp B), isatom A, hyp A , (hyp B -0 hyp A -0 pv GI.

Figure 11: A contraction-free formulation of 2 L

If, however, we replace the intuitionistic meta-logic with our refinement based on linear logic,
these observations about use and re-use in intuitionistic logic can be specified elegantly, as is done
in Figure 10. In that specification, a hypothesis is both "read from" and "written into" a context
during the elimination of implications. All other elimination rules simply "read from" the context;
they do not "write back." The formulas represented by the last two clauses in Figure 10 use a @

with T: this allows for all unused hypotheses to be erased, since the object logic has no restrictions
on weakening.

It should be noted that this specification cannot be used effectively with a depth-first interpreter
because if the implication left rule can be used once, it can be used any number of times, thereby
causing the interpreter to loop. Fortunately, improvements in the implication left-introduction rule
are known. For example, the proof system given by Dyckhoff [lo] can be expressed directly in this
setting by replacing the one formula specifying implication elimination in Figure 10 with the five
clauses for implication elimination and the (partial) axiomatization of object-level atomic formulas
in Figure 11. Executing this linear logic program in a depth-first interpreter yields a decision
procedure for propositional intuitionistic logic.

5.2 Toggling a switch

If we assume that the state of a switch is stored in the bounded part of the proof context using one
of the atomic formulas on or o f f , then the following two clauses specify a higher-order predicate
toggle that is provable of any formula G in a given context if G is provable when the switch is set

r ; ~ , ~ ; l - G
r ; o f f - off I';A - on-oG

I'; A, off - off @ (on -o G)
I'; A,off - toggle G

Figure 12: Proof search for toggling a switch

to the opposite setting.

toggle G :- on, (off -0 G I .
toggle G :- o f f , (on -0 GI.

While this example involves a quantification over propositions (the variable G), and as such is
not strictly a first-order specification, the intended meaning of the specification should be clear.
Figure 12 (in which the set I' is assumed to contain the above two clauses for toggle) shows how
a bottom-up search using these clauses might progress.

This example illustrates an approach which has previously been used by the authors to provide a
notion of object state in object-oriented logic programming [20]. The linear refinement of hereditary
Harrop formulas provides a straightforward declarative treatment of state update in that setting.

5.3 Permuting a list

Since the bounded part of contexts in L-proofs are intended to be multisets and not lists, it is
a simple matter to permute a list by first loading the list's members into the bounded part of a
context and then unloading them. The latter operation is nondeterministic and can succeed once
for each permutation of the loaded list. Consider the following simple program:

load n i l K :- unload K .
load (X::L) K :- (i tem X -0 load L K).
unload n i l .
unload (X::L) :- item X , unload L.

Here, n i l denotes the empty list and : : the list constructor. The meaning of load and unload is
dependent on the contents of the bounded part of the context, so the correctness of these clauses
must be stated relative to a context. Let I' be a set of formulas containing the four formulas
displayed above and any other formulas that do not contain either it em, load, or unload as their
head symbol. (The head symbol of a formula of the form A or G -o A is the predicate symbol that
is the head of the atom A.) Let A be the multiset containing exactly the atomic formulas

item al , . . ., item a,.

We shall say that such a context encodes the multiset { a l , . . . ,a,}. It is now an easy matter to
prove the following two assertions about load and unload:

a The goal (unload K) is provable from r; A if and only if K is a list containing the same
elements with the same multiplicity as the multiset encoded in A .

a The goal (load L K) is provable from I'; A if and only if K is a list containing the same
elements with the same multiplicity as in the list L together with the multiset encoded in the
context A.

In order for load and unload to correctly permute the elements of a list, we must guarantee
two things about the context: first, the predicates item, load, and unload cannot be used as head
symbols in any part of the context except as specified above and, second, the bounded part of a
context must be empty at the start of the computation of a permutation. It is possible to handle
the first condition by making use of appropriate universal quantifiers over the predicate names
item, load, and unload. Such an approach to the lexical scoping of names has been addressed in
depth in previous papers [25, 271 and will not be taken up here. The second condition - that the
unbounded part of a context is empty - can be managed by making use of the modal nature of !,
which we now discuss in more detail.

5.4 The modality of !

One extension to logic programming languages that has been studied for several years is the demo-
predicate [5]. The intended meaning of attempting a query of the form demo(R, G) in context r
is simply attempting the query G in the context containing only R; that is, the main context is
forgotten during the scope of the demo-predicate. The use of a !'ed goal has a related meaning.

Consider proving the sequent I?; A - !GI 8 G2, where I' and A are composed of resource
formulas and GI and Gz are goal formulas. Given the completeness of uniform proofs for the
system L", this is provable if and only if the two sequents I?; 0 - GI and r; A --+ G2 are
provable. In other words, the use of the "of-course" operator forces GI to be proved with an
empty bounded context. Thus, with respect to bounded resources, the goal !(R -o G) behaves
similarly to demo(R,G). In a sense, since bounded resources can come and go within contexts
during a computation, they can be viewed as "contingent" resources, whereas unbounded resources
are "necessary". The of-course operator attached to a goal ensures that the provability of the goal
depends only on the necessary and not the contingent resources of the context.

It is now clear how to define the permutation of two lists given the example program above:
add either the formula

perm L K :- bang(1oad L K).

or, equivalently, the formula

perm L K <= load L K .

to those defining load and unload. Thus attempting to prove (perm L K) will result in an attempt
to prove (load L K) with an empty bounded context. From the description of load above, L and
K must be permutations of each other.

