
ar
X

iv
:2

30
6.

01
47

3v
1

 [
cs

.L
O

]
 2

 J
un

 2
02

3

Third Order Matching is Decidable

Gilles Dowek

INRIA-Rocquencourt,

B.P. 105, 78153 Le Chesnay Cedex, France

Gilles.Dowek@inria.fr

Abstract

The higher order matching problem is the problem of determining whether a term is an instance

of another in the simply typed λ-calculus, i.e. to solve the equation a = b where a and b are

simply typed λ-terms and b is ground. The decidability of this problem is still open. We prove the

decidability of the particular case in which the variables occurring in the problem are at most third

order.

Introduction

The higher order matching problem is the problem of determining whether a term is an instance
of another in the simply typed λ-calculus i.e. to solve the equation a = b where a and b are simply
typed λ-terms and b is ground.

Pattern matching algorithms are used to check if a proposition can be deduced from another
by elimination of universal quantifiers or by introduction of existential quantifiers. In automated
theorem proving, elimination of universal quantifiers and introduction of existential quantifiers are
mixed and full unification is required, but in proof-checking and semi-automated theorem proving,
these rules can be applied separately and thus pattern matching can be used instead of unification.

Higher order matching is conjectured decidable in [6] and the problem is still open. In [5] [6]
[7] Huet has given a semi-decision algorithm and shown that in the particular case in which the
variables occurring in the term a are at most second order this algorithm terminates, and thus that
second order matching is decidable. In [10] Statman has reduced the conjecture to the λ-definability
conjecture and in [11] Wolfram has given an always terminating algorithm whose completeness is
conjectured.

We prove in this paper that third order matching is decidable i.e. we give an algorithm that
decides if a matching problem, in which all the variables are at most third order, has a solution.
The main idea is that if the problem a = b has a solution then it also has a solution whose depth
is bounded by some integer s depending only on the problem a = b, so a simple enumeration of
the substitutions whose depth is bounded by s gives a decision algorithm. This result can also
be used to bound the depth of the search tree in Huet’s semi-decision algorithm and thus turn it
into a always-terminating decision algorithm. It can also be used to design an algorithm which
enumerates a complete set of solutions to a third order matching problem and either terminates if
the problem has a finite complete set of solutions or keeps enumerating solutions forever if it the

http://arxiv.org/abs/2306.01473v1

problem admits no such set. At last we discuss the problems that occur when we try to generalize
the proof given here to higher order matching.

1 Trees and Terms

1.1 Trees

Definitions 1 (Following [3]) An occurrence is a list of strictly positive integers α =< s1, ..., sn >.
The number n is called the length of the occurrence α. A tree domain D is a non empty finite set
of occurrences such that if α < n >∈ D then α ∈ D and if also n 6= 1 then α < n− 1 >∈ D. A tree

is a function from a tree domain D to a set L, called the set of labels of the tree.
If T is a tree and D its domain, the occurrence < > is called the root of T and the occurrence

α < n > is called the nth son of the occurrence α. The number of sons of an occurrence α is the
greatest integer n such that α < n >∈ D. A leaf is an occurrence that has no sons.

Let T be a tree and let α =< s1, ..., sn > be an occurrence in this tree, the path of α is the set
of occurrences {< s1, ..., sp > | p ≤ n}. The number of elements of this path is the length of α
plus one.

The depth of the tree T is the length of the longest occurrence in D. This occurrence is, of
course, a leaf.

If T is a tree of domain D and α is an occurrence of D, the subtree T/α is the tree T ′ whose
domain is D′ = {β | αβ ∈ D} and such that

T ′(β) = T (αβ)

By an abuse of language, if α < n > is an occurrence of a tree T , the subtree T/α < n > is also
called the nth son of the occurrence α.

If a is a label and T1, ..., Tn are trees (of domains D1, ...,Dn) then the tree of root a and sons

T1, ..., Tn is the tree T of domain D = {< >} ∪
⋃

i{< i > α | α ∈ Di} such that

T (< >) = a

and
T (< i > α) = Ti(α)

If T is a tree of domainD, α an occurrence of D and T ′ a tree of domainD′ then the graft of T ′ in
T at the occurrence α (T [α← T ′]) is the tree T ′′ of domainD′′ = D−{αβ | αβ ∈ D} ∪ {αβ | β ∈ D′}
and such that

T ′′(γ) = T ′(β) if γ = αβ

and
T ′′(γ) = T (γ) otherwise

Let T and T ′ be trees and let a be a label such that all the occurrences of a in T are leaves
α1, ..., αn then the substitution of T ′ for a in T (T [a ← T ′]) is defined as T [α1 ← T ′]...[αn ← T ′].
Note that since α1, ..., αn are leaves, the order in which the grafts are performed is insignificant.

2

1.2 Types

Definition 2 (Type)
Let us consider a finite set T . The elements of T are called atomic types. A type is a tree whose

labels are either the elements of T or → and such that the occurrences labeled with an element of
T are leaves and the ones labeled with → have two sons.

Let T be a type, if the root of T is labeled with an atomic type U then T is written U , if the
root of T is labeled with → and its sons are written T1 and T2 then T is written (T1 → T2). By
convention T1 → T2 → T3 is an abbreviation for (T1 → (T2 → T3)).

Definition 3 (Order of a Type)
If T is a type, the order of T is defined by

• o(T) = 1 if T is atomic,
• o(T1 → T2) = max{1 + o(T1), o(T2)}.

1.3 Typed λ-terms

Definitions 4 For each type T we consider three sets CT , IT , LT . The elements of CT are called
constants of type T , those of IT instantiable variables of type T and those of LT local variables of
type T .

We assume that we have in each atomic type at least a constant and that there is a finite
number of constants i.e. that the set

⋃
T CT is finite 1. We assume also that we have an infinite

number of instantiable and local variables of each type.
A typed λ-term is a tree whose labels are either App, or < Lam, x > where x is a local variable,

or < V ar, x > where x is a constant, an instantiable variable or a local variable such that the
occurrences labeled with App have two sons, the occurrences labeled with < Lam, x > have one
son and the occurrences labeled with < V ar, x > are leaves.

