
Journal of Arti�cial Intelligence Research 2 (1994) 33{88 Submitted 4/94; published 8/94Random Worlds and Maximum EntropyAdam J. Grove grove@research.nj.nec.comNEC Research Institute, 4 Independence WayPrinceton, NJ 08540Joseph Y. Halpern halpern@almaden.ibm.comIBM Almaden Research Center, 650 Harry Rd.San Jose, CA 95120Daphne Koller daphne@cs.berkeley.eduComputer Science Division, University of CaliforniaBerkeley, CA 94720 AbstractGiven a knowledge base KB containing �rst-order and statistical facts, we consider aprincipled method, called the random-worlds method, for computing a degree of belief thatsome formula ' holds given KB . If we are reasoning about a world or system consisting ofN individuals, then we can consider all possible worlds, or �rst-order models, with domainf1; : : : ; Ng that satisfy KB , and compute the fraction of them in which ' is true. We de�nethe degree of belief to be the asymptotic value of this fraction as N grows large. We showthat when the vocabulary underlying ' and KB uses constants and unary predicates only,we can naturally associate an entropy with each world. As N grows larger, there are manymore worlds with higher entropy. Therefore, we can use a maximum-entropy computationto compute the degree of belief. This result is in a similar spirit to previous work in physicsand arti�cial intelligence, but is far more general. Of equal interest to the result itself arethe limitations on its scope. Most importantly, the restriction to unary predicates seemsnecessary. Although the random-worlds method makes sense in general, the connection tomaximum entropy seems to disappear in the non-unary case. These observations suggestunexpected limitations to the applicability of maximum-entropy methods.1. IntroductionConsider an agent (or expert system) with some information about a particular subject, suchas internal medicine. Some facts, such as \all patients with hepatitis exhibit jaundice", canbe naturally expressed in a standard �rst-order logic, while others, such as \80% of patientsthat exhibit jaundice have hepatitis", are statistical. Suppose the agent wants to use thisinformation to make decisions. For example, a doctor might need to decide whether toadminister antibiotics to a particular patient Eric. To apply standard tools of decisiontheory (see (Luce & Rai�a, 1957) for an introduction), the agent must assign probabilities,or degrees of belief, to various events. For example, the doctor may need to assign a degreeof belief to an event such as \Eric has hepatitis". We would therefore like techniques forcomputing degrees of belief in a principled manner, using all the data at hand. In this paperwe investigate the properties of one particular formalism for doing this.The method we consider, which we call the random-worlds method, has origins that goback to Bernoulli and Laplace (1820). It is essentially an application of what has beenc
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Grove, Halpern, & Kollercalled the principle of indi�erence (Keynes, 1921). The basic idea is quite straightforward.Suppose we are interested in attaching a degree of belief to a formula ' given a knowledgebase KB . One useful way of assigning semantics to degrees of belief formulas is to usea probability distribution over a set of possible worlds (Halpern, 1990). More concretely,suppose for now that we are reasoning about N individuals, 1; : : : ; N . A world is a completedescription of which individuals have each of the properties of interest. Formally, a worldis just a model, or interpretation, over our �rst-order language. For example, if our lan-guage consists of the unary predicates Hepatitis, Jaundice, Child , and BlueEyed , the binarypredicate Infected-By, and the constant Eric, then a world describes which subset of theN individuals satis�es each of the unary predicates, which set of pairs is in the Infected-Byrelation, and which of the N individuals is Eric. Given a prior probability distributionover the set of possible worlds, the agent can obtain a degree of belief in ' given KB byconditioning on KB to obtain a posterior distribution, and then computing the probabilityof ' according to this new distribution. The random-worlds method uses the principle ofindi�erence to choose a particular prior distribution over the set of worlds: all the worldsare taken to be equally likely. It is easy to see that the degree of belief in ' given KB isthen precisely the fraction of worlds satisfying KB that also satisfy '.The approach so far described applies whenever we actually know the precise domainsize N ; unfortunately this is fairly uncommon. In many cases, however, it is reasonable tobelieve that N is \large". We are thus particularly interested in the asymptotic behavior ofthis fraction; that is, we take our degree of belief to be the asymptotic value of this fractionas N grows large.For example, suppose we want to reason about a domain of hospital patients, and KBis the conjunction of the following four formulas:� 8x(Hepatitis(x)) Jaundice(x)) (\all patients with hepatitis exhibit jaundice"),� kHepatitis(x)jJaundice(x)kx � 0:8 (\approximately 80% of patients that exhibit jaun-dice have hepatitis"; we explain this formalism and the reason we say \approximately80%" rather than \exactly 80%" in Section 2),� jjBlueEyed(x)jjx � 0:25 (\approximately 25% of patients have blue eyes"),� Jaundice(Eric) ^ Child(Eric) (\Eric is a child who exhibits jaundice").Let ' be Hepatitis(Eric); that is, we want to ascribe a degree of belief to the statement \Erichas hepatitis". Suppose the domain has size N . Then we want to consider all worlds withdomain f1; : : : ; Ng such that the set of individuals satisfying Hepatitis is a subset of thosesatisfying Jaundice, approximately 80% of the individuals satisfying Jaundice also satisfyHepatitis, approximately 25% of the individuals satisfy BlueEyed , and (the interpretationof) Eric is an individual satisfying Jaundice and Child . It is straightforward to show that, asexpected, Hepatitis(Eric) holds in approximately 80% of these structures. Moreover, as Ngets large, the fraction of structures in which Hepatitis(Eric) holds converges to exactly 0:8.Since 80% of the patients that exhibit jaundice have hepatitis and Eric exhibits jaundice,a degree of belief of 0.8 that Eric has hepatitis seems justi�able. Note that, in this example,the information that Eric is a child is essentially treated as irrelevant. We would get thesame answer if we did not have the information Child(Eric). It can also be shown that34



Random Worlds and Maximum Entropythe degree of belief in BlueEyed(Eric) converges to 0:25 as N gets large. Furthermore,the degree of belief of BlueEyed(Eric) ^ Jaundice(Eric) converges to 0:2, the product of0:8 and 0:25. As we shall see, this is because the random-worlds method treats BlueEyedand Jaundice as being independent, which is reasonable because there is no evidence tothe contrary. (It would surely be strange to postulate that two properties were correlatedunless there were reason to believe they were connected in some way.)Thus, at least in this example, the random-worlds method gives answers that followfrom the heuristic assumptions made in many standard AI systems (Pearl, 1989; Pollock,1984; Spiegelhalter, 1986). Are such intuitive results typical? When do we get convergence?And when we do, is there a practical way to compute degrees of belief?The answer to the �rst question is yes, as we discuss in detail in (Bacchus, Grove,Halpern, & Koller, 1994). In that paper, we show that the random-worlds method is re-markably successful at satisfying the desiderata of both nonmonotonic (default) reasoning(Ginsberg, 1987) and reference class reasoning (Kyburg, 1983). The results of (Bacchuset al., 1994) show that the behavior we saw in the example above holds quite generally,as do many other properties we would hope to have satis�ed. Thus, in this paper we donot spend time justifying the random-worlds approach, nor do we discuss its strengths andweaknesses; the reader is referred to (Bacchus et al., 1994) for such discussion and foran examination of previous work in the spirit of random worlds (most notably (Carnap,1950, 1952) and subsequent work). Rather, we focus on the latter two questions askedabove. These questions may seem quite familiar to readers aware of the work on asymp-totic probabilities for various logics. For example, in the context of �rst-order formulas,it is well-known that a formula with no constant or function symbols has an asymptoticprobability of either 0 or 1 (Fagin, 1976; Glebski��, Kogan, Liogon'ki��, & Talanov, 1969).Furthermore, we can decide which (Grandjean, 1983). However, the 0-1 law fails if thelanguage includes constants or if we look at conditional probabilities (Fagin, 1976), and weneed both these features in order to reason about degrees of belief for formulas involvingparticular individuals, conditioned on what is known.In two companion papers (Grove, Halpern, & Koller, 1993a, 1993b), we consider thequestion of what happens in the pure �rst-order case (where there is no statistical informa-tion) in greater detail. We show that as long as there is at least one binary predicate symbolin the language, then not only do we not get asymptotic conditional probabilities in general(as was already shown by Fagin (1976)), but almost all the questions one might want to ask(such as deciding whether the limiting probability exists) are highly undecidable. However,if we restrict to a vocabulary with only unary predicate symbols and constants, then aslong as the formula on which we are conditioning is satis�able in arbitrarily large models(a question which is decidable in the unary case), the asymptotic conditional probabilityexists and can be computed e�ectively.In this paper, we consider the much more useful case where the knowledge base hasstatistical as well as �rst-order information. In light of the results of (Grove et al., 1993a,1993b), for most of the paper we restrict attention to the case when the knowledge base isexpressed in a unary language. Our major result involves showing that asymptotic condi-tional probabilities can often be computed using the principle of maximum entropy (Jaynes,1957; Shannon & Weaver, 1949). 35