5.5 Multiset rewriting

The ideas presented in the permutation example can easily be expanded upon to show how the
bounded part of a context can be employed to do multiset rewriting. Let H be the multiset rewriting
system { (L ; , R;) (i E I) where for each i E I (a finite index set), L, and R; are finite multisets.
Define the relation M -H N on finite multisets to hold if there is some i E I and some multiset C
such that M is C kJ L; and N is C Id R,. Let -+;I be the reflexive and transitive closure of - H .

Given a rewriting system H, we wish to specify a binary predicate r ewr i t e such that (rewr i te
L K) is provable if and only if the multisets encoded by L and K stand in the --+b relation. Let
be the following set of formulas (these are independent of H):

r ewr i t e L K C= load L K .

load (X::L) K :- (i tem X -0 load L K).
load n i l K :- rew K

r e v K :- unload K .

unload (X::L) :- item X , unload L .
unload n i l .

Taken alone, these clauses give a slightly different version of the permute program of the last
example. The only addition is the binary predicate rew, which will be used as a socket into which
we can plug a particular rewrite system.

In order to encode a rewrite system H, each rewrite rule in H is given by a formula specifying an
additional clause for the rew predicate as follows: If H contains the pair ({al,. . . ,a,), {bl,. . . , b,))
then this pair is encoded as the clause:

reu K :- item a l , ..., item a,, (item bl -0 (... -0 (i tem b, -o rew K) . . .)) .

If either n or m is zero, the appropriate portion of the formula is deleted. Operationally, this clause
reads the a;'s out of the bounded context, loads the bi7s, and then attempts another rewrite. Let
rH be the set resulting from encoding each pair in H. As an example, if H is the set of pairs
{ ({ a , b } , { b , c}), ({a, a), {a))} then rH is the set of clauses:

r ev K :- item a , item b y (item b -0 (i tem c -0 rev K)).
rew K : - i tem a , item a , (i tem a -0 rew K).

The following claim is easy to prove about this specification: if M and N are multisets repre-
sented as the lists L and K, respectively, then M -+;I N if and only if the goal (rewr i te L K) is
provable from the context ro, rH; 0.

One drawback of this example is that rewr i te is a predicate on lists, though its arguments are
intended to represent multi-sets, and are operated on as such. Therefore, for each M, N pair this
program generates a factor of at least n! more proofs than the corresponding rewriting proofs, where
n is the cardinality of the multiset N. This redundancy could be addressed either by implementing
a data type for multi-sets or, perhaps, by investigating a non-commutative variant of linear logic.

5.6 A data base query language

A program that implements a simple data base query language is displayed in Figure 13. To make
this example interesting, we have augmented the language with the read, wr i te , and n l (new line)
input/output commands. We shall also assume that the sub-goals of a conjunction are attempted
in a left-to-right order. The data base is stored in both the bounded and unbounded parts of the
context using the unary predicate entry. Entries in the bounded part can be retracted or updated;
entries in the unbounded context are permanent and cannot be updated or retracted. A session
using this program might proceed as follows:

Command: en t e r (en ro l l jane csl).
Command: check (en ro l l jane X).
(en ro l l jane csl) is an ent ry .
Command: upd (en ro l l jane csl) (en ro l l jane cs2)

db :- write 'Command: ', read Command, do Command.
db :- write 'Try aga in . ' , n l , db.

do (enter Entry) :- entry Entry -0 db.
do (commit Entry) :- entry Entry => db.
do (retract Entry) :- entry Entry, db.
do (upd Old New) :- entry Old, (entry New -0 db).
do (check q) :- (entry Q , erase, write Q , write ' i s an entry . ' , n l) &

db .
do (necessary Q) :- (bang (entry Q), erase, write Q ,

write ' is a necessary en tryJ , n l) & db.
do quit :- erase.

Figure 13: A simple data base query program

Command: check (enroll jane X).
(enroll jane cs2) is an entry.
Command: commit (student j ane) .
Command: enter (student bob) .
Command: necessary (student X) .
(student jane) i s a necessary entry
Command: retract (student jane).
Command: necessary (student X).
(student jane) i s a necessary entry
Command: necessary (student bob).
Try again.
Command: quit .

This example shows some limitations of linear contexts in this data base setting. For example,
it does not seem possible to query a context to find out if an entry is contingent and not necessary
(although accommodating negation-as-failure would make this possible). Thus it is not possible
(with just this logic) to check if a command is attempting to retract a necessary (committed) entry:
as seen in the sample session, such an operation is accepted but ineffective.

5.7 A gap-threading parser for English relative clauses

Our final example is a simple natural language parser which demonstrates how linear logic can
be used to implement a technique known as gap threading [36]. Intuitionistic contexts have been
proposed as a means of managing the introduction and scoping of gaps [32, 331. This approach,
although modeling various aspects of gap-threading correctly, is unsatisfactory for at least two
reasons. First, the restriction that a gap, once introduced, must be used is not easy to enforce using
an intuitionistic context. Therefore, the phrase "whom Bob married Ann" would parse incorrectly
as a valid relative clause. Second, various restrictions on where gaps may occur are not explained
using intuitionistic contexts. For example, gaps introduced by "whom" can occur in object but not
nominal positions. Thus the phrase "whom Ann believes that Bob married" is correct (the gap is
the object of "married") while "whom Ann believes that married Bob" is incorrect (the gap is the
subject of "married"). The "modal" distinction between these two kinds of noun phrases is not
addressed naturally using intuitionistic logic.

sent Pi P2 :- bang (np Pi PO), vp PO P2.
vp Pi P2 :- tv Pi PO, np PO P2.
vp Pi P2 :- stv Pi PO, sbar PO P2.
sbar (that::Pi) P2 :- sent Pi P2.
np PI P2 :- pn Pi P2.
re1 (whom::X) Y :- all z\(np z z) -0 sent X Y.
pn (mary::L) L.
pn (bob: :L) L.
pn (ann::L) L.
tv (1oves::L) L.
tv (married::L) L.
stv (be1ieves::L) L.