Let t be a term, if the root of t is labeled with < V ar, x > we write it x, if the root of t is
labeled with < Lam, x > and its son is written u then we write it λx : T.u where T is the type of
x, if the root of t is labeled with App and its sons are written u and v then we write it (u v). By
convention (u v w) is an abbreviation for ((u v) w).

In a term t, an occurrence α labeled with < V ar, x > is bound if there exists an occurrence β
in the path of α labeled with < Lam, x >, it is free otherwise.

A term is ground if no occurrence is labeled with a pair < V ar, x > with x instantiable.
Let t and t′ be terms and x be a variable, the substitution of t′ for x in t (t[x ← t′]) is defined

as t[< V ar, x >← t′].

Definition 5 (Type of a Term)
A term t is said to have the type T if either:

• t is a constant, an instantiable variable or a local variable of type T .
• t = (u v) and u has type U → T and v type U for some type U ,
• t = λx : U.u, the term u has type V and T = U → V .

A term t is said to be well-typed if there exists a type T such that t has type T . In this case T
is unique and is called the type of t.

1This technical restriction is in fact superfluous, because a matching problem expressed in a language with an

infinite number of constants can always be reduced to one expressed in the language with a finite number of constants

obtained by considering only the constants occurring in the problem and one constant in each atomic type.

3

Definition 6 (βη-reduction)
The βη-reduction relation, written ✄, is defined as the smallest transitive relation compatible

with term structure such that
(λx : T.t u)✄ t[x← u]

λx : T.(t x)✄ t if x is not free in t

We adopt the usual convention of considering terms up to α-conversion (i.e. bound variable
renaming) and we consider that bound variables are renamed to avoid capture during substitutions.
A rigorous presentation would use, for instance, de Bruijn indices [2].

Obviously, if t is a term of type T , x is a variable of type U and u a term of type U then the
term t[x ← u] has type T . In the same way if a term t has type T and t reduces to u then u has
type T .

Proposition 1 The βη-reduction relation is strongly normalizable and confluent on typed terms,
and thus each term has a unique normal form.
Proof See, for instance, [4].

Proposition 2 Let t be a normal well-typed term of type U1 → ... → Un → U (U atomic), the
term t has the form

t = λy1 : U1. ... λym : Um.(x u1 ... up)

where m ≤ n and x is a constant, an instantiable variable or a local variable.
Proof The term t can be written in a unique way t = λy1 : V1. ... λym : Vm.u where u is not
an abstraction. The term u can be written in a unique way u = (v u1 ... up) where v is not an
application. The term v is not an application by definition, it is not an abstraction (if p = 0 because
u is not an abstraction and if p 6= 0 because t is normal), it is therefore a constant, an instantiable
variable or a local variable. Then since t has type U1 → ...→ Un → U , we have m ≤ n and for all
i, Vi = Ui.

Definition 7 (Head of a Term, Atomic Term)
Let t = λy1 : T1. ... λym : Tm.(x u1 ... up) be a normal term. The symbol x is called the head

of the term. If m = 0 then t is said to be atomic, it is an abstraction otherwise.

Definition 8 (η-long Form)
If t = λy1 : U1. ... λym : Um.(x u1 ... up) is a term of type T = U1 → ...→ Un → U (U atomic)

(m ≤ n) which is in βη-normal form then we define its β-normal η-long form as the term

t′ = λy1 : U1. ... λym : Um.λym+1 : Um+1. ... λyn : Un.(x u′1 ... u′p y′m+1 ... y′n)

where u′i is the β-normal η-long form of ui and y′i is the β-normal η-long form of yi.
This definition is by induction on the pair < c1, c2 > where c1 is the number of occurrences in

t and c2 the number of occurrences in T
In the following all the terms are assumed to be in β-normal η-long form.

4

1.4 Böhm Trees

Definition 9 (Böhm Tree)
A (finite) Böhm tree is a tree whose occurrences are labeled with pairs < l, x > such that l is a

list of local variables < y1, ..., yn > and x is a constant, an instantiable variable or a local variable.

Definition 10 (Type of a Böhm Tree)
Let t be a Böhm tree whose root is labeled with the pair << y1, ..., yn >,x > and whose sons

are u1, ..., up. The Böhm tree t is said to have the type T if the Böhm trees u1, ..., up have type
U1, ..., Up the symbol x has type U1 → ... → Up → U (U atomic) and T = T1 → ... → Tn → U
where T1, ..., Tn are the types of the variables y1, ..., yn.

A Böhm tree t is said to be well-typed if there exists a type T such that t has type T . In this
case T is unique and is called the type of t.

Definition 11 (Böhm Tree of a Normal Term)
Let t = λy1 : T1. ... λyn : Tn.(x u1 ... up) be a λ-term in normal (η-long) form. The Böhm tree

of t is inductively defined as the tree whose root is the pair < l, x > where l =< y1, ..., yn > is the
list of the variables bound at the top of this term, x is the head symbol of t and sons are the Böhm
trees of u1, ..., up.

Remark Normal (η-long) well-typed terms and well-typed Böhm trees are in one-to-one corre-
spondence. Moreover if t is a normal (η-long) term and t̃ is its Böhm tree then occurrences in
t labeled with a constant, an instantiable variable or a local variable and occurrences in t̃ are in
one-to-one correspondence. So we will use the following abuse of notation: if α is an occurrence
in the Böhm tree of t we write (t/α) for the normal (η-long) term corresponding to the Böhm tree
(t̃/α) and t[α← u] for the term t[α′ ← u] where α′ is the occurrence of a variable or a constant in
t corresponding to α.

Notation Let t be a term, we write |t| for the depth of the Böhm tree of the normal (η-long) form
of t.

Proposition 3 In each type T there is a ground term t such that |t| = 0.
Proof Let T = U1 → ... → Un → U with U atomic and let c be a constant of type U . The term
t = λx1 : U1. ... λxn : Un.c has type T and |t| = 0.

1.5 Substitution

Definition 12 (Substitution)
A substitution is a finite set of pairs < xi, ti > where xi is an instantiable variable and ti a term

of the same type in which no local variable occurs free such that if < x, t > and < x, t′ > are both
in this set then t = t′. The variables xi are said to be bound by the substitution.