Grove, Halpern, & KollerTo understand the use of maximum entropy, suppose the vocabulary consists of theunary predicate symbols P1; : : : ; Pk. We can consider the 2k atoms that can be formed fromthese predicate symbols, namely, the formulas of the form P 01 ^ : : : ^ P 0k, where each P 0i iseither Pi or :Pi. We can view the knowledge base as placing constraints on the proportionof domain elements satisfying each atom. For example, the constraint kP1(x)jP2(x)kx = 1=2says that the proportion of the domain satisfying some atom that contains P2 as a conjunctis twice the proportion satisfying atoms that contain both P1 and P2 as conjuncts. Given amodel of KB , we can de�ne the entropy of this model as the entropy of the vector denotingthe proportions of the di�erent atoms. We show that, as N grows large, there are manymore models with high entropy than with lower entropy. Therefore, models with highentropy dominate. We use this concentration phenomenon to show that our degree of beliefin ' given KB according to the random-worlds method is closely related to the assignmentof proportions to atoms that has maximum entropy among all assignments consistent withthe constraints imposed by KB .The concentration phenomenon relating entropy to the random-worlds method is well-known (Jaynes, 1982, 1983). In physics, the \worlds" are the possible con�gurations ofa system typically consisting of many particles or molecules, and the mutually exclusiveproperties (our atoms) can be, for example, quantum states. The corresponding entropymeasure is at the heart of statistical mechanics and thermodynamics. There are subtle butimportant di�erences between our viewpoint and that of the physicists. The main one lies inour choice of language. We want to express some intelligent agent's knowledge, which is whywe take �rst-order logic as our starting point. The most speci�c di�erence concerns constantsymbols. We need these because the most interesting questions for us arise when we havesome knowledge about|and wish to assign degrees of belief to statements concerning|aparticular individual. The parallel in physics would address properties of a single particle,which is generally considered to be well outside the scope of statistical mechanics.Another work that examines the connection between random worlds and entropy fromour point of view|computing degrees of belief for formulas in a particular logic|is that ofParis and Vencovska (1989). They restrict the knowledge base to consist of a conjunction ofconstraints that (in our notation) have the form k�(x)j�(x)kx � r and jj�(x)jjx � r, where �and � are quanti�er-free formulas involving unary predicates only, with no constant symbols.Not only is most of the expressive power of �rst-order logic not available in their approach,but the statistical information that can be expressed is quite limited. For example, it is notpossible to make general assertions about statistical independence. Paris and Vencovskashow that the degree of belief can be computed using maximum entropy for their language.Shastri (1989) has also shown such a result, of nearly equivalent scope. But, as we havealready suggested, we believe that it is important to look at a far richer language. Ourlanguage allows arbitrary �rst-order assertions, full Boolean logic, arbitrary polynomialcombinations of statistical expressions, and more; these are all features that are actuallyuseful to knowledge-representation practitioners. Furthermore, the random-worlds methodmakes perfect sense in this rich setting. The goal of this paper is to discover whether theconnection to maximum entropy also holds. We show that maximum entropy continuesto be widely useful, covering many problems that are far outside the scope of (Paris &Vencovska, 1989; Shastri, 1989). 36



Random Worlds and Maximum EntropyOn the other hand, it turns out that we cannot make this connection for our entirelanguage. For one thing, as we hinted earlier, there are problems if we try to condition on aknowledge base that includes non-unary predicates; we suspect that maximum entropy hasno role whatsoever in this case. In addition, we show that there are subtleties that ariseinvolving the interaction between statistical information and �rst-order quanti�cation. Wefeel that an important contribution of this paper lies in pointing out some limitations ofmaximum-entropy methods.The rest of this paper is organized as follows. In the next section, we discuss our formalframework (essentially, that of (Bacchus, 1990; Halpern, 1990)). We discuss the syntaxand semantics of statistical assertions, issues involving \approximately equals", and de�nethe random-worlds method formally. In Section 3 we state the basic results that connectmaximum entropy to random-worlds, and in Section 4 we discuss how to use these resultsas e�ective computational procedures. In Section 5 we return to the issue of unary versusnon-unary predicates, and the question of how widely applicable the principle of maximumentropy is. We conclude in Section 6 with some discussion.2. Technical preliminariesIn this section, we give the formal de�nition of our language and the random-worlds method.The material is largely taken from (Bacchus et al., 1994).2.1 The languageWe are interested in a formal logical language that allows us to express both statisticalinformation and �rst-order information. We therefore de�ne a statistical language L�,which is a variant of a language designed by Bacchus (1990). For the remainder of thepaper, let � be a �nite �rst-order vocabulary, consisting of predicate and constant symbols,and let X be a set of variables.1Our statistical language augments standard �rst-order logic with a form of statisticalquanti�er. For a formula  (x), the term jj (x)jjx is a proportion expression. It will beinterpreted as a rational number between 0 and 1, that represents the proportion of domainelements satisfying  (x). We actually allow an arbitrary set of variables in the subscriptand in the formula  . Thus, for example, jjChild(x; y)jjx describes, for a �xed y, theproportion of domain elements that are children of y; jjChild(x; y)jjy describes, for a �xedx, the proportion of domain elements whose child is x; and jjChild(x; y)jjx;y describes theproportion of pairs of domain elements that are in the child relation.2We also allow proportion expressions of the form k (x)j�(x)kx, which we call conditionalproportion expressions. Such an expression is intended to denote the proportion of domainelements satisfying  from among those elements satisfying �. Finally, any rational numberis also considered to be a proportion expression, and the set of proportion expressions isclosed under addition and multiplication.1. For simplicity, we assume that � does not contain function symbols, since these can be de�ned in termsof predicates.2. Strictly speaking, these proportion expression should be written with sets of variables in the subscript,as in jjChild(x;y)jjfx;yg. However, when the interpretation is clear, we often abuse notation and dropthe set delimiters. 37



Grove, Halpern, & KollerOne important di�erence between our syntax and that of (Bacchus, 1990) is the use ofapproximate equality to compare proportion expressions. There are both philosophical andpractical reasons why exact comparisons can be inappropriate. Consider a statement suchas \80% of patients with jaundice have hepatitis". If this statement appears in a knowledgebase, it is almost certainly there as a summary of a large pool of data. So it would be wrongto interpret the value too literally, to mean that exactly 80% of all patients with jaundicehave hepatitis. Furthermore, this interpretation would imply (among other things) that thenumber of jaundiced patients is a multiple of �ve! This is unlikely to be something we intend.We therefore use the approach described in (Bacchus et al., 1994; Koller & Halpern, 1992),and compare proportion expressions using (instead of = and �) one of an in�nite family ofconnectives �i and �i, for i = 1; 2; 3 : : : (\i-approximately equal" or \i-approximately lessthan or equal"). For example, we can express the statement \80% of jaundiced patientshave hepatitis" by the proportion formula kHep(x)jJaun(x)kx �1 0:8. The intuition behindthe semantics of approximate equality is that each comparison should be interpreted usingsome small tolerance factor to account for measurement error, sample variations, and soon. The appropriate tolerance will di�er for various pieces of information, so our logicallows di�erent subscripts on the \approximately equals" connectives. A formula such askFly(x)jBird(x)kx �1 1 ^ kFly(x)jBat(x)kx �2 1 says that both kFly(x)jBird(x)kx andkFly(x)jBat(x)kx are approximately 1, but the notion of \approximately" may be di�erentin each case. The actual choice of subscript for � is unimportant. However, it is importantto use di�erent subscripts for di�erent approximate comparisons unless the tolerances forthe di�erent measurements are known to be the same.We can now give a recursive de�nition of the language L�.De�nition 2.1: The set of terms in L� is X [ C where C is the set of constant symbols in�. The set of proportion expressions is the least set that(a) contains the rational numbers,(b) contains proportion terms of the form jj jjX and k j�kX for formulas  ; � 2 L� anda �nite set of variables X � X , and(c) is closed under addition and multiplication.The set of formulas in L� is the least set that(a) contains atomic formulas of the form R(t1; : : : ; tr), where R is a predicate symbol in� [ f=g of arity r and t1; : : : ; tr are terms,(b) contains proportion formulas of the form � �i �0 and � �i �0, where � and �0 areproportion expressions and i is a natural number, and(c) is closed under conjunction, negation, and �rst-order quanti�cation.Note that L� allows the use of equality when comparing terms, but not when comparingproportion expressions.This de�nition allows arbitrary nesting of quanti�ers and proportion expressions. Asobserved in (Bacchus, 1990), the subscript x in a proportion expressions binds the variablex in the expression; indeed, we can view jj�jjx as a new type of quanti�cation.38