Figure 14: A simple parser for gaps in English

The small logic program in Figure 14 is a simple parser based on definite clause grammars
(DCG) [37] extended with some uses of linear logic. Each category of the grammar, such as
sent for sentence, vp for verb phrase, sbar for complement clauses, etc., is given two arguments,
denoting a difference list of words. The rule for relative clauses (rel) introduces a gap by loading
the formula all z\(np z z) (which denotes the logical expression 'dz.(np z 2)) into the bounded
context. This formula represents a contingent resource: a noun phrase of zero length. Because of
the restrictions placed on the management of the bounded context, the requirement that introduced
gaps be consumed is handled by the logic.

The ! operator provides a simple mechanism for declaring that gaps cannot be consumed during
the parsing of certain occurrences of parts of speech: for example, the subject noun phrase in the
formula specifying sent is protected by a !. This blocks any contingent resources from being used
in its proof. Thus, an introduced gap can be used to prove the noun phrase mentioned in the vp
clause but not the one in the sent clause. Therefore, the two goals

re1 (vhom::ann::believes::that::bob::married::nil nil.
re1 (whom::bob::married::nil) n i l .

are provable but the two goals

re1 (whom::ann::believes::that::married::bob::nil) nil.
re1 (whom::bob::married::ann::nil) nil.

are not. As this parser rules out subject extraction, sentences that require such extractions must
be handled with additional specialized grammar rules. Several similar types of "island constraints"
occur in natural language parsing problems [36]. The use of !'ed formulas may aid in handling these
constraints as well.

The duplication of gaps across conjunctions in such phrases as "the doctor whom Bob married
and Jane knew" can be explained well using a & to copy gaps. To this end, the following formula
can be add to the grammar above to handle the conjunction of sentences:

sent PI P2 :- sent P1 (and::P3) & sent P3 P2.

6 A model theoretic semantics

Besides the fact that logic programming languages can be characterized by their use of goal-directed
search, they also generally share the characteristic that given a program, there exists a single model

such that validity in that model is equivalent to provability from the program. Thus when designing
a program (a proof context), a programmer can think of the meaning of a query operationally, as
the search for uniform, cut-free proofs of the query in that context, or declaratively, as truth in the
particular canonical model that the program represents.

The canonical model for first-order Horn clauses is well known [3]. A Kripke-like model con-
struction was proposed in [26] as the canonical model for a subset of first-order hereditary Harrop
formulas, but unfortunately the construction given there was not shown to be an actual model in the
sense of possible-world semantics. A canonical model was given in [28] for the logic programming
language described in Section 2. We shall use the approach given in [28] to develop a canonical
model for the logic programming language based on T, &, -o, and +. We shall only consider the
propositional case here since most of the aspects of the model are illustrated in just that simple
case. The analysis of the quantificational case (including higher-type quantification) given in [28]
applies equally well here.

Let (R, + , O) be a commutative monoid and let (W, I) be a partially ordered set. We shall
call R the monoid of bounded resources and W the set of possible worlds. A (propositional) h'ripke
interpretation is an order preserving mapping from (W, <) to the powerset of the set atomic for-
mulas (here, propositional letters). A resource indexed model M is an R-indexed set of Kripke
interpretations, {K, 1 r E R}. Thus the set K,(w) is intended to denote the set of propositional
formulas that are true at world w E W in interpretation K,.

Satisfaction in a structure M = {A', (T E R) is defined by the following induction on the
structure of propositional formulas.

K,, w + A if A is atomic and A E K,(w).

K,,w k B1 - o B z i f v r ' ~ R,VW'E W if w 5 w'and K r i , w 1 k B1 then K,+,i,wl Bs.

K,,w + B1 + B2 if Vw' E W if w 5 w' and l h , w t /= B1 then K,,wl + Bz.

Finally, we write M)= B if Vw E W, 16, w + B. In a sense, the Kripke interpretation &
models truth in the usual intuitionistic sense while K, models truth that has been moved out-of-
phase (borrowing an image from Girard [15]) by the presence of the resource T E R. The following
lemma is proved by a simple induction on the structure of propositional formulas.

Lemma 7 Let r f R and W , W ' E W . If w 5 w' and K,,w + B then K,,wl + B.

To aid in describing the satisfaction of sequents, we add the following rules for determining
the satisfaction of 1 and @. If we were investigating models for a logic that allowed unrestricted
occurrences of 1 and @, these satisfaction rules would need to be replaced by stronger rules, such
as are described in [S].

K,,w I= B1 @ B2 if there are rl,r2 E R such that r = T I + ~2 and K T , , w + Bl and
KTZ 7 w B2-

We will need the following constructions. If I? is the set {C1, . . . , C,} (n > 0) then let &I? be
the formula C1 & . - . & C, (or T if I? is empty). If A is the multiset { B 1 , . . . , B,) (n 2 0) then let
@A be the formula B1 @ - . @ B, (or 1 if A is empty). Then we say an L-style sequent I'; A - B
is valid in the model M if Vw E W,Vr E R, if KO, w &I? and K T , w @A then KT, w /= B.