Definition 13 (Substitution applied to a Term)
If σ is a substitution and t a term then we let

σt = t[α1
1 ← t1]...[α

p1
1 ← t1]...[α

1
n ← tn]...[α

pn
n ← tn]

where α1
i , ..., α

pi
i are the occurrences of xi in t.

Note that since the αj
i are leaves, the order in which the grafts are performed is insignificant.

5

Definition 14 (Composition of Substitutions)
Let σ and τ be two substitutions the substitution τ ◦ σ is defined by

τ ◦ σ = {< x, τt > | < x, t >∈ σ} ∪ {< x, t > | < x, t >∈ τ and x not bound by σ}

Proposition 4 Let σ and τ be two substitutions and t is a term, we have

(τ ◦ σ)t = τ(σt)

Proof By decreasing induction on the depth of an occurrence α in t we prove that we have

(τ ◦ σ)(t/α) = τ(σ(t/α))

2 Pattern Matching

Definition 15 (Matching Problem)
A matching problem is a set Φ = {< a1, b1 >, ..., < an, bn >} of pairs of terms of the same type

such that the terms b1, ..., bn are ground. A pair < a, b > is frequently written as an equation a = b.

Definition 16 (Third Order Matching Problem)
A third order matching problem is a matching problem Φ = {a1 = b1, ..., an = bn} such that the

types of the instantiable variables that occur in a1, ..., an are of order at most three.

Definition 17 (Solution)
Let Φ = {a1 = b1, ..., an = bn} be a matching problem. A substitution σ is a solution of this

problem if and only if for every i, the normal form of the terms σai and bi are identical up to
α-conversion.

Remark Usual unification terminology distinguishes variables (here instantiable variables) and
constants. The need for local variables comes from the fact that we want to transform the problem
λy : T.x = λy : T.y (where x is an instantiable variable of type T) into the problem x = y by
dropping the common abstraction. The symbol y cannot be an instantiable variable (because it
cannot be instantiated by a substitution), it cannot be a constant because, if it were, we would
have the solution x← y to the second problem which is not a solution to the first. So we let y be a
local variable and the solution x← y is now forbidden in both problems because no local variable
can occur free in the terms substituted for variables in a substitution.

In Huet’s unification algorithm [5] [6] these local variables are always kept in the head of the
terms in common abstractions. In Miller’s mixed prefixes terminology [8], constants are universal
variables declared to the left hand side of the instantiable variables and local variables are universal
variables declared to the right hand side of all the instantiable variables.

Remark In an alternative definition of matching problems, the terms b1, ..., bn do not need to be
ground. The method of this paper can be adapted to such problems using the standard technique
of variable freezing [6].

Definition 18 (Ground Solution)
Let Φ = {a1 = b1, ..., an = bn} be a problem and let σ be a solution to Φ. The solution σ is

said to be ground if for each instantiable variable that has an occurrence in some ai, the term σx
is ground.

6

Proposition 5 If a matching problem has a solution then it has a ground solution.
Proof Let Φ = {a1 = b1, ..., an = bn} be a matching problem and let σ be a solution to this
problem. Let y1 : T1, ..., yn : Tn be the instantiable variables occurring in the term σx for some x
instantiable variable occurring in some ai. Let u1, ..., un be ground terms of the types T1, ..., Tn.
Let τ = {< y1, u1 >, ..., < yn, un >}, and σ′ = τ ◦ σ. Obviously, for each instantiable variable x of
a, the term σ′x is ground and σ′ is a solution to Φ.

Definition 19 (Complete Set of Solutions)
Obviously if σ is a solution to a problem Φ then for any substitution τ , τ ◦ σ is also a solution

to Φ. A set S of solutions to a problem Φ is said to be complete if for every substitution θ that is a
solution to this problem there exists a substitution σ ∈ S and a substitution τ such that θ = τ ◦ σ.

Lemma 1 Some problems have no finite complete set of solutions.
Proof (Example 1) Consider an atomic type T and an instantiable variable x : T → (T → T)→ T
and the problem

λa : T.(x a λz : T.z) = λa : T.a

The substitutions
x← λo : T.λs : T → T.(s ... (s o) ...)

are solutions to this problem and they cannot be obtained as instances of a finite number of
solutions.

Remark In [6] [12], the similar examples (x λz : T.z) = a and (x λz : T.z) = b(a) are considered.

So in contrast with second order matching [6] [7] there is no (always terminating) algorithm
that enumerates a complete set of solutions to a third order matching problem.

We consider now algorithms that take as an input a matching problem and either give one

solution to the problem or fail if it does not have any.

3 A Bound on the Depth of Solutions

All the problems considered in the rest of the paper are third order.
To prove the decidability of third order matching we are going to prove that the depth of the

term t substituted to a variable x by a solution σ to a problem Φ can be bounded by an integer s
depending only on the problem Φ. Of course the previous example shows that a matching problem
may have solutions of arbitrary depth, but to design a decision algorithm we do not need to prove
that all the solutions are bounded by s but only that at least one is. To show this result we take a
problem Φ that has a solution σ (by proposition 5, we can consider without loss of generality that
this solution is ground) and we build another solution σ′ whose depth is bounded by an integer s
depending only on the problem Φ.

The proof is divided into two parts. In the first part,we focus on a particular case in which the
problem Φ is a an interpolation problem i.e. set of equations of the form (x c1 ... cn) = b such that
x is an instantiable variable and c1, ..., cn and b are ground terms. Then, in the second part, we
reduce the general case to this particular case.

7

Consider now an equation (x c1 ... cn) = b and a substitution σ solution to this equation. Let
us write t = σx = λy1 : T1. ... λyn : Tn.u (u atomic). We have

σ(x c1 ... cn) = (λy1 : T1. ... λyn : Tn.u c1 ... cn)

This term reduces to u[y1 ← c1, ..., yn ← cn] whose normal form is b.
The terms ci are at most second order. In the key lemma, we prove that, in the general case,

when we substitute a second order term c to a variable y in a term u and we normalize the term
u[y ← c], we get a term with a depth larger than or equal to the one of u. If this were true in
all the cases, we would know that the depth of t (the solution) has to be less than or equal to the
depth of b (the right hand side of the equation). A simple enumeration of the terms t whose depth
is less than or equal to |b| would give a decision procedure.