Random Worlds and Maximum EntropyWe now need to de�ne the semantics of the logic. As we shall see below, most of thede�nitions are fairly straightforward. The two features that cause problems are approxi-mate comparisons and conditional proportion expressions. We interpret the approximateconnective � �i �0 to mean that � is very close to � 0. More precisely, it is within some verysmall tolerance factor. We formalize this using a tolerance vector ~� = h�1; �2; : : :i, �i > 0.Intuitively � �i �0 if the values of � and � 0 are within �i of each other. Of course, one prob-lem with this is that we generally will not know the value of �i. We postpone discussion ofthis issue until the next section.Another di�culty arises when interpreting conditional proportion expressions. Theproblem is that k j�kX cannot be de�ned as a conditional probability when there areno assignments to the variables in X that would satisfy �, because we cannot divide byzero. When standard equality is used rather than approximate equality this problem iseasily overcome, simply by avoiding conditional probabilities in the semantics altogether.Following (Halpern, 1990), we can eliminate conditional proportion expressions altogetherby viewing a statement such as k j�kX = � as an abbreviation for jj ^ �jjX = �jj�jjX .Thus, we never actually form quotients of probabilities. This approach agrees completelywith the standard interpretation of conditionals so long as jj�jjX 6= 0. If jj�jjX = 0, itenforces the convention that formulas such as k j�kX = � or k j�kX � � are true for any�. (Note that we do not really care much what happens in such cases, so long as it isconsistent and well-de�ned. This convention represents one reasonable choice.)We used the same approach in an earlier version of this paper (Grove, Halpern, &Koller, 1992) in the context of a language that uses approximate equality. Unfortunately,as the following example shows, this has problems. Unlike the case for true equality, if wemultiply by jj�jjX to clear all quotients, we do not obtain an equivalent formula even ifjj�jjX is nonzero.Example 2.2: First consider the knowledge base KB = (kFly(x)jPenguin(x)kx �1 0).This says that the number of 
ying penguins forms a tiny proportion of all penguins.However, if we interpret conditional proportions as above and multiply out, we obtain theknowledge base KB 0 = jjFly(x) ^ Penguin(x)jjx �1 0 � jjPenguin(x)jjx, which is equivalentto jjFly(x) ^ Penguin(x)jjx �1 0. KB 0 just says that the number of 
ying penguins is small,and has lost the (possibly important) information that the number of 
ying penguins issmall relative to the number of penguins. It is quite consistent with KB 0 that all penguins 
y(provided the total number of penguins is small); this is not consistent with KB . Clearly, theprocess of multiplying out across an approximate connective does not preserve the intendedinterpretation of the formulas.This example demonstrates an undesirable interaction between the semantics we havechosen for approximate equality and the process of multiplying-out to eliminate conditionalproportions. We expect k j�kX �1 � to mean that k j�kX is within some tolerance �1 of �.Assuming jj�jjX > 0, this is the same as saying that jj ^ �jjX is within �1 jj�jjX of � jj�jjX.On the other hand, the expression that results by multiplying out is jj ^ �jjX �1 �jj�jjX .This says that jj ^ �jjX is within �1 (not �1 jj�jjX !) of � jj�jjX . As we saw above, thedi�erence between the two interpretations can be signi�cant.Because of this problem, we cannot treat conditional proportions as abbreviations andinstead have added them as primitive expressions in the language. Of course, we now have39



Grove, Halpern, & Kollerto give them a semantics that avoids the problem illustrated by Example 2.2. We wouldlike to maintain the conventions used when we had equality in the language. Namely,in worlds where jj�(x)jjx 6= 0, we want k (x)j�(x)kx to denote the fraction of elementssatisfying �(x) that also satisfy  (x). In worlds where jj�(x)jjx = 0, we want formulasof the form k (x)j�(x)kx �i � or k (x)j�(x)kx �i � to be true. There are a number ofways of accomplishing this. The way we take is perhaps not the simplest, but it introducesmachinery that will be helpful later. The basic idea is to make the interpretation of � moreexplicit, so that we can eliminate conditional proportions by multiplication and keep trackof all the consequences of doing so.We give semantics to the language L� by providing a translation from formulas in L�to formulas in a language L= whose semantics is more easily described. The language L= isessentially the language of (Halpern, 1990), that uses true equality rather than approximateequality when comparing proportion expressions. More precisely, the de�nition of L= isidentical to the de�nition of L� given in De�nition 2.1, except that:� we use = and � instead of �i and �i,� we allow the set of proportion expressions to include arbitrary real numbers (not justrational numbers),� we do not allow conditional proportion expressions,� we assume that L= has a special family of variables "i, for i = 1; 2; : : :, interpretedover the reals.The variable "i is used to explicitly interpret the approximate equality connectives �i and�i. Once this is done, we can safely multiply out the conditionals, as described above. Moreprecisely, every formula � 2 L� can be associated with a formula �� 2 L= as follows:� every proportion formula � �i �0 in � is (recursively) replaced by � � �0 � "i,� every proportion formula � �i �0 in � is (recursively) replaced by the conjunction(� � �0 � "i) ^ (� 0 � � � "i),� �nally, conditional proportion expressions are eliminated by multiplying out.This translation allows us to embed L� into L=. Thus, for the remainder of the paper,we regard L� as a sublanguage of L=. This embedding avoids the problem encountered inExample 2.2, because when we multiply to clear conditional proportions the tolerances areexplicit, and so are also multipled as appropriate.The semantics for L= is quite straightforward, and is similar to that in (Halpern, 1990).We give semantics to L= in terms of worlds , or �nite �rst-order models. For any naturalnumber N , let WN consist of all worlds with domain f1; : : : ; Ng. Thus, in WN , we haveone world for each possible interpretation of the symbols in � over the domain f1; : : : ; Ng.Let W� denote [NWN .Now, consider some world W 2 W� over the domain D = f1; : : : ; Ng, some valuationV : X ! D for the variables in X , and some tolerance vector ~� . We simultaneously assignto each proportion expression � a real number [�](W;V;~�) and to each formula � a truth value40



Random Worlds and Maximum Entropywith respect to (W;V;~�). Most of the clauses of the de�nition are completely standard, so weomit them here. In particular, variables are interpreted using V , the tolerance variables "iare interpreted using the tolerances �i, the predicates and constants are interpreted usingW ,the Boolean connectives and the �rst-order quanti�ers are de�ned in the standard fashion,and when interpreting proportion expressions, the real numbers, addition, multiplication,and � are given their standard meaning. It remains to interpret proportion terms. Recallthat we eliminate conditional proportion terms by multiplying out, so that we need to dealonly with unconditional proportion terms. If � is the proportion expression jj jjxi1;:::;xik(for i1 < i2 < : : : < ik), then[�](W;V;~�) = 1jDkj ���n(d1; : : : ; dk) 2 Dk : (W;V [xi1=d1; : : : ; xik=dk]; ~�) j=  o���:Thus, if jDj = N , the proportion expression jj jjxi1;:::;xik denotes the fraction of the Nkk-tuples in Dk that satisfy  . For example, [jjChild(x; y)jjx](W;V;~�) is the fraction of domainelements d that are children of V (y).Using our embedding of L� into L=, we now have semantics for L�. For � 2 L�, wesay that (W;V;~�) j= � i� (W;V;~�) j= ��. It is sometimes useful in our future results toincorporate particular values for the tolerances into the formula ��. Thus, let �[~� ] representthe formula that results from �� if each variable "i is replaced with its value according to~� , that is, �i.3Typically we are interested in closed sentences, that is, formulas with no free variables.In that case, it is not hard to show that the valuation plays no role. Thus, if � is closed,we write (W;~�) j= � rather than (W;V;~�) j= �. Finally, if KB and � are closed formulas,we write KB j= � if (W;~�) j= KB implies (W;~�) j= �.2.2 Degrees of beliefAs we explained in the introduction, we give semantics to degrees of belief by considering allworlds of size N to be equally likely, conditioning on KB , and then checking the probabilityof ' over the resulting probability distribution. In the previous section, we de�ned what itmeans for a sentence � to be satis�ed in a world of size N using a tolerance vector ~� . GivenN and ~� , we de�ne #worlds~�N (�) to be the number of worlds in WN such that (W;~�) j= �.Since we are taking all worlds to be equally likely, the degree of belief in ' given KB withrespect to WN and ~� is Pr~�N ('jKB) = #worlds~�N (' ^ KB)#worlds~�N (KB) :If #worlds~�N (KB) = 0, this degree of belief is not well-de�ned.The careful reader may have noticed a potential problem with this de�nition. Strictlyspeaking, we should write WN (�) rather than WN , since the set of worlds under consider-ation clearly depends on the vocabulary. Hence, the number of worlds in WN also dependson the vocabulary. Thus, both #worlds~�N (') and #worlds~�N('^KB) depend on the choice3. Note that some of the tolerances �i may be irrational; it is for this reason that we allowed irrationalnumbers in proportion expressions in L=. 41