Proposition 8 (Soundness Theorem) If I'; A - B has an L-proof then I'; A - B is valid
in any resource indexed model.

Proof. Let M = {KT I T E R) be a resource indexed model. The proof is by induction on the
structure of an C-proof (possibly with occurrences of the cut rules): there are two base cases and
nine inductive cases (we include here the two cut-rules for C).

identity: Given KO, w /= &I' and KT, w + B it follows that KT, w + B. Thus, the sequent
I ' ;B --+ B is validin M .

TR: Immediate.

absorb: By the inductive hypothesis, I', B; A, B - C is provable, and hence valid in M. Assume
now that KO, w k (&I?) & B and KT, w + @A. Thus, Ii'o, w + B and I',+o, w (@A) @ B.
By the inductive hypothesis, K T , w /= C and, hence, I?, B ; A - C is valid in M.

&R: Immediate.

&L: By the inductive hypothesis, I'; A , Bi - C is valid in M for i = 1 or 2. Assume now that
KO, w k &I' and K T , w (= (@A) @ (B1 & 82). Thus, there are r l , r 2 E R such that r = rl + r 2

and KT, ,w + @A and I<,,,w t= B1 & Ba. But then I<,,, w 1 B; and KT,w /= (@A) @I B;.
By the inductive hypothesis, K T , w + C and, hence, r; A, B1 & B2 - C is valid in M.

-OR: By the inductive hypothesis, I'; A, B - C is valid in M. Assume now that KO, w + &I'
and KT, w + @A. We need t o show that K T , w b B -o C . Assume that w 5 w' and r' E R
and that K,I,w' B. By Lemma 7 and the definition of the satisfiability of @I, we have

KO, w' &I' and K,+,I, w' + (@A) @ B. By the inductive hypothesis, KT+,r, w' I= C. Thus
we have shown that KT, w + B -o C and also that the sequent r; A - B 4 C is valid.

-oL: By the inductive assumption, both I?; Al - B and I?; A 2 , C - E are valid in M. Assume
that K O , w + &I' and K T , w (@Al) @I (@A2) @ (B -O C). Thus there are r l , 7-2, r~ 6 R
such that r = rl + 1-2 + rg and K,,, w @A*, KT,, w b @A2, and I<,,, w k B -o C . By
the validity of the first sequent, KT,, w)= B. By the definition of the satisfiability of -o, we
know KT,+,, , w + C. By the validity of the second sequent, KTl +r2+rj , w k E. Thus, we
have shown that KT, w E and that I'; A1,A2, B 4 C - E is valid in M.

j R: By the inductive hypothesis, I', B; A - C is valid in M. Assume now that KO, w &r
and KT, w)= @A. We need to show that K T , w B + C . Assume that w 5 w' and that
Ko,w1 /= B. By Lemma 7 and the definition of the satisfiability of &, we have KO, W' b
(&I?) & B and Ii,,w' + @A. By the inductive hypothesis, l<,, w' + C. Thus we have shown
that K T , w B + C and also that the sequent I?; A - B C is valid in M.

+ L: By the inductive hypothesis, both I';0 ---+ B and r; A , C - E are valid in M. Assume
that KO, w + &I' and KT, w b (@ A) @ (B 3 C) . Thus there are r l , r2 E R so that r = r l + 7-2
and KT,, w + @A and Ii,,, w + B + C . By the validity of the first sequent, KO, w)= B. By
the definition of the satisfiability of +, we know KT,,w + C. By the validity of the second
sequent, I',,+,,, w k E. Thus, we have shown that K T , w + E and that r; A , B + C - E
is valid in M.

cut: By the inductive hypothesis, both I"; Al - B and r; A,, B ---, C are valid in M. Assume
that KO, w k &I" and K T , w k (@Al) @ (@A2). Thus KO, w &r and there are r l , rg E R

so that r = rl + r2 and K,, , w @Al and I<,,, w /= @Az. By the validity of the first sequent,
K,, , w + B and by the validity of the second sequent, w + C. Thus, we have shown
that A',, w C and that I"; A l , A2 - C is valid in M.

cut!: By the inductive hypothesis, both I?'; 0 -+ B and I?, B; A - C are valid in M. Assume
that Ko,w + &I?' and KT,w t= @A. By the validity of the first sequent, KO, w (= B and by
the validity of the second sequent, K,,w (= C. Thus I"; A - C is valid in M. 1

The following proposition describes how the canonical model for our logic programming language
is built and shows that it has the desired properties.

Proposition 9 (Canonical Model Theorem) Let W be the set of all sets of formulas (over T ,
&, -0, and +) and let 5 be set inclusion. Let R be the set of all multisets of such formulas and
let + be multiset union and 0 be the empty multiset. Define M = {KT I r E R } by

K,(w) = { A I A is atomic and W; r kL A } .

Then the equivalence Vw E W Vr E R(w; r t-L B if and only if Ii,, w + B) holds if and only if the
two cut rules are admissible in L .

Proof. First, assume that the two cut rules are admissible in L. We proceed by induction on the
structure of the formula B. In the base cases where B is atomic or T , the conclusion is immediate.
Similarly, in the inductive case where B is B1 & B z , the conclusion also follows imn~ediately. This
leaves us with only the following two inductive cases to consider.