Actually, the key lemma shows that the depth of the normal form of u[y ← c] can be less than
the depth of u in two cases : when c is a non relevant term and when |c| = 0. When such cases
happen, solutions may have an arbitrary depth. In these cases, we show that if the problem Φ
has a solution σ then it has also another solution σ′ whose depth is bounded by some integer s
depending only on the problem Φ.

3.1 Interpolation Problems

Definition 20 (Interpolation Problem)
An interpolation problem is a set of equations of the form (x c1 ... cn) = b such that x is an

instantiable variable and c1, ..., cn and b are ground terms.

3.1.1 Key Lemma

Definition 21 (Relevant Term)
Let c = λz1 : U1. ... λzp : Up.d (d atomic) be a normal term and i an integer, i ≤ p. We say

that c is relevant in its ith argument if zi has an occurrence in the term d.

Lemma 2 (Key Lemma) Let us consider a normal term u, a variable y of type T of order at most
two and a normal ground term c of type T .

(1) If y has an occurrence in u then |c| ≤ |u[y ← c]|.
(2) If α is an occurrence in the Böhm tree of u such that no occurrence in the path of α is

labeled with y, then α is also an occurrence in the normal form of u[y ← c] and has the same label
in the Böhm tree of u and in the Böhm tree of the normal form of u[y ← c].

(3) If α =< s1, ..., sn > is an occurrence in the Böhm tree of u such that for each occurrence
β =< s1, ..., sk > in the path of α, β 6= α, labeled with y, the term c is relevant in its rth argument
where r is the position of the son of β in the path of α i.e. r = sk+1, then there exists an occurrence
α′ of the Böhm tree of the normal form of u[y ← c] such that all the labels occurring in the path of
α, except y, occur in the path of α′ and the number of times they occur in the path of α′ is greater
than or equal to the number of times they occur in the path of α. Moreover if the occurrence α is
labeled with a symbol different from y, then the occurrence α′ is labeled with this same symbol.

(4) Moreover if |c| 6= 0 then the length of α′ is greater than or equal to the length of α.
Proof By induction on the number of occurrences of y in u. We substitute these occurrences one
by one and we normalize the term. Let β be the occurrence in the Böhm tree of u corresponding

8

to the occurrence of y in u we substitute. Let us write

c = λz1 : U1. ... λzp : Up.d

The term (u/β) has the form λv1 : V1. ... λvq : Vq.(y e1 ... ep). When we substitute y by the
term c in (y e1 ... ep) we get (c e1 ... ep) and when we normalize this term we get the term
d[z1 ← e1, ..., zp ← ep] which is normal because the type of the ei are first order.

Let us consider the occurrences in the Böhm tree of u, while substituting the occurrence of y
corresponding to β, we have removed all the occurrences β < i > γ where i is an integer (i ≤ p)
and γ is an occurrence in the Böhm tree of ei. We have added all the occurrences βδ where δ
is an occurrence of the Böhm tree of c labeled with a symbol different from z1, ..., zp and all the
occurrences βδγ where δ is a leaf occurrence in the Böhm tree of c labeled with a zi and γ is an
occurrence of the Böhm tree of ei.

✁
✁
✁

✁

❆
❆
❆
❆

β☎☎
β < i >✁

✁
✁
✁

❆
❆
❆
❆

ei

β < i > γ

✲

✁
✁

✁
✁

❆
❆
❆
❆

β✁
✁

✁
✁

❆
❆
❆
❆

c

βδ✁
✁
✁

✁

❆
❆
❆
❆

ei

βδγ

(1) Let β be an outermost occurrence of y in the Böhm tree of u. For each occurrence δ in
the Böhm tree of c, βδ is an occurrence in the Böhm tree of the normal form of u[y ← c]. So
|c| ≤ |u[y ← c]|.

(2) When an occurrence β of y is substituted by c all the occurrences removed have the form
β < i > γ. So if no occurrence in the path of α is labeled with y, the occurrence α remains in the
normal form of u[y ← c].

(3) If the occurrence β is not in the path of α then the occurrence α is still an occurrence in
the normal form of u[y ← c], we take α′ = α.

If β = α then the occurrence β is an occurrence of the Böhm tree of the normal form of u[y ← c].
We take α′ = β = α.

If β is in the path of α and β 6= α, β =< s1, ..., sk > then let r be the position of the son of β in
the path of α i.e. r = sk+1. Let γ be such that α = β < r > γ. By hypothesis zr has an occurrence
in d, let δ be such an occurrence. The occurrence βδγ is an occurrence in the Böhm tree of the
normal form of u[y ← c]. We take α′ = βδγ.

In all the cases, all the labels occurring in the path of α, except y, occur in the path of α′ and
the number of times they occur in the path of α′ is greater than or equal to the number of times
they occur in the path of α.

If the occurrence α is labeled with a symbol different from y, then the occurrence α′ is labeled
with the same symbol as α.

(4) If δ =< > then c = λz1 : U1. ... λzp : Up.zr and |c| = 0. So if |c| 6= 0 then δ 6=< > and
the length of α′ is greater than or equal to the length of α.

9

Corollary Let us consider a normal term u, a variable y of type T of order at most two and a
ground term c of type T . If c is relevant in all its arguments and |c| 6= 0 then |u| ≤ |u[y ← c]|.
Proof We take for α the longest occurrence in the Böhm tree of u. When we substitute one by
one the occurrences of y, by part (4) of the key lemma, we get occurrences that are at least long.
So there is an occurrence in the Böhm tree of the normal form of u[y ← c] which is at least long as
α. So |u| ≤ |u[y ← c]|.