Grove, Halpern, & Kollerof �. Fortunately, this dependence \cancels out": If �0 � �, then there is a constant csuch that for all formulas � over the vocabulary �, #[�0]worlds~�N(�) = c#[�]worlds~�N (�).This result, from which it follows that the degree of belief Pr~�N ('jKB) is independent ofour choice of vocabulary, is proved in (Grove et al., 1993b).Typically, we know neither N nor ~� exactly. All we know is that N is \large" andthat ~� is \small". Thus, we would like to take our degree of belief in ' given KB tobe lim~�!~0 limN!1 Pr~�N('jKB). Notice that the order of the two limits over ~� and Nis important. If the limit lim~�!~0 appeared last, then we would gain nothing by usingapproximate equality, since the result would be equivalent to treating approximate equalityas exact equality.This de�nition, however, is not su�cient; the limit may not exist. We observed abovethat Pr~�N('jKB) is not always well-de�ned. In particular, it may be the case that forcertain values of ~� , Pr~�N ('jKB) is not well-de�ned for arbitrarily large N . In order todeal with this problem of well-de�nedness, we de�ne KB to be eventually consistent iffor all su�ciently small ~� and su�ciently large N , #worlds~�N (KB) > 0. Among otherthings, eventual consistency implies that the KB is satis�able in �nite domains of arbitrarilylarge size. For example, a KB stating that \there are exactly 7 domain elements" is noteventually consistent. For the remainder of the paper, we assume that all knowledge basesare eventually consistent. In practice, we expect eventual consistency to be no harderto check than consistency. We do not expect a knowledge base to place bounds on thedomain size, except when the bound is readily apparent. For those unsatis�ed with thisintuition, it is also possible to �nd formal conditions ensuring eventual consistency. Forinstance, it is possible to show that the following conditions are su�cient to guaranteethat KB is eventually consistent: (a) KB does not use any non-unary predicates, includingequality between terms and (b) KB is consistent for some domain size when all approximatecomparisons are replaced by exact comparisons. Since we concentrate on unary languagesin this paper, this result covers most cases of interest.Even if KB is eventually consistent, the limit may not exist. For example, it may bethe case that Pr~�N ('jKB) oscillates between �+ �i and �� �i for some i as N gets large. Inthis case, for any particular ~� , the limit as N grows will not exist. However, it seems as ifthe limit as ~� grows small should, in this case, be �, since the oscillations about � go to 0.We avoid such problems by considering the lim sup and lim inf, rather than the limit. Forany set S � IR, the in�mum of S, inf S, is the greatest lower bound of S. The lim inf of asequence is the limit of the in�mums; that is,lim infN!1 aN = limN!1 inffai : i > Ng:The lim inf exists for any sequence bounded from below, even if the limit does not. The limsup is de�ned analogously, where supS denotes the least upper bound of S. If limN!1 aNdoes exist, then limN!1 aN = lim infN!1 aN = lim supN!1 aN . Since, for any ~� , thesequence Pr~�N('jKB) is always bounded from above and below, the lim sup and lim infalways exist. Thus, we do not have to worry about the problem of nonexistence for particularvalues of ~� . We can now present the �nal form of our de�nition.De�nition 2.3: Iflim~�!~0 lim infN!1 Pr~�N('jKB) and lim~�!~0 lim supN!1 Pr~�N('jKB)42



Random Worlds and Maximum Entropyboth exist and are equal, then the degree of belief in ' given KB , written Pr1('jKB), isde�ned as the common limit; otherwise Pr1('jKB) does not exist.We close this section with a few remarks on our de�nition. First note that, even usingthis de�nition, there are many cases where the degree of belief does not exist. However,as some of our later examples show, in many situations the nonexistence of a degree ofbelief can be understood intuitively (for instance, see Example 4.3 and the subsequentdiscussion). We could, alternatively, have taken the degree of belief to be the intervalde�ned by lim~�!~0 lim infN!1 Pr~�N ('jKB) and lim~�!~0 lim supN!1 Pr~�N ('jKB), providedeach of them exist. This would have been a perfectly reasonable choice; most of the resultswe state would go through with very little change if we had taken this de�nition. Ourde�nition simpli�es the exposition slightly.Finally, we remark that it may seem unreasonable to take limits if we know the domainsize or have a bound on the domain size. Clearly, if we know N and ~� , then it seems morereasonable to use Pr~�N rather than Pr1 as our degree of belief. Indeed, as shown in (Bacchuset al., 1994), many of the important properties that hold for the degree of belief de�nedby Pr1 hold for Pr~�N , for all choices of N and ~� . The connection to maximum entropythat we make in this paper holds only at the limit, but because (as our proofs show) theconvergence is rapid, the degree of belief Pr1('jKB) is typically a very good approximationto Pr~�N ('jKB), even for moderately large N and moderately small ~� .3. Degrees of belief and entropy3.1 Introduction to maximum entropyThe idea of maximizing entropy has played an important role in many �elds, includingthe study of probabilistic models for inferring degrees of belief (Jaynes, 1957; Shannon &Weaver, 1949). In the simplest setting, we can view entropy as a real-valued function on�nite probability spaces. If 
 is a �nite set and � is a probability measure on 
, the entropyH(�) is de�ned to be �P!2
 �(!) ln �(!) (we take 0 ln 0 = 0).One standard application of entropy is the following. Suppose we know the space 
, buthave only partial information about �, expressed in the form of constraints. For example,we might have a constraint such as �(!1) + �(!2) � 1=3. Although there may be manymeasures � that are consistent with what we know, the principle of maximum entropysuggests that we adopt that �� which has the largest entropy among all the consistentpossibilities. Using the appropriate de�nitions, it can be shown that there is a sense inwhich this �� incorporates the \least" additional information (Shannon & Weaver, 1949).For example, if we have no constraints on �, then �� will be the measure that assigns equalprobability to all elements of 
. Roughly speaking, �� assigns probabilities as equally aspossible given the constraints.3.2 From formulas to constraintsLike maximum entropy, the random-worlds method is also used to determine degrees of be-lief (i.e., probabilities) relative to a knowledge base. Aside from this, is there any connectionbetween the two ideas? Of course, there is the rather trivial observation that random-worldsconsiders a uniform probability distribution (over the set of worlds satisfying KB), and it is43



Grove, Halpern, & Kollerwell-known that the uniform distribution over any set has the highest possible entropy. Butin this section we show another, entirely di�erent and much deeper, connection betweenrandom-worlds and the principle of maximum entropy. This connection holds provided thatwe restrict the knowledge base so that it uses only unary predicates and constants. In thiscase we can consider probability distributions, and in particular the maximum-entropy dis-tribution, over the set of atoms. Atoms are of course very di�erent from possible worlds;for instance, there are only �nitely many of them (independent of the domain size N).Furthermore, the maximum-entropy distributions we consider will typically not be uniform.Nevertheless, maximum entropy in this new space can tell us a lot about the degrees ofbelief de�ned by random worlds. In particular, this connection will allow us to use maxi-mum entropy as a tool for computing degrees of belief. We believe that the restriction tounary predicates is necessary for the connection we are about to make. Indeed, as long asthe knowledge base makes use of a binary predicate symbol (or unary function symbol), wesuspect that there is no useful connection between the two approaches at all; see Section 5for some discussion.Let L�1 be the sublanguage of L� where only unary predicate symbols and constantsymbols appear in formulas; in particular, we assume that equality between terms does notoccur in formulas in L�1 .4 (Recall that in L�, we allow equality between terms, but disallowequality between proportion expressions.) Let L=1 be the corresponding sublanguage ofL=. In this subsection, we show that the expressive power of a knowledge base KB in thelanguage L�1 is quite limited. In fact, such a KB can essentially only place constraints on theproportions of the atoms. If we then think of these as constraints on the \probabilities of theatoms", then we have the ingredients necessary to apply maximum entropy. In Section 3.3we show that there is a strong connection between the maximum-entropy distribution foundthis way and the degree of belief generated by random-worlds method.To see what constraints a formula places on the probabilities of atoms, it is useful toconvert the formula to a certain canonical form. As a �rst step to doing this, we formalizethe de�nition of atom given in the introduction. Let P = fP1; : : : ; Pkg consist of the unarypredicate symbols in the vocabulary �.De�nition 3.1: An atom (over P) is conjunction of the form P 01(x) ^ : : : ^ P 0k(x), whereeach P 0i is either Pi or :Pi. Since the variable x is irrelevant to our concerns, we typicallysuppress it and describe an atom as a conjunction of the form P 01 ^ : : :^ P 0k .Note that there are 2jPj = 2k atoms over P and that they are mutually exclusive andexhaustive. Throughout this paper, we use K to denote 2k and A1; : : : ; AK to denote theatoms over P , listed in some �xed order.Example 3.2: There are K = 4 atoms over P = fP1; P2g: A1 = P1 ^ P2, A2 = P1 ^ :P2,A3 = :P1 ^ P2, A4 = :P1 ^ :P2.The atomic proportion terms jjA1(x)jjx; : : : ; jjAK(x)jjx will play a signi�cant role inour technical development. It turns out that L�1 is a rather weak language: a formulaKB 2 L�1 does little more than constrain the proportion of the atoms. In other words, for4. We remark that many of our results can be extended to the case where the KB mentions equality, butthe extra complexity obscures many of the essential ideas.44