B = B1 -o Bz: Assume that w; r - B1 -o B2 has a cut-free proof. By Proposition 4, the sequent
w; r, B1 - B2 has a cut-free proof. To show Ii,, w j= B1 4 B2, assume that w < w'
and r' E R and KT,, w' + B1. By the inductive hypothesis, w'; r' - B1 has a cut-free
proof. Using the cut rule and the admissibility of cut, the sequent w'; r + r' - B2 has
a cut-free proof. By induction again, we have l i , + , r , ~ ~ ' b B2. Thus, K T , w b B1 -o B2.
To show the converse, assume that li,, w j= B1 -c B2. Since w; B1 - B1 has a cut-free
proof, KIB,), w + B1 (by induction). Thus, w + B2 and again by the inductive
hypothesis, the sequent w; r + {B1} - B2 has a cut-free proof; thus, w; r - B1 -a B2 has
a cut-free proof.

B = B1 B2: Assume that w; r --+ B1 B2 has a cut-free proof. By Proposition 4, the sequent
w, B1; r - Bg has a cut-free proof. To show KT, w B1 B2, assume that w 5 w' and
KO, w' + B1. By the inductive hypothesis, wl;O - B1 has a cut-free proof. Using the cut!
rule and the admissibility of cut!, the sequent w'; r - B2 has a cut-free proof. By induction
again, we have Ii,, w' + B2. Thus, I<,, w I= B1 $ Bz . To show the converse, assume that
l G , w B1 + B2. Since w, B1;O - B1 has a cut-free proof, I<o, w + { B I } I= B1 (by
induction). Thus, hl,+o, w + { B 1) t= B2 and again by the inductive hypothesis, the sequent
w, B1; r - Bz has a cut-free proof; thus, w; r - B1 Bz has a cut-free proof.

Finally, we assume that the equivalence holds and use it to show that the two cut rules for C are
admissible. Let 2 be a proof of the sequent r; A - B possibly containing occurrences of the cut
and cut! rules. We show that there is a cut-free proof of the sequent I'; A - B by induction on
the number of occurrences of cut and cut! rules. If E has no such occurrences, then we are finished.
Otherwise, pick an occurrence of a cut or cut! rule so that the two subproofs Z1 and 2 2 , whose
endsequents are the premises of that cut-rule occurrence, are cut-free. We distinguish two cases.
In both cases, I' C I?'

Case 1. The proof El proves r f ; A l -+ 3 and Z2 proves r; A2, B - C. Thus the conclusion of
the cut rule is I"; AI , A2 --, C. Thus, I?; A2 - B -oC has a cut-free proof. By the assumed
equivalence, KA, , r' + B and KA,, I' /= B -o C. By the definition of the satisfiability of 4,

KAItAa,I" /= C and by the equivalence again I?'; Al,A:! - C has a cut-free proof, say E3.
Thus, if we replace the subproofs El and Z2 and the cut rule with Z3 in Z, we have reduced
the number of cuts by one.

Case 2. The proof El proves r";0 -4 B and E2 proves I?, B ; A - C. Thus the conclusion of
the cut! rule is I?'; A - C. Thus, T; A - B + C has a cut-free proof. By the assumed
equivalence, K0,I" B and KA,T (= B + C. By the definition of the satisfiability of +,
K a , r t + C and by the equivalence again I"; A - C has a cut-free proof, say Z3. Thus,
if we replace the subproofs Z1 and Z2 and the cut! rule with 5 in E, we have reduced the
number of cuts by one. I

The following is, of course, an immediate corollary of the canonical model theorem

Proposition 10 (Completeness Theorem) If a sequent r ; A - B is valid in all resource-
indexed models, then i t has an C-proof.

7 A model of resource consumption

While we have shown several programming examples that demonstrate the usefulness of this logic
programming language, we have said nothing about the practicality of implementing the language.
Given the rather simple structure of proofs in C' and C", it is an easy matter to build a prototype
interpreter for this logic programming language. For example, delaying the choice of universal
instances of forn~ulas on which to backchain using logic variables and unification as in other logic
programming languages is an obvious option in this setting.

However, a serious computational issue that does not arise in traditional logic programming
languages must be addressed. Nothing in the analysis made in Section 3 provides any guidance
to an interpreter that is forced to divide up the multiset of bounded resource formulas in a proof
context during the bottom-up application of the @-R rule or the backchaining rule. For example,
the sequent I'; A - G1 @ G2 is provable if and only if there is a partitioning of the multiset A into
the two multisets Al and A2 so that r ; Al - G1 and I'; A2 - G2 are provable. So, if A has
cardinality n there are 2n such partitions of A. While it can be the case that for everyone of these
partitions, the corresponding sequents are provable, it is much more likely (as in the examples of
Section 5) that only very few of the partitions actually lead to proofs.

Clearly, a better strategy than trying each possible partition in sequence is needed if this is to
be a usable logic programming language. Fortunately, given the restricted form of proof contexts,
it is possible to view the process of proof building as one in which resource formulas get used and, if
they are in the bounded part of the context, deleted. Thus, attempting to prove I?; A - G1 @ G2
first results in an attempt to prove, say GI, and as formulas in A are used in backchaining inference
rules in this proof, they are deleted. The resources deleted determine lazily the multiset A*. If the
search for a proof of G1 is successful, the remaining multiset of formulas, implicitly equal to A2,
is then used to prove the second goal G2. If the correct resources are left to prove Gz, then the
compound goal G1 @ G2 will have been proved without splitting the context artificially.