3.1.2 Computing the Substitution σ′

Let us consider an equation (x c1 ... cn) = b. Let σ be a solution to this equation and let t = σx.
Let us write t = λy1 : T1. ... λyn : Tn.u. The normal form of the term σ(x c1 ... cn) is the normal
form of u[y1 ← c1, ..., yn ← cn]. If all the ci are relevant in their arguments and |ci| 6= 0 then using
the corollary of the key lemma we have |t| ≤ |(t c1 ... cn)|, so |t| ≤ |b| and this gives a bound on
the depth of t. But the depth of t may decrease when applied to the terms ci and normalized in
two cases:
• if one of the terms ci is not relevant in one of its arguments,
• if one of the terms ci is such that |ci| = 0.
So solutions may have an arbitrary depth. When this happens, we compute another solution to
the problem whose depth is bounded by an integer s depending only on the initial problem.

This new substitution is constructed in two steps. In the first step we deal with non relevant
terms and in the second with terms of depth 0.

Example 2 Let x be an instantiable variable of type T → (T → T)→ T . Consider the problem

(x a λz : T.b) = b

The variable z has no occurrence in b so this problem has solutions of arbitrary depth

x← λo : T.λs : T → T.(s t)

where t is an arbitrary term of type T . In this example we will compute the substitution

x← λo : T.λs : T → T.(s c)

where c is a constant.

Example 1 (continued) The term λz : T.z has depth 0, so we have solutions of an arbitrary
depth. In this example we will compute the substitution

x← λo : T.λs : T → T.(s o)

Definition 22 (Occurrence Accessible with Respect to an Equation of the Form (x c1 ... cn) = b)
Let us consider an equation

(x c1 ... cn) = b

and the term
t = σx = λy1 : T1. ... λyn : Tn.u

10

Let us consider the Böhm tree of t. The set of the occurrences of the Böhm tree of t accessible with
respect to the equation (x c1 ... cn) = b is inductively defined as:
• the root of the Böhm tree of t is accessible,
• if α is an accessible occurrence labeled with yi and ci is relevant in its jth argument then the
occurrence α < j > (the jth son of α) is accessible,
• if α is an accessible occurrence labeled with a symbol different from all the yi then all the sons
of α are accessible.

Definition 23 (Occurrence Accessible with Respect to an Interpolation Problem)
An occurrence is accessible with respect to an interpolation problem if it is accessible with

respect to one of the equations of this problem.

Definition 24 (Term Accessible with Respect to an Interpolation Problem)
A term is accessible with respect to an interpolation problem if all the occurrences of its Böhm

tree which are not leaves are accessible with respect to this problem.

Definition 25 (Accessible Solution Built from a Solution)
Let Φ be an interpolation problem and let σ be a solution to this problem. For each instantiable

variable x occurring in the equations of Φ we consider the term t = σx. In the Böhm tree of t,
we prune all the occurrences non accessible with respect to the equations of Φ in which x has an
occurrence and put Böhm trees of ground terms of depth 0 of the expected type as leaves. The
tree obtained that way is the Böhm tree of some term t′. We let σ̂x = t′.

Example 2 (continued) From the solution

x← λo : T.λs : T → T.(s t)

where t is an arbitrary term, we compute the substitution

x← λo : T.λs : T → T.(s c)

where c is a constant.

Proposition 6 Let Φ be an interpolation problem and let σ be a solution to Φ, then the accessible
solution σ̂ built from σ is a solution to Φ.
Proof Let us consider an equation (x c1 ... cn) = b of Φ and the terms

σx = t = λy1 : T1. ... λyn : Tn.u

and
σ̂x = t′ = λy1 : T1. ... λyn : Tn.u

′

We prove by decreasing induction on the depth of the occurrence α of the Böhm tree of u that if α
is accessible with respect to the equation (x c1 ... cn) = b then α is also an occurrence of the Böhm
tree of u′ and

(u′/α)[y1 ← c1, ..., yn ← cn] = (u/α)[y1 ← c1, ..., yn ← cn]

and then since the root of u is accessible with respect to this equation we have

u′[y1 ← c1, ..., yn ← cn] = u[y1 ← c1, ..., yn ← cn]

11

i.e.
((σ̂x) c1 ... cn) = b

So σ̂ is a solution to Φ.

Proposition 7 Let Φ be an interpolation problem and let σ be a solution to Φ. Let h be the
maximum depth of the right hand side of the equations of Φ. Let σ̂ the accessible solution built
from σ. Let

t = σ̂x = λy1 : T1. ... λyn : Tn.u

(u atomic). There are at most h + 1 occurrences of symbols not in {y1, ..., yn} on a path of the
Böhm tree of t.
Proof Let α be an occurrence in the Böhm tree of t such that there are more than h+1 occurrences
of symbols not in {y1, ..., yn} in the path of α.

Let β be the (h+1)−th occurrence of such a symbol. Since there are more that h+1 occurrences
of symbols not in {y1, ..., yn} in the path of α, the occurrence β is not a leaf, so it is accessible with
respect to some equation (x c1 ... cn) = b of Φ. Also, since this occurrence is not a leaf, it is labeled
with a symbol f whose type is not first order.

For each occurrence γ =< s1, ..., sk > in the path of β labeled with yi, let r be the position of
the son of this occurrence in this path (i.e. r = sk+1). Since the occurrence β is accessible with
respect to the equation (x c1 ... cn) = b, the term ci is relevant in its rth argument. So using n times
the part (3) of the key lemma there exists an occurrence β′ in the Böhm tree of the normal form of
the term b = (σ̂x c1 ... cn) such that the path of β′ contains at least h+ 1 occurrences. Thus, the
length of this occurrence is at least h. This occurrence is labeled with the symbol f whose type is
not first order, so it has a son β′′ whose length is at least h+ 1.

So the depth of b is greater than or equal to h+ 1 which is contradictory.

Definition 26 (Compact Term)
A term t = λy1 : T1. ... λyn : Tn.u (u atomic) is compact with respect to an interpolation

problem Φ if no variable yi has more than h+1 occurrences in a path of its Böhm tree, where h is
the maximum depth of the right hand side of the equations of Φ.