Random Worlds and Maximum Entropyany such KB we can �nd an equivalent formula in which the only proportion expressionsare these unconditional proportions of atoms. The more complex syntactic machinery inL�1 |proportions over tuples, �rst-order quanti�cation, nested proportions, and conditionalproportions|does not add expressive power. (It does add convenience, however; knowledgecan often be expressed far more succinctly if the full power of the language is used.)Given any KB , the �rst step towards applying maximum entropy is to use L�1 's lack ofexpressivity and replace all proportion terms by atomic proportion terms. It is also usefulto make various other simpli�cations to KB that will help us in Section 4. We combinethese steps and require that KB be transformed into a special canonical form which we nowdescribe.De�nition 3.3: An atomic term t over P is a polynomial over terms of the form jjA(x)jjx,where A is an atom over P . Such an atomic term t is positive if every coe�cient of thepolynomial t is positive.De�nition 3.4: A (closed) sentence � 2 L=1 is in canonical form if it is a disjunction ofconjunctions, where each conjunct is one of the following:� t0 = 0, (t0 > 0^ t � t0"i), or (t0 > 0^:(t � t0"i)), where t and t0 are atomic terms andt0 is positive,� 9xAi(x) or :9xAi(x) some atom Ai, or� Ai(c) for some atom Ai and some constant c.Furthermore, a disjunct cannot contain both Ai(c) and Aj(c) for i 6= j as conjuncts, nor canit contain both Ai(c) and :9xAi(x). (Note that these last conditions are simply minimalconsistency requirements.)Theorem 3.5: Every formula in L=1 is equivalent to a formula in canonical form. More-over, there is an e�ective procedure that, given a formula � 2 L=1 , constructs an equivalentformula b� in canonical form.The proof of this theorem, and of all theorems in this paper, can be found in the appendix.We remark that the length of the formula b� is typically exponential in the length of �.Such a blowup seems inherent in any scheme de�ned in terms of atoms.Theorem 3.5 is a generalization of Claim 5.7.1 in (Halpern, 1990). It, in turn, is ageneralization of a well-known result which says that any �rst-order formula with only unarypredicates is equivalent to one with only depth-one quanti�er nesting. Roughly speaking,this is because for a quanti�ed formula such as 9x �0, subformulas talking about a variabley other than x can be moved outside the scope of the quanti�er. This is possible becauseno literal subformula can talk about x and y together. Our proof uses the same idea andextends it to proportion statements. In particular, it shows that for any � 2 L�1 there is anequivalent �̂ which has no nested quanti�ers or nested proportions.Notice, however, that such a result does not hold once we allow even a single binarypredicate in the language. For example, the formula 8y 9xR(x; y) clearly needs nestedquanti�cation because R(x; y) talks about both x and y and so must remain within the45



Grove, Halpern, & Kollerscope of both quanti�ers. With binary predicates, each additional depth of nesting reallydoes add expressive power. This shows that there can be no \canonical form" theorem quitelike Theorem 3.5 for richer languages. This issue is one of the main reasons why we restrictthe KB to a unary language in this paper. (See Section 5 for further discussion.)Given any formula in canonical form we can immediately derive from it, in a syntacticmanner, a set of constraints on the possible proportions of atoms.De�nition 3.6: Let KB be in canonical form. We construct a formula �(KB) in the lan-guage of real closed �elds (i.e., over the vocabulary f0; 1;+;�g) as follows, where u1; : : : ; uKare fresh variables (distinct from the tolerance variables "j):� we replace each occurrence of the formula Ai(c) by ui > 0,� we replace each occurrence of 9xAi(x) by ui > 0 and replace each occurrence of:9xAi(x) by ui = 0,� we replace each occurrence of jjAi(x)jjx by ui.Notice that �(KB) has two types of variables: the new variables ui that we just introduced,and the tolerance variables "i. In order to eliminate the dependence on the latter, we oftenconsider the formula �(KB [~� ]) for some tolerance vector ~� .De�nition 3.7: Given a formula 
 over the variables u1; : : : ; uK, let Sol [
] be the set ofvectors in �K = f~u 2 [0; 1]K : PKi ui = 1g satisfying 
. Formally, if (a1; : : : ; aK) 2 �K ,then (a1; : : : ; aK) 2 Sol [
] i� (IR; V ) j= 
, where V is a valuation such that V (ui) = ai.De�nition 3.8: The solution space of KB given ~� , denoted S~� [KB ], is de�ned to be theclosure of Sol [�(KB [~� ])].5If KB is not in canonical form, we de�ne �(KB) and S~� [KB ] to be �(dKB) and S~� [dKB ],respectively, where dKB is the formula in canonical form equivalent to KB obtained by theprocedure appearing in the proof of Theorem 3.5.Example 3.9: Let P be fP1; P2g, with the atoms ordered as in Example 3.2. ConsiderKB = 8xP1(x) ^ 3kP1(x) ^ P2(x)kx �i 1:The canonical formula dKB equivalent to KB is:6:9xA3(x) ^ :9xA4(x) ^ 3jjA1(x)jjx � 1 � "i:As expected, dKB constrains both jjA3(x)jjx and jjA4(x)jjx (i.e., u3 and u4) to be 0. We alsosee that jjA1(x)jjx (i.e., u1) is (approximately) at most 1=3. Therefore:S~� [KB ] = n(u1; : : : ; u4) 2 �4 : u1 � 1=3 + �i=3; u3 = u4 = 0o :5. Recall that the closure of a set X � IRK consists of all K-tuples that are the limit of a sequence ofK-tuples in X.6. Note that here we are viewing KB as a formula in L=, under the translation de�ned earlier; we do thisthroughout the paper without further comment. 46



Random Worlds and Maximum Entropy3.3 The concentration phenomenonWith every world W 2 W�, we can associate a particular tuple (u1; : : : ; uK), where ui isthe fraction of the domain satisfying atom Ai in W :De�nition 3.10: Given a world W 2 W�, we de�ne �(W ) 2 �K to be(jjA1(x)jjx; jjA2(x)jjx; : : : ; jjAK(x)jjx)where the values of the proportions are interpreted over W . We say that the vector �(W )is the point associated with W .We de�ne the entropy of any model W to be the entropy of �(W ); that is, if �(W ) =(u1; : : : ; uK), then the entropy ofW is H(u1; : : : ; uK). As we are about to show, the entropyof ~u turns out to be a very good asymptotic indicator of how many worlds W there are suchthat �(W ) = ~u. In fact, there are so many more worlds near points of high entropy thatwe can ignore all the other points when computing degrees of belief. This concentrationphenomenon, as Jaynes (1982) has called it, is essentially the content of the next lemmaand justi�es our interest in the maximum-entropy point(s) of S~� [KB ].For any S � �K let #worlds~�N [S](KB) denote the number of worlds W of size Nsuch that (W;~�) j= KB and such that �(W ) 2 S; for any ~u 2 �K let #worlds~�N [~u](KB)abbreviate #worlds~�N [f~ug](KB). Of course #worlds~�N [~u](KB) is necessarily zero unless allcomponents of ~u are multiples of 1=N . However, if there are any models associated with ~uat all, we can estimate their number quite accurately using the entropy function:Lemma 3.11: There exist some function h : IN ! IN and two strictly positive polynomialfunctions f; g : IN ! IR such that, for KB 2 L�1 and ~u 2 �K, if #worlds~�N [~u](KB) 6= 0,then (h(N)=f(N))eNH(~u) � #worlds~�N [~u](KB) � h(N)g(N)eNH(~u):Of course, it follows from the lemma that tuples whose entropy is near maximum haveoverwhelmingly more worlds associated with them than tuples whose entropy is furtherfrom maximum. This is essentially the concentration phenomenon.Lemma 3.11 is actually fairly easy to prove. The following simple example illustratesthe main idea.Example 3.12: Suppose � = fPg and KB = true: We have�K = �2 = f(u1; 1� u1) : 0 � u1 � 1g ;where the atoms are A1 = P and A2 = :P . For any N , partition the worlds in WNaccording to the point to which they correspond. For example, the graph in Figure 1 showsus the partition ofW4. In general, consider some point ~u = (r=N; (N�r)=N). The numberof worlds corresponding to ~u is simply the number of ways of choosing the denotation ofP . We need to choose which r elements satisfy P ; hence, the number of such worlds is�Nr � = N !r!(N�r)! . Figure 2 shows the qualitative behavior of this function for large values ofN . It is easy to see the asymptotic concentration around ~u = (0:5; 0:5).47
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Figure 1: Partition of W4 according to �(W ).
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Figure 2: Concentration phenomenon for worlds of size N .We can estimate the factorials appearing in this expression using Stirling's approx-imation, which asserts that the factorial m! is approximately mm = em lnm. So, aftersubstituting for the three factorials, we can estimate �Nr � as eN logN�(r log r+(N�r) log(N�r)),which reduces to eNH(~u). The entropy term in the general case arises from the use of Stir-ling's approximation in an analogous way. (A more careful estimate is done in the proof ofLemma 3.11 in the appendix.) 48