Assume that R-formulas are defined as in Section 3. An 10-context is a list made up of R-
formulas, !'ed R-formulas, or the special symbol del used to denote a place where an R formula has
been deleted. The three-place proposition I { G } O will denote the fa.ct. t1ia.t i t is possible to find

Figure 15: Specification of an interpreter for the propositional language

a proof of G given the input I so that the resources in 0 remain. To make this informal notion
precise, we need the following definitions regarding 10-contexts. The ternary relation pickR(I, 0, R)
holds if R occurs in the 10-context I, and 0 results from replacing that occurrence of R in I with
the new constant del (this achieves deletion). The relation also holds if ! R occurs in I , and I and
0 are equal (!'ed formulas are not deleted). An 10-context 0 is a subcontext of I , denoted by the
predicate subcontext(0, I) if 0 arises from replacing zero or more non-!'ed components of I with
del.

Figure 15 provides a specification of the predicate I {G)O for the propositional fragment of this
logic that uses the clause (t) of Section 3 to define R-formulas. The specification of I {G)O and
of the other predicates for the full range of R-formula syntax is given using Prolog in Figure 16.
In that presentation, I{G}O is written using the syntax prove(I,O,G), @ is written as x, 4 as
-0, + as =>, T as erase, and ! G as bang(G). (Infix declarations for x, -0, =>, and & are missing
from Figure 16, as are Horn clauses defining the atomic formulas of the object-logic via the isA
predicate.)

The Prolog code given implements only the propositional part of this logic since Prolog has no
natural representation of object-level quantification. If XProlog 1301 were used for the specification,
such quantifiers could be implemented directly using A-abstractions. The resulting specification
would be identical to the one given in Figure 16 except that two more clauses --- one for proving a
universal quantifier and one for backchaining over a universal quantifier - would need to be added.

In order to state the correctness of these specifications for I {G)O, we need the notion of the
difference, I - 0, of two 10-contexts, whenever it is the case that subcontext(0, I) holds: I - 0 is
the pair (I?, A) where I' is the set of all formulas R such that ! R is an element of the list I (and
hence O), and A is the multiset of all formulas R which occur in I and where the corresponding
position in 0 is the symbol del. Thus, A is the multiset of formulas deleted in moving from I to 0.

Proposition 11 Let I and 0 be 10-contezts where 0 is a subcontext of I . Let I - 0 be the pair
(r , A) and let G be a goal formula. The proposition I {G)O is provable if and orzly if I?; A - G
has an CN-proof.

Proof. For simplicity, we show this proof only for the case where R-formulas are defined using
the simpler form (c) in Section 3. Notice that if I - 0 is the pair (I', A), then pickR(I, 0, R) holds
if and only if either A is {R) or A is empty and R E I?.

We first show by induction on a proof using the inference rules in Figure 15 that if I{G)O is
provable then r ; A - G has an L"-proof. The two base cases of proving the goals 1 and T are
trivial. The inductive cases are considered below.

I{! G}I follows from I{G)I: Since A is 0 in this case and since (by induction hypothesis) I'; 0 -+ G
has an Ll1-proof, so too does I?; 0 -4 ! G.

I{G1 @ G2)O follows from I(G1)M and M{G2)0: Let I- M be (I?, Al) and let M - 0 be (l', A2).
Thus, I - 0 is (r, A1 kl A,). By the inductive hypothesis, I?; Al - G1 and r; A2 - G2
have LN-proofs. Thus, so too does I'; Al,A2 + G1 @ Gz.

I{Gl & G2)O follows from I{G1}0 and I{G1)0: Let I-0 be (I?, A). By the inductive hypothesis,
l'; A -+ GI and I'; A -+ Gz have .C"-proofs. Thus, so too does I?; A - G1 & G2.

I{R -o G)O follows from R :: I{G)del :: 0: Let I - 0 be (I?, A). Since, by induction hypothesis,
I?; A, R - G has an L"-proof, so too does l'; A - R -o G.

I{R +- G)O follows from ! R :: I{G} ! R :: 0 : Let I - 0 be (I', A). Since, by induction hypothesis,
r, R; A - G has an LN-proof, SO too does r; A - R + G.

The three remaining cases involve the pickR predicate. Assume that pickR(I, 0, R) holds and that
I - 0 is the pair (I', A).

I{A}O follows from pickR(I, 0, A): If A is {A} then I?; A - A is proved by the degenerate form
of the BC rule with no premises. Otherwise, A is empty, I = 0, and ! A occurs in I. Then
that same sequent is proved using the BC rule as above followed by the absorb rule.

I{A}O follows from pickR(I, M, G 4 A) and M{G)O: By the inductive hypothesis, I'; A' - G
has an L"-proof, 5, where M - 0 is (I',Ai). If A is {G A) then l'; A, A' - A has an
L1'-proof built from Z using the BC rule. Otherwise, A is empty and the absorb inference
rule must also be used.

I{A}O follows from pickR(I,O, G + A) and O{G)O: By the inductive hypothesis, I?; 0 - G has
an L"-proof, Z, where 0 - 0 is (I?,@). If A is {G j A) then I'; A - A has an L"-proof
built from E using the BC inference rule. Otherwise, A is empty and the absorb inference
rule must also be used.

The reverse implication of this proposition follows by simply reversing the construction described
above. I

Collsider the behavior of a Prolog interpreter attempting to prove I{G1 @ G2)0. First the
interpreter tries to prove I{Gl}M, for some 10-context M. If this succeeds, then M{G2)0 is
attempted. If this second attempt fails, the interpreter retries I(G1)M looking for some different
pattern of consumption to find, hopefully, a new value for M, before re-attempting a proof of
M{G2)0. By using unification to delay the choice of the value used for the context M, that choice
is made entirely lazily.