Proposition 8 Let Φ be an interpolation problem and let σ̂ be an accessible solution to Φ. Let h
be the maximum depth of the right hand side of the equations of Φ. Let us consider an instantiable
variable x and

t = σ̂x = λy1 : T1. ... λyn : Tn.u

(u atomic). Let us consider a variable yi and an occurrence α of the Böhm tree of t such that there
are more than h+ 1 occurrences on the path of α labeled with the variable yi.

We consider all the equations (x c1 ... cn) = b of Φ such that the (h + 2) − th occurrence of yi
is accessible with respect to this equation. Then there exists an integer j such that for every such
equation we have

ci = λz1 : U1. ... λzp : Up.zj

Proof Let β be the first occurrence of yi in the path of α. Let j be the integer such that
α = β < j > β′.

Let (x c1 ... cn) = b be an equation of Φ such that the (h + 2) − th occurrence of yi on the
considered path is accessible with respect to this equation.

12

If the head of ci is a symbol different from a zk then |ci| 6= 0. Using part (3) of the key lemma
when we substitute c1, ..., ci−1, ci+1, ..., cn we have an occurrence α′ that has more than h + 1
occurrences of yi on its path. Then using part (4) of the key lemma, when we substitute ci we have
an occurrence α′′ whose length is greater than or equal to h+ 1 so

h+ 1 ≤ |u[y1 ← c1, ..., yn ← cn]|

i.e. h+ 1 ≤ |b| which is contradictory. So we have

ci = λz1 : U1. ... λzp : Up.zk

Since h+2 > 1 the occurrence β < j > is accessible with respect to the equation (x c1 ... cn) = b.
Thus as the occurrence β is labeled with yi and the occurrence β < j > is accessible with respect
to this equation, the term ci is relevant in its jth argument. Therefore k = j and

ci = λz1 : U1. ... λzp : Up.zj

Definition 27 (Compact Accessible Solution Built from an Accessible Solution)
Let Φ be an interpolation problem and let σ̂ be an accessible solution to this problem. Let h

be the maximum depth of a right hand side of the equations of Φ. We let

σ̂x = t = λy1 : T1. ... λyn : Tn.u

For each α, occurrence in t labeled with yi such that the corresponding occurrence α′ in the Böhm
tree of t has more than h+1 occurrences labeled with yi in its path, we have ci = λz1 : U1. ... λzp :
Up.zj in all the equations (x c1 ... cn) = b of Φ such that α′ is accessible with respect to this
equation. We substitute the occurrence α by the term λz1 : U1. ... λzp : Up.zj . We get that way a
term t′. We let σ′x = t′.

Example 1 (continued) We build the substitution

x← λo : T.λs : T → T.(s o)

Example 3 Consider an instantiable variable x of type (T → T → T)→ T . And the problem

(x λy : T.λz : T.y) = a

(x λy : T.λz : T.z) = b

We have the solution
x← λf : T → T → T.(f a (f c (f d b)))

This solution is accessible but not compact. The first occurrence of f is accessible with respect
to both equations, but the second and third occurrences are accessible only with respect to the
second one. We have h = 0, so we substitute the second and third occurrences of f by the term
λy : T.λz : T.z and we get the substitution

x← λf : T → T → T.(f a b)

Note that we must not substitute the first occurrence of f by λy : T.λz : T.z, because we would
get the substitution x← λf : T → T → T.b which is not a solution to the first equation.

13

Proposition 9 Let Φ be an interpolation problem and let σ be a solution to Φ. Let σ̂ the accessible
solution built from σ and σ′ the compact accessible solution built from σ̂. Then σ′ is a solution to
Φ.
Proof We consider an equation (x c1 ... cn) = b and we let

σ̂x = t = λy1 : T1. ... λyn : Tn.u

and
σ′x = t = λy1 : T1. ... λyn : Tn.u

′

The term u′ is obtained by substituting in the term u some occurrences (say β1, ..., βk) by
some terms (say e1, ..., ek). If α is an occurrence of u then we define u′α as the term obtained by
substituting in the term u/α the occurrence γi by the term ei if βi = αγi.

We prove by decreasing induction on the depth of the occurrence α of the Böhm tree of u that
if α is accessible with respect to the equation (x c1 ... cn) = b then

(u′α)[y1 ← c1, ..., yn ← cn] = (u/α)[y1 ← c1, ..., yn ← cn]

Thus for the root we get

u′[y1 ← c1, ..., yn ← cn] = u[y1 ← c1, ..., yn ← cn]

i.e.
((σ′x) c1 ... cn) = b

So σ′ is a solution to all the equations of Φ.

Proposition 10 Let Φ be an interpolation problem and let σ be a solution to Φ. Let σ̂ be the
accessible solution built from σ and σ′ the compact accessible solution built from σ̂. Let h be the
maximum depth of the right hand side of the equations of Φ. For every instantiable variable x of
arity n, σ′x has a depth less than or equal to (n+ 1)(h + 1)− 1.
Proof In a path of the Böhm tree of σ′x each yi has at most h + 1 occurrences and there are at
most h+1 occurrences of other symbols, so there are at most (n+1)(h+1) occurrences. Therefore
the depth of σ′x is bounded by (n+ 1)(h + 1)− 1.

Lemma 3 Let Φ be a third order interpolation problem. If Φ has a solution σ then it also has
a solution σ′ such that for every instantiable variable x, σx has a depth less than or equal to
(n+ 1)(h + 1)− 1, where h is maximum of the depths of the right hand side of the equations and
n the arity of x.
Proof The compact accessible solution σ′ built from the accessible solution built from the solution
σ is a solution and for every instantiable variable x, σ′x has a depth less than or equal to (n +
1)(h + 1)− 1.

This bound is met, for instance by the example 3.

3.2 General Case

Let a = b be an equation and let σ be a solution to this equation. We construct an interpolation
problem Φ(a = b, σ) such that for every equation (x c1 ... cn) = b′ of Φ(a = b, σ) we have |b′| ≤ |b|,
σ is a solution to Φ(a = b, σ) and every solution to Φ(a = b, σ) is a solution to a = b.