Random Worlds and Maximum EntropyBecause of the exponential dependence on N times the entropy, the number of worldsassociated with points of high entropy swamp all other worlds as N grows large. Thisconcentration phenomenon, well-known in the �eld of statistical physics, forms the basisfor our main result in this section. It asserts that it is possible to compute degrees ofbelief according to random worlds while ignoring all but those worlds whose entropy is nearmaximum. The next theorem essentially formalizes this phenomenon.Theorem 3.13: For all su�ciently small ~� , the following is true. Let Q be the points withgreatest entropy in S~� [KB ] and let O � IRK be any open set containing Q. Then for all� 2 L� and for lim� 2 flim sup; lim infg we havelimN!1� Pr~�N(�jKB) = limN!1� #worlds~�N [O](� ^KB)#worlds~�N [O](KB) :We remark that this is quite a di�cult theorem. We have discussed why Lemma 3.11 letsus look at models of KB whose entropy is (near) maximum. But the theorem tells us to lookat the maximum-entropy points of S~� [KB ], which we de�ned using a (so far unmotivated)syntactic procedure applied to KB . It seems reasonable to expect that S~� [KB ] should tellus something about models of KB . But making this connection precise, and in particularshowing how the maximum-entropy points of S~� [KB ] relate to models of KB with near-maximum entropy, is di�cult. However, we defer all details of the proof of that result tothe appendix.In general, Theorem 3.13 may seem to be of limited usefulness: knowing that we onlyhave to look at worlds near the maximum-entropy point does not substantially reducethe number of worlds we need to consider. (Indeed, the whole point of the concentrationphenomenon is that almost all worlds have high entropy.) Nevertheless, as the rest of thispaper shows, this result can be quite useful when combined with the following two results.The �rst of these says that if all the worlds near the maximum-entropy points have a certainproperty, then we should have degree of belief 1 that this property is true.Corollary 3.14: For all su�ciently small ~� , the following is true. Let Q be the points withgreatest entropy in S~� [KB ], let O � IRK be an open set containing Q, and let �[O] 2 L= bean assertion that holds for every world W such that �(W ) 2 O. ThenPr~�1(�[O]jKB) = 1:Example 3.15: For the knowledge base true in Example 3.12, it is easy to see that themaximum-entropy point is (0:5; 0:5). Fix some arbitrary � > 0. Clearly, there is some openset O around this point such that the assertion � = jjP (x)jjx 2 [0:5� �; 0:5 + �] holds forevery world in O. Therefore, we can conclude thatPr~�1 (jjP (x)jjx 2 [0:5� �; 0:5 + �] jtrue) = 1:As we show in (Bacchus et al., 1994), formulas � with degree of belief 1 can essentiallybe treated just like other knowledge in KB . That is, the degrees of belief relative to KBand KB ^ � will be identical (even if KB and KB ^ � are not logically equivalent). Moreformally: 49



Grove, Halpern, & KollerTheorem 3.16: (Bacchus et al., 1994) If Pr~�1(�jKB) = 1 and lim� 2 flim sup; lim infg,then for any formula ': limN!1� Pr~�N ('jKB) = limN!1� Pr~�N ('jKB ^ �):Proof: For completeness, we repeat the proof from (Bacchus et al., 1994) here. Basicprobabilistic reasoning shows that, for any N and ~� :Pr~�N ('jKB) = Pr~�N('jKB ^ �) Pr~�N (�jKB) + Pr~�N('jKB ^ :�) Pr~�N(:�jKB):By assumption, Pr~�N(�jKB) tends to 1 when we take limits, so the �rst term tends toPr~�N('jKB ^ �). On the other hand, Pr~�N (:�jKB) has limit 0. Because Pr~�N('jKB ^:�) isbounded, we conclude that the second product also tends to 0. The result follows.As we shall see in the next section, the combination of Corollary 3.14 and Theorem 3.16is quite powerful.4. Computing degrees of beliefAlthough the concentration phenomenon is interesting, its application to actually computingdegrees of belief may not be obvious. Since we know that almost all worlds will have highentropy, a direct application of Theorem 3.13 does not substantially reduce the number ofworlds we must consider. Yet, as we show in this section, the concentration theorem canform the basis of a practical technique for computing degrees of belief in many cases. Webegin in Section 4.1 by presenting the intuitions underlying this technique. In Section 4.2we build on these intuitions by presenting results for a restricted class of formulas: thosequeries which are quanti�er-free formulas over a unary language with a single constantsymbol. In spite of this restriction, many of the issues arising in the general case can beseen here. Moreover, as we show in Section 4.3, this restricted sublanguage is rich enoughto allow us to embed two well-known propositional approaches that make use of maximumentropy: Nilsson's probabilistic logic (Nilsson, 1986) and the maximum-entropy extensionof �-semantics (Ge�ner & Pearl, 1990) due to Goldszmidt, Morris, Pearl (1990) (see also(Goldszmidt, Morris, & Pearl, 1993)). In Section 4.4, we consider whether the results forthe restricted language can be extended. We show that they can, but several di�cult andsubtle issues arise.4.1 The general strategyAlthough the random-worlds method is de�ned by counting worlds, we can sometimes �ndmore direct ways to calculate the degrees of belief it yields. In (Bacchus et al., 1994) wepresent a number of such techniques, most of which apply only in very special cases. Oneof the simplest and most intuitive is the following version of what philosophers have termeddirect inference (Reichenbach, 1949). Suppose that all we know about an individual c issome assertion  (c); in other words, KB has the form  (c)^KB 0, and the constant c doesnot appear in KB 0. Also suppose that KB , together with a particular tolerance ~� , impliesthat k'(x)j (x)kx is in some interval [�; �]. It seems reasonable to argue that c is shouldbe treated as a \typical" element satisfying  (x), because by assumption KB contains no50



Random Worlds and Maximum Entropyinformation suggesting otherwise. Therefore, we might hope to use the statistics directly,and conclude that Pr~�1('(c)jKB) 2 [�; �]: This is indeed the case, as the following theoremshows.Theorem 4.1: (Bacchus et al., 1994) Let KB be a knowledge base of the form  (~c )^KB 0,and assume that for all su�ciently small tolerance vectors ~� ,KB [~� ] j= k'(~x)j (~x)k~x 2 [�; �]:If no constant in ~c appears in KB 0, in '(~x), or in  (~x), then Pr1('(~c )jKB) 2 [�; �] (ifthe degree of belief exists at all).This result, in combination with the results of the previous section, provides us with avery powerful tool. Roughly speaking, we propose to use the following strategy: The basicconcentration phenomenon says that most worlds are very similar in a certain sense. Asshown in Corollary 3.14, we can use this to �nd some assertions that are \almost certainly"true (i.e., with degree of belief 1) even if they are not logically implied by KB . Theorem 3.16then tells us that we can treat these new assertions as if they are in fact known withcertainty. When these new assertions state statistical \knowledge", they can vastly increaseour opportunities to apply direct inference. The following example illustrates this idea.Example 4.2: Consider a very simple knowledge base over a vocabulary containing thesingle unary predicate fPg: KB = (jjP (x)jjx �1 0:3):There are two atoms A1 and A2 over P , with A1 = P and A2 = :P . The solution space ofthis KB given ~� is clearlyS~� [KB ] = f(u1; u2) 2 �2 : u1 � 0:3 + �1g:A straightforward computation shows that, for �1 < 0:2, this has a unique maximum-entropypoint ~v = (0:3 + �1; 0:7� �1).Now, consider the query P (c). For all � > 0, let �[�] be the formula jjP (x)jjx 2 [(0:3 +�1) � �; (0:3 + �1) + �]. This satis�es the condition of Corollary 3.14, so it follows thatPr~�1(�[�]jKB) = 1: Using Theorem 3.16, we know that for lim� 2 flim inf ; lim supg,limN!1� Pr~�N (P (c)jKB) = limN!1� Pr~�N(P (c)jKB ^ �[�]):But now we can use direct inference. (Note that here, our \knowledge" about c is vacuous,i.e., \true(c)".) We conclude that, if there is any limit at all, then necessarilyPr~�1(P (c)jKB ^ �[�]) 2 [(0:3+ �1)� �; (0:3 + �1) + �]:So, for all � > 0, Pr~�1(P (c)jKB) 2 [(0:3 + �1)� �; (0:3 + �1) + �]:Since this is true for all �, the only possible value for Pr~�1(P (c)jKB) is 0:3+�1, which is thevalue of u1 (i.e., jjP (x)jjx) at the maximum-entropy point. Note that it is also clear whathappens as ~� tends to ~0: Pr1(P (c)jKB) is 0:3.51