8 Related Work

There are many ways in which linear logic can be fruitfully exploited to address aspects of logic
programming. Girard suggested how linear logic can be used to model the difference between the

isG(1).
isG(erase).
isG (B) :- isA(B).
isG(~1 -0 ~ 2) :- isR(B1), isG(B2).
is~(B1 => B2) :- isR(B1), isG(B2).
isG(B1 & B2) :- isG(B1). isG(B2).
isG(B1 x B2) :- isG(Bl), isG(B2).
isG(bang(B)) :- isG(B1.

prove(I,I, 1).
prove(I,O, erase) :- subcontext(0,I).
prove(I,O, Gi & G2) :- prove(I,0,~1), prove(I,O,G2).
prove(I,O, R -0 G) :- prove(R :: I, del : : 0,G).
prove(I,O, R => G) :- prove(bang(R) : : I, bang(R) : : 0,G).
prove(I,O, G1 x ~ 2) :- prove(1,~,~1), prove(~,0,~2).
prove(I,I, bang(G)) : - prove(I,I,~).
prove(I,O, A) : - is~(A), pick~(1 ,H,R) , bc(M ,O, A,R) .

bc(I,I,A, A).
~c(I,o,A, G -0 R) :- bc(I,M,A,R), prove(M,O,G).
~c(I,o,A, G => R) :- bc(I,O,A,R), prove(O,O,G).
bc(I,O,A, Ri & R2) :- bc(I,O,A,R1); bc(I,O,A,R2).

pickR(bang(R) : :I, bang(R) : : I, R) .
pickR(R::I, del: :I, R) :- isR(R) .
pickR(S::I, S: :OD R) :- pickR(I,O,R).

subcontext(del::O, R ::I) :- isR(R), subcontext(0,I).
subcontext(S::O, I :- subcontext(0,I).
subcontext(ni1, nil).

Figure 16: A Prolog implementation of the 10-interpreter

classical, "external" logic of Horn clauses and the "internal" logic of Prolog that arises from the
use of depth-first search [16]. His suggestions were worked out in detail by Cerrito [7] to provide
a logical specification of Prolog evaluation for propositional Horn clauses. Cerrito has also used
classical linear logic to provide a formalization of the Clark completion theory that is sound and
complete for SLDNF on allowed logic programs [6].

Besides our work described here, at least two proposals for new logic programming languages
have been made recently that use linear logic for their foundation. Harland and Pym have proposed
a fragment of linear logic as a logic programming language [19]. As was done here, their fragment
is chosen so that uniform proofs remain complete. Since having !'s in right-hand sides of sequents
stops several inference rule permutations from holding, their proposal disallows such right-hand
sides. Thus, goal formulas are weaker than those presented here, but contexts are richer. The loss
of !'ed goals, however, means that several of the examples in this paper cannot be coded directly.
Andreoli and Pareschi have extended Horn clauses so that programs in the resulting language make
use of the multiple conclusion nature of full linear logic [I, 21. In the logic programming language
that results, the availability of context on the right-hand side of a sequent makes it possible to
naturally support various aspects of concurrent and object-oriented programming.

In the area of natural language parsing, Lambek [22,23] has used a logic that can be identified
with a non-commutative variant of linear logic to infer the syntactic categories of phrases. Recently,
Pereira described how the semantics of gaps could be computed using a linear logic-like context
mechanism [35]: his approach can be formalized using the logic described here.

9 Conclusion

There have been several examples in print of the need to refine the notion of intuitionistic context
found in programs written using hereditary Harrop formulas [12, 20, 33, 351. In this paper, we
proposed a refinement to hereditary Harrop formulas using a fragment of linear logic. We argued
that this fragment is a sensible logic programming language by showing that interpreting it in a
goal-directed fashion did not lead to incompleteness and that it has a model theory that admits
canonical models. We presented an interpreter for this language that views proof construction as
a process that takes in a context, deletes bounded formulas as they are used in backchaining and
returns the remaining context to be consumed elsewhere. This interpreter splits contexts lazily
when attempting a proof of a tensor. Finally, we presented several examples demonstrating the
utility of this logic programming language.

A prototype interpreter, written in Standard ML, of the full logic programming language de-
scribed here is available from the first author.

Acknowledgements

We are grateful to Jean-Marc Andreoli, Gianluigi Bellin, Jawahar Chirimar, Remo Pareschi, and
Fernando Pereira for helpful conversations regarding this work. The Journal reviewers provide very
useful comments on an earlier draft of this paper. Both authors have been funded by ONR N00014-
88-K-0633, NSF CCR-87-05596, NSF CCR-91-02753, and DARPA N00014-85-K-0018 through the
University of Pennsylvania. Miller has also been supported by SERC Grant No. GR/E 78487 "The
Logical Framework" and ESPRIT Basic Research Action No. 3245 "Logical Frameworks: Design
Implementation and Experiment" while he was visiting the University of Edinburgh.

References

[I] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of Logic
and Computation, 2(3), 1992.

[2] J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inheritance.
New Generation Computing, 9:3-4, 1991. (Special issue, Selected papers from ICLP'90).

[3] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming. Journal
of the ACM, 29(3):841 - 862, 1982.

[4] Anthony J. Bonner, L. Thorne McCarty, and Kumar Vadaparty. Expressing database queries
with intuitionistic logic. In Logic Programming: Proceeding of the North American Conference,
pages 831-850, 1989.

[5] Kenneth A. Bowen and Robert A. Kowalski. Amalgamating language and metalanguage in
logic programming. In K.L. Clark and S.-A. Tarnlund, editors, Logic programming, volllme 16
of A P I C studies in data processing, pages 153 - 172. Academic Press, 1982.