14

Definition 28 Let a = b be an equation and let σ be a (ground) solution to this equation. By
induction on the number of occurrences of a we construct an interpolation problem Φ(a = b, σ).
• If a = λx : T.d then since σ is a solution to the problem a = b we have b = λx : T.e and σ is

a solution to the problem d = e. We let

Φ(a = b, σ) = Φ(d = e, σ)

• If a = (f d1 ... dn) with f a constant or a local variable then since σ is a solution to a = b we
have b = (f e1 ... en) and σ is a solution to the problems di = ei. We let

Φ(a = b, σ) =
⋃

i

Φ(di = ei, σ)

• If a = (x d1 ... dn) with x instantiable then for all i such that z has an occurrence in the
normal form of the term (σx σd1 ... σdi−1 z σdi+1 ... σdn) we let ci = σdi and Hi = Φ(di = σdi, σ)
(obviously σ is a solution to di = σdi). Otherwise we let ci = zi where zi is a new local variable
and Hi = ∅. We let

Φ(a = b, σ) = {(x c1 ... cn) = b} ∪
⋃

i

Hi

Proposition 11 Let t = (x d1 ... dn) be a term and let σ be a substitution. Let ci = σdi if z has
an occurrence in (σx σd1 ... σdi−1 z σdi+1 ... σdn) and ci = zi where zi is a new local variable of
the same type as di otherwise. The variables zi do not occur in the normal form of (σx c1 ... cn).
Proof Let us assume that some of these variables have an occurrence in the normal form of
(σx c1 ... cn) and consider an outermost occurrence of such a variable zi in the Böhm tree of the
normal form of (σx c1 ... cn). By part (2) of the key lemma, the variable zi has also an occurrence
in the normal form of term (σx c1 ... cn)[zj ← σdj | j 6= i] i.e. in the normal form of the term
(σx σd1 ... σdi−1 zi σdi+1 ... σdn), which is contradictory.

Proposition 12 Let a = b be an equation and let σ be a solution to this equation,
• the substitution σ is a solution to Φ(a = b, σ),
• conversely, if σ′ is a solution to Φ(a = b, σ) then σ′ is also a solution to the equation a = b.

Proof
• By induction on the number of occurrences of a. When a is an abstraction a = λx : T.d

(resp. an atomic term whose head is a constant or local variable a = (f d1 ... dn)) then b is also
an abstraction b = λx : T.e (reps. an atomic term with the same head b = (f e1 ... en)) and by
induction hypothesis σ is a solution to all the equations of the set Φ(d = e, σ) (resp. Φ(di = ei, σ)),
so it is a solution to all the equations of Φ(a = b, σ).

When a = (x d1 ... dn) then by induction hypothesis σ is a solution to all the equations of
the sets Hi and using the previous proposition the variables zi have no occurrences in the term
(σx c1 ... cn) so we have

(σx c1 ... cn) = (σx c1 ... cn)[zi ← σdi]

(σx c1 ... cn) = (σx σd1 ... σdn) = b

So σ is a solution to the equation (x c1 ... cn) = b.
• By induction on the number of occurrences of a. Let σ′ be a substitution solution to Φ(a =

b, σ). If a is an abstraction a = λx : T.d (resp. an atomic term whose head is a constant or a local

15

variable a = (f d1 ... dn)) then b is also an abstraction b = λx : T.e (reps. an atomic term with the
same head b = (f e1 ... en)) and by induction hypothesis we have σ′d = e (resp. σ′di = ei) and so
σ′a = b.

If a = (x d1 ... dn) then we have

(σ′x c1 ... cn) = b

and for all i such that z has an occurrence in (σx σd1 ... σdi−1 z σdi+1 ... σdn) by induction
hypothesis we have σ′di = σdi, so ci = σ′di. Therefore

(σ′x c1 ... cn)[zi ← σ′di] = b[zi ← σ′di]

(σ′x c1 ... cn)[zi ← σ′di] = b

(σ′x σ′d1 ... σ′dn) = b

σ′a = b

Proposition 13 Let a = b be an equation and let σ be a solution to this equation, if a′ = b′ is an
equation of Φ(a = b, σ) then |b′| ≤ |b|.
Proof By induction on the number of occurrences of a. When a is an abstraction a = λx : T.d
(reps. an atomic term whose head is a constant or a local variable a = (f d1 ... dn)) then b is also
an abstraction b = λx : T.e (reps. an atomic term with the same head b = (f e1 ... en)) and by
induction hypothesis |b′| ≤ |e| (resp. |b′| ≤ |ei|) so |b

′| ≤ |b|.
When a = (x d1 ... dn) and the considered equation is (x c1 ... cn) = b then we have b′ = b

so |b′| ≤ |b|. When the considered equation is in one of the sets Hi, the set Hi is non empty
so z has an occurrence in the normal form of the term (σx σd1 ... σdi−1 z σdi+1 ... σdn) and
(σx σd1 ... σdi−1 z σdi+1 ... σdn)[z ← σdi] = b so using part (1) of the key lemma we have
|σdi| ≤ |b| and by induction hypothesis |b′| ≤ |σdi| so |b

′| ≤ |b|.

Definition 29 Let Ψ be a third order matching problem and let σ be a solution to Ψ. We let
Φ(Ψ, σ) be the following third order interpolation problem:

Φ(Ψ, σ) =
⋃

a=b∈Ψ

Φ(a = b, σ)

Proposition 14 Let Ψ be a third order matching problem and let σ be a solution to Ψ. Let h be
the maximum of the depth of the right hand side of the equations of Ψ. Then σ is a solution to
the problem Φ(Ψ, σ), each substitution σ′ solution to the problem Φ(Ψ, σ) is a solution to Ψ and if
a′ = b′ ∈ Φ(Ψ, σ) then |b′| ≤ h.
Proof By propositions 12 and 13.

Lemma 4 Let Ψ be third order matching problem. Let h be the maximum of the depth of the the
right hand side of the equations of Ψ. If this problem has a solution σ then it also has a solution σ′

such that for every instantiable variable x, σx has a depth less than or equal to (n+ 1)(h+ 1)− 1
where n the arity of x.
Proof The substitution σ is a solution to the problem Φ(Ψ, σ), thus, by lemma 3, this problem
has a solution σ′ such that for every instantiable variable x, σ′x has a depth less than or equal to
(n+ 1)(h + 1)− 1. This solution σ′ is a solution to the problem Ψ.