Grove, Halpern, & KollerThis example demonstrates the main steps of one possible strategy for computing degreesof belief. First the maximum-entropy points of the space S~� [KB ] are computed as a functionof ~� . Then, these are used to compute Pr~�1('jKB), assuming the limit exists (if not, thelim sup and lim inf of PrN('jKB) are computed instead). Finally, we compute the limit ofthis probability as ~� goes to zero.Unfortunately, this strategy has a serious potential problem. We clearly cannot computePr~�1('jKB) separately for each of the in�nitely many tolerance vectors ~� and then take thelimit as ~� goes to 0. We might hope to compute this probability as an explicit function of~� , and then compute the limit. For instance, in Example 4.2 Pr~�1(P (c)jKB) was found tobe 0:3 + �1, and so it is easy to see what happens as �1 ! 0. But there is no reason tobelieve that Pr~�1('jKB) is, in general, an easily characterizable function of ~� . If it is not,then computing the limit as ~� goes to 0 can be di�cult or impossible. We would like to�nd a way to avoid this explicit limiting process altogether. It turns out that this is indeedpossible in some circumstances. The main requirement is that the maximum-entropy pointsof S~� [KB ] converge to the maximum-entropy points of S~0[KB ]. (For future reference, noticethat S~0[KB ] is the closure of the solution space of the constraints obtained from KB byreplacing all occurrences of �i by = and all occurrences of �i by �.) In many such cases,we can compute Pr1('jKB) directly in terms of the maximum-entropy points of S~0[KB ],without taking limits at all.As the following example shows, this type of continuity does not hold in general: themaximum-entropy points of S~� [KB ] do not necessarily converge to those of S~0[KB ].Example 4.3: Consider the knowledge baseKB = (jjP (x)jjx �1 0:3 _ jjP (x)jjx �2 0:4)^ jjP (x)jjx 6�3 0:4 :It is easy to see that S~0[KB ] is just f(0:3; 0:7)g: The point (0:4; 0:6) is disallowed by thesecond conjunct. Now, consider S~� [KB ] for ~� > ~0. If �2 � �3, then S~� [KB ] indeed doesnot contain points where u1 is near 0:4; the maximum-entropy point of this space is easilyseen to be 0:3 + �1. However, if �2 > �3 then there will be points in S~� [KB ] where u1 isaround 0:4; for instance, those where 0:4 + �3 < u1 � 0:4 + �2. Since these points havea higher entropy than the points in the vicinity of 0:3, the former will dominate. Thus,the set of maximum-entropy points of S~� [KB ] does not converge to a single well-de�nedset. What it converges to (if anything) depends on how ~� goes to ~0. This nonconvergencehas consequences for degrees of belief. It is not hard to show Pr~�1(P (c)jKB) can be either0:3+ �1 or 0:4+ �2, depending on the precise relationship between �1, �2, and �3. It followsthat Pr1(P (c)jKB) does not exist.We say that a degree of belief Pr1('jKB) is not robust if the behavior of Pr~�1('jKB) (or oflim inf Pr~�N ('jKB) and lim sup Pr~�N('jKB)) as ~� goes to ~0 depends on how ~� goes to ~0. Inother worlds, nonrobustness describes situations when Pr1('jKB) does not exist becauseof sensitivity to the exact choice of tolerances. We shall see a number of other examples ofnonrobustness in later sections.It might seem that the notion of robustness is an artifact of our approach. In particular,it seems to depend on the fact that our language has the expressive power to say that the twotolerances represent a di�erent degree of approximation, simply by using di�erent subscripts52



Random Worlds and Maximum Entropy(�2 vs. �3 in the example). In an approach to representing approximate equality that doesnot make these distinctions, we are bound to get the answer 0:3 in the example above, sincethen jjP (x)jjx 6�3 0:4 really would be the negation of jjP (x)jjx �2 0:4. We would arguethat the answer 0:3 is not as reasonable as it might at �rst seem. Suppose one of the twodi�erent instances of 0:4 in the previous example had been slightly di�erent; for example,suppose we had used 0:399 rather than 0:4 in the �rst of them. In this case, the secondconjunct is essentially vacuous, and can be ignored. The maximum-entropy point in S~0[KB ]is now 0:399, and we indeed derive a degree of belief of 0:399 in P (c). Thus, arbitrarily smallchanges to the numbers in the original knowledge base can cause large changes in our degreesof belief. But these numbers are almost always the result of approximate observations; thisis re
ected by our decision to use approximate equality rather than equality when referringto them. It does not seem reasonable to base actions on a degree of belief that can changeso drastically in the face of small changes in the measurement of data. Note that, if weknow that the two instances of 0:4 do, in fact, denote exactly the same number, we canrepresent this by using the same approximate equality connective in both disjuncts. In thiscase, it is easy to see that we do get the answer 0:3.A close look at the example shows that the nonrobustness arises because of the negatedproportion expression jjP (x)jjx 6�3 0:4. Indeed, we can show that if we start with a KBin canonical form that does not contain negated proportion expressions then, in a precisesense, the set of maximum-entropy points of S~� [KB ] necessarily converges to the set ofmaximum-entropy points of S~0[KB ]. An argument can be made that we should eliminatenegated proportion expressions from the language altogether. It is one thing to arguethat sometimes we have statistical values whose accuracy we are unsure about, so that wewant to make logical assertions less stringent than exact numerical equality. It is harderto think of cases in which the opposite is true, and all we know is that some statistic is\not even approximately" equal to some value. However, we do not eliminate negatedproportion expressions from the language, since without them we would not be able toprove an analogue to Theorem 3.5. (They arise when we try to 
atten nested proportionexpressions, for example.) Instead, we have identi�ed a weaker condition that is su�cientto prevent problems such as that seen in Example 4.3. Essential positivity simply tests thatnegations are not interacting with the maximum-entropy computation in a harmful way.De�nition 4.4: Let ��(KB [~0]) be the result of replacing each strict inequality in �(KB [~0])with its weakened version. More formally, we replace each subformula of the form t < 0with t � 0, and each subformula of the form t > 0 with t � 0. (Recall that these are theonly constraints possible in �(KB [~0]), since all tolerance variables "i are assigned 0.) LetS�~0[KB ] be Sol [��(KB [~0])], where we use X to denote the closure of X . We say that KBis essentially positive if the sets S�~0[KB ] and S~0[KB ] have the same maximum-entropypoints.Example 4.5: Consider again the knowledge base KB from Example 4.3. The constraintformula �(KB [~0]) is (after simpli�cation):(u1 = 0:3 _ u1 = 0:4)^ (u1 < 0:4 _ u1 > 0:4):Its \weakened" version is ��(KB [~0]):(u1 = 0:3 _ u1 = 0:4)^ (u1 � 0:4 _ u1 � 0:4);53