[6] Serenella Cerrito. A linear semantics for allowed logic programs. In John Mitchell, editor,
Proceedings of the Fifth Annual Symposium on Logic in Computer Science, Philadelphia, PA,
pages 219 - 227, June 1990.

[7] Serenella Cerrito. A linear axiomatization of negation as failure. Journal of Logic Programming,
12(1 & 2):l - 24, January 1992.

[8] Jawahar Chirimar. A semantics for a fragment of intuitionistic linear logic. Handwritten notes,
March 1992.

[9] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

[lo] Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic (to appear). Available as technical report CS 9115, St. Andrews, Scotland, September
1990.

[l l] Amy Felty. Specifying and Implementing Theorem Provers in a Higher- Order Logic Program-
ming Language. PhD thesis, University of Pennsylvania, August 1989.

[12] Amy Felty and Dale Miller. Specifying theorem provers in a higher-order logic programming
language. In Ninth International Conference on Automated Deduction, pages 61 - 80, Argonne,
IL, May 1988. Springer-Verlag.

[13] D. M. Gabbay and U. Reyle. N-Prolog: An extension of Prolog with hypothetical implications.
I. Journal of Logic Programming, 1:319 - 355, 1984.

[14] Gerhard Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor, The Col-
lected Papers of Gerhard Gentzen, pages 68-131. North-Holland Publishing Co., Amsterdam,
1969.

[15] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:l-102, 1987.

[16] Jean-Yves Girard. Towards a geometry of interaction. In Categories in Computer Science,
volume 92 of Contemporary Mathematics, pages 69 -- 108. AMS, June 1987.

[17] Jean-Yves Girard. On the unity of logic. Technical Report 26, Universitg Paris VII, June 1991.

[18] Lars Hallnas and Peter Schroeder-Heister. A proof-theoretic approach to logic programming.
1. Clauses as rules. Journal of Logic and Computation, pages 261-283, December 1990.

[19] James Harland and David Pym. The uniform proof-theoretic foundation of linear logic pro-
gramming (extended abstract). In Proceedings of the 1991 International Logic Programming
Symposium, Sun Diego, pages 304 - 318, November 1991.

[20] Joshua Hodas and Dale Miller. Representing objects in a logic programming language with
scoping constructs. In David H. D. Warren and Peter Szeredi, editors, 1990 International
Conference in Logic Programming, pages 511 - 526. MIT Press, June 1990.

[21] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic linear logic:
Extended abstract. In G. Kahn, editor, Sixth Annual Symposium on Logic in Computer Sci-
ence, pages 32 - 42, Amsterdam, July 1991.

[22] J . Lambek. The mathematics of sentence structure. American Mathematical Monthly, 65:154
- 169, 1958.

[23] J. Lambek. Multicategories revisited. In Categories in Computer Science, volume 92 of Con-
temporary Mathematics, pages 217 - 239. AMS, June 1987.

[24] L. T. McCarty. Clausal intuitionistic logic I. fixed point semantics. Journal of Logic Program-
ming, 5:l - 31, 1988.

[25] Dale Miller. Lexical scoping as universal quantification. In Sixth International Logic Program-
ming Conference, pages 268-283, Lisbon, Portugal, June 1989. MIT Press.

[26] Dale Miller. A logical analysis of modules in logic programming. Journal of Logic Programming,
6:79 - 108, 1989.

[27] Dale Miller. Abstractions in logic programming. In Peirgiorgio Odifreddi, editor, Logic and
Computer Science, pages 329 - 359. Academic Press, 1990.

[28] Dale Miller. Abstract syntax and logic programming. In Logic Progmmming: Proceedings of the
First and Second Russian Conferences on Logic Programming, number 592 in Lecture Notes in
Artificial Intelligence, pages 322-337. Springer-Verlag, 1992. Also available as technical report
MS-CIS-91-72, UPenn.

[29] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs as a
foundation for logic programming. Annals of Pure and Applied Logic, 51:125-157, 1991.

[30] Gopalan Nadathur and Dale Miller. An Overview of XProlog. In Fiflh Ii~ternatiorzul Logic
Programming Conference, pages 810-827, Seattle, Washington, August 1988. M I T Press.

[31] Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal of the A CM, 37(4):777
- 814, October 1990.

1321 Remo Pareschi. Type-driven Natuml Language Analysis. PhD thesis, University of Edinburgh,
1989.

[33] Remo Pareschi and Dale Miller. Extending definite clause grammars with scoping constructs.
In David H. D. Warren and Peter Szeredi, editors, 1990 International Conference in Logic
Programming, pages 373-389. MIT Press, June 1990.

[34] Lawrence C. Paulson. Isabelle: The next 700 theorem provers. In Peirgiorgio Odifreddi, editor,
Logic and Computer Science, pages 361 - 386. Academic Press, 1990.

[35] Fernando C. N. Pereira. Semantic interpretation as higher-order deduction. I n Proceedings of
the Second European Workshop on Logics and AI. Springer-Verlag, September 1990.

[36] Fernando C. N. Pereira and Stuart M. Shieber. Prolog and Natural-Language Analysis, vol-
ume 10. CLSI, Stanford, CA, 1987.

1371 Fernando C. N. Pereira and David H. D. Warren. Definite clauses for language analysis.
Artificial Intelligence, 13:231 - 278, 1980.

[38] Frank Pfenning. Partial polymorphic type inference and higher-order unification. In Proceed-
ings of the ACM Lisp and Functional Programming Conference, 1988.