Remark This method, in which an interpolation problem Φ(Ψ, σ) is constructed from a pair
< Ψ, σ > where Ψ is an arbitrary problem and σ a solution to Ψ, can be compared to the one used
in the completeness proof of [9] in which a problem in solved form is constructed from such a pair.

16

4 A Decision Procedure

Theorem Third Order Matching is Decidable
Proof A decision procedure is obtained by considering the problem Φ and enumerating all the
ground substitutions such that the term substituted for x has a depth less than or equal to (n +
1)(h + 1) − 1, where h maximum depth of b for a = b ∈ Φ and n is the arity of x. If one of these
substitutions is a solution then success else failure. This decision procedure is obviously sound. By
lemma 4, it is complete.

Remark A more efficient decision algorithm is obtained by enumerating the nodes of the tree
obtained by pruning Huet’s search tree [5] [6] at each node corresponding to a substitution whose
depth is larger than (n + 1)(h + 1) − 1. This tree is obviously finite and thus this algorithm
terminates. It is obviously sound. By lemma 4, it is complete.

Remark This result can be used to design an algorithm which enumerates a complete set of
solutions to a third order matching problem and either terminates if the problem has a finite
complete set of solutions or keeps enumerating solutions forever if it the problem admits no such
set. Such an algorithm is got by enumerating the nodes of the tree obtained by pruning Huet’s
search tree [5] [6] at each node labeled with a problem that has no solution (by the theorem above,
it is decidable if such a problem has a solution or not). Obviously, this algorithms still produces a
complete set of solutions.

Let us show now that when a matching problem has a finite complete set of solutions then this
algorithm terminates. Recall that a set of substitutions is called minimal if no substitution of this
set is an instance of another and that Huet’s algorithm applied to a matching problem produces a
minimal complete set of solutions [6]. It is routine to verify that if a a problem has a finite complete
set of solutions then any minimal complete set of solutions is also finite. So, if a problem has a
finite complete set of solutions then Huet’s tree for this problem has a finite number of success
nodes and thus a finite number of nodes labeled with a problem that has a solution. The pruned
tree is therefore finite and the algorithm obtained by enumerating its nodes terminates.

Remark This decidability result can be compared with the decidability of the equations of the
form P (x1, ..., xn) = b where P is a polynomial whose coefficients are natural numbers and b is a
natural number.

If this equation has a solution < a1, ..., an > then it has a solution < a′1, ..., a
′

n > such that
a′1 ≤ b. Indeed either Q(X) = P (X, a2, ..., an) is not a constant polynomial and for all n, Q(n) ≥ n,
so a1 ≤ b, or the polynomial Q is identically equal to b and < 0, a2, ..., an > is also a solution. So
a simple induction on n proves that if the equation has a solution then it also has a solution in
{0, ..., b}n and an enumeration of this set gives a decision procedure.

Conclusion: Towards Higher Order Matching

The proof given here is based on the fact that if t is a third order term then when we reduce the
term (t c1 ... cn), in the general case, we get a term deeper than t (or, at least, if it is not, the depth
loss can bounded). This gives a bound (in terms of the depth of b) on the depth of the solutions
of the equation (x c1 ... cn) = b. In the particular cases in which the depth loss is greater than the

17

bound, some part of the term t is superfluous and that we can construct a smaller term t′ such that
(t′ c1 ... cn) = (t c1 ... cn).

Generalizing this property of reduction to the full λ-calculus would give the decidability of
higher order matching. To get the normal form of the term (t c1 ... cn) we have followed the
strategy hinted by the weak normalization theorem and reduced first all the second order redexes,
then all the first order redexes. So a generalization of this proof to higher order should require an
induction on the maximal order of a redex. In the proof for the third order case, we quickly get
the normal form of the term (t c1 ... cn) and we do not need to define the depth of a non-normal
term. It seems that the generalization of this result to higher order requires such a definition.

Acknowledgments

The author would like to thank Gérard Huet, Richard Statman and Gopalan Nadathur for many
very helpful discussions on this problem and remarks on previous drafts of this paper. This research
was partly supported by ESPRIT Basic Research Action “Logical Frameworks”.

References

[1] H. Barendregt, The Lambda Calculus, its Syntax and Semantics, North Holland, 1981, 1984.

[2] N.G. de Bruijn, Lambda Calculus Notation with Nameless Dummies, a Tool for Automatic
Formula Manipulation, with Application to the Church-Rosser Theorem, Indagationes Math-

ematicae, 34, 5, 1972, pp. 381-392.

[3] S. Gorn, Explicit Definitions and Linguistic Dominoes, University of Toronto, 1967.

[4] J.R. Hindley, J.P. Seldin, Introduction to Combinators and λ-Calculus, Cambridge University

Press, 1986.

[5] G. Huet, A Unification Algorithm for Typed λ-calculus, Theoretical Computer Science, 1,
1975, pp. 27-57.

[6] G. Huet, Résolution d’Équations dans les Langages d’Ordre 1,2, ..., ω, Thèse de Doctorat

d’État, Université de Paris VII, 1976.

[7] G. Huet, B. Lang, Proving and Applying Program Transformations Expressed with Second
Order Patterns, Acta Informatica, 11, 1978, pp. 31-55.

[8] D. A. Miller, Unification Under a Mixed Prefix, Journal of Symbolic Computation, 14, 1992,
pp. 321-358.

[9] W. Snyder, J. Gallier, Higher-Order Unification Revisited: Complete Sets of Transformations,
Journal of Symbolic Computation, 8, 1989, pp. 101-140.

[10] R. Statman, Completeness, Invariance and λ-definability, Journal of Symbolic Logic, 47, 1,
1982, pp. 17-26.

[11] D.A. Wolfram, The Clausal Theory of Types, PhD Thesis, University of Cambridge, 1989.

18

[12] M. Zaionc, The Set of Unifiers in Typed λ-Calculus as Regular Expression, Proceedings of

Rewriting Techniques and Applications, Lecture Notes in Computer Science 202, Springer-
Verlag, 1985, pp. 430-440.

19