Grove, Halpern, & Kollerwhich is clearly equivalent to u1 = 0:3 _ u1 = 0:4. Thus, S~0[KB ] = f(u1; u2) 2 �2 :u1 � 0:3g whereas S�~0[KB ] = S~0[KB ] [ f(0:4; 0:6)g. Since the two spaces have di�erentmaximum-entropy points, the knowledge base KB is not essentially positive.As the following result shows, essential positivity su�ces to guarantee that the maximum-entropy points of S~� [KB ] converge to those of S~0[KB ].Proposition 4.6: Assume that KB is essentially positive and let Q be the set of maximum-entropy points of S~0[KB ] (and thus also of S�~0[KB ]). Then for all � > 0 and all su�cientlysmall tolerance vectors ~� (where \su�ciently small" may depend on �), every maximum-entropy point of S~� [KB ] is within � of some maximum-entropy point in Q.4.2 Queries for a single individualWe now show how to compute Pr1('jKB) for a certain restricted class of �rst-order for-mulas ' and knowledge bases KB . The most signi�cantly restriction is that the query 'should be a quanti�er-free (�rst-order) sentence over the vocabulary P [ fcg; thus, it is aquery about a single individual, c. While this class is rather restrictive, it su�ces to expressmany real-life examples. Moreover, it is signi�cantly richer than the language consideredby Paris and Vencovska (1989).The following de�nition helps de�ne the class of interest.De�nition 4.7: A formula is essentially propositional if it is a quanti�er-free and proportion-free formula in the language L�(fP1; : : : ; Pkg) (so that, in particular, it has no constantsymbols) and has only one free variable x.We say that '(c) is a simple query for KB if:� '(x) is essentially propositional,� KB is of the form  (c) ^ KB 0, where  (x) is essentially propositional and KB 0 doesnot mention c.Thus, just as in Theorem 4.1, we suppose that  (c) summarizes all that is known aboutc. In this section, we focus on computing the degree of belief Pr1('(c)jKB) for a formula'(c) which is a simple query for KB .Note that an essentially propositional formula �(x) is equivalent to a disjunction ofatoms. For example, over the vocabulary fP1; P2g, the formula P1(x) _ P2(x) is equivalentto A1(x)_A2(x)_A3(x) (where the atoms are ordered as in Example 3.2). For an essentiallypropositional formula �, we take A(�) be the (unique) set of atoms such that � is equivalentto WAj2A(�)Aj(x).If we view a tuple ~u 2 �K as a probability assignment to the atoms, we can extend ~u toa probability assignment on all essentially propositional formulas using this identi�cationof an essentially propositional formula with a set of atoms:De�nition 4.8: Let � be an essentially propositional formula. We de�ne a function F[�] :�K ! IR as follows: F[�](~u) = XAj2A(�)uj :54



Random Worlds and Maximum EntropyFor essentially propositional formulas '(x) and  (x) we de�ne the (partial) function F['j ] :�K ! IR to be: F['j ](~u) = F['^ ](~u)F[ ](~u) :Note that this function is unde�ned when F[ ](~u) = 0.As the following result shows, if ' is a simple query for KB (of the form  (c)^KB 0), thenall that matters in computing Pr1('jKB) is F['j ](~u) for tuples ~u of maximum entropy.Thus, in a sense, we are only using KB 0 to determine the space over which we maximizeentropy. Having de�ned this space, we can focus on  and ' in determining the degree ofbelief.Theorem 4.9: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if Qis the set of maximum-entropy points in S~� [KB ] and F[ ](~v) > 0 for all ~v 2 Q, then forlim� 2 flim sup; lim infg we havelimN!1� Pr~�N ('(c)jKB) 2 " inf~v2QF['j ](~v); sup~v2QF['j ](~v)# :The following is an immediate but important corollary of this theorem. It asserts that, ifthe space S~� [KB ] has a unique maximum-entropy point, then its value uniquely determinesthe probability Pr~�1('(c)jKB).Corollary 4.10: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if ~vis the unique maximum-entropy point in S~� [KB ] and F[ ](~v) > 0, thenPr~�1('(c)jKB) = F['j ](~v):We are interested in Pr1('(c)jKB), which means that we are interested in the limit ofPr~�1('(c)jKB) as ~� ! ~0. Suppose KB is essentially positive. Then, by the results of theprevious section and the continuity of F['j ], it is enough to look directly at the maximum-entropy points of S~0[KB ]. More formally, by combining Theorem 4.9 with Proposition 4.6,we can show:Theorem 4.11: Suppose '(c) is a simple query for KB. If the space S~0[KB ] has a uniquemaximum-entropy point ~v, KB is essentially positive, and F[ ](~v) > 0, thenPr1('(c)jKB) = F['j ](~v):We believe that this theorem will turn out to cover a lot of cases that occur in practice.As our examples and the discussion in the next section show, we often do get simple queriesand knowledge bases that are essentially positive. Concerning the assumption of a uniquemaximum-entropy point, note that the entropy function is convex and so this assumptionis automatically satis�ed if S~0[KB ] is a convex space. Recall that a space S is convex iffor all ~u;~u0 2 S, and all � 2 [0; 1], it is also the case that �~u + (1 � �)~u0 2 S. The spaceS~0[KB ] is surely convex if it is de�ned using a conjunction of linear constraints. While itis clearly possible to create knowledge bases where S~0[KB ] has multiple maximum-entropy55



Grove, Halpern, & Kollerpoints (for example, using disjunctions), we expect that such knowledge bases arise rarely inpractical applications. Perhaps the most restrictive assumption made by this theorem is theseemingly innocuous requirement that F[ ](~v) > 0. This assumption is obviously necessaryfor the theorem to hold; without it, the function F['j ] is simply not de�ned. Unfortunately,we show in Section 4.4 that this requirement is, in fact, a severe one; in particular, it preventsthe theorem from being applied to most examples derived from default reasoning, using ourstatistical interpretation of defaults (Bacchus et al., 1994).We close this subsection with an example of the theorem in action.Example 4.12: Let the language consist of P = fHepatitis; Jaundice;BlueEyedg and theconstant Eric. There are eight atoms in this language. We use AP 01P 02P 03 to denote the atomP 01(x)^P 02(x)^P 03(x), where P 01 is either H (denoting Hepatitis) or H (denoting :Hepatitis),P 02 is J or J (for Jaundice and :Jaundice , respectively), and P 03 is B or B (for BlueEyedand :BlueEyed , respectively).Consider the knowledge base KBhep:8x (Hepatitis(x)) Jaundice(x)) ^kHepatitis(x)jJaundice(x)kx �1 0:8 ^jjBlueEyed(x)jjx �2 0:25 ^Jaundice(Eric):If we order the atoms as AHJB ,AHJB ,AHJ B,AHJ B , AH JB,AH JB ,AH J B,AH J B , thenit is not hard to show that �(KBhep) is:u3 = 0 ^u4 = 0 ^(u1 + u2) � (0:8 + "1)(u1 + u2 + u5 + u6) ^(u1 + u2) � (0:8� "1)(u1 + u2 + u5 + u6) ^(u1 + u3 + u5 + u7) � (0:25 + "2) ^(u1 + u3 + u5 + u7) � (0:25� "2) ^(u1 + u2 + u5 + u6) > 0:To �nd the space S~0[KBhep] we simply set "1 = "2 = 0. Then it is quite straightforward to�nd the maximum-entropy point in this space, which, taking 
 = 21:6, is:(v1; v2; v3; v4; v5; v6; v7; v8) = � 15 + 
 ; 35 + 
 ; 0; 0; 14(5 + 
); 34(5 + 
) ; 
4(5 + 
) ; 3
4(5 + 
)� :Using ~v, we can compute various asymptotic probabilities very easily. For example,Pr1(Hepatitis(Eric)jKBhep) = F[Hepatitis jJaundice ](~v)= v1 + v2v1 + v2 + v5 + v6= 15+
 + 35+
15+
 + 35+
 + 14(5+
) ; 34(5+
) = 0:8;as expected. Similarly, we can show that Pr1(BlueEyed(Eric)jKBhep) = 0:25 and thatPr1(BlueEyed(Eric) ^ Hepatitis(Eric)jKBhep) = 0:2. Note that the �rst two answers also56



Random Worlds and Maximum Entropyfollow from the direct inference principle (Theorem 4.1), which happens to be applicablein this case. The third answer shows that BlueEyed and Hepatitis are being treated asindependent. It is a special case of a more general independence phenomenon that appliesto random worlds; see (Bacchus et al., 1994, Theorem 5.27).4.3 Probabilistic propositional logicIn this section we consider two variants of probabilistic propositional logic. As the followingdiscussion shows, both can easily be captured by our framework. The embedding we discussuses simple queries throughout, allowing us to appeal to the results of the previous section.Nilsson (1986) considered the problem of what could be inferred about the proba-bility of certain propositions given some constraints. For example, we might know thatPr(
yjbird) � 0:7 and that Pr(yellow) � 0:2, and be interested in Pr(
yjbird ^ yellow).Roughly speaking, Nilsson suggests computing this by considering all probability distri-butions consistent with the constraints, and then computing the range of values given toPr(
yjbird ^ yellow) by these distributions. Formally, suppose our language consists of kprimitive proposition, p1; : : : ; pk. Consider the set 
 of K = 2k truth assignments thesepropositions. We give semantics to probabilistic statements over this language in terms ofa probability distribution � over the set 
 (see (Fagin, Halpern, & Megiddo, 1990) for de-tails). Since each truth assignment ! 2 
 determines the truth value of every propositionalformula �, we can determine the probability of every such formula:Pr�(�) = X!j=� �(!):Clearly, we can determine whether a probability distribution � satis�es a set � of proba-bilistic constraints. The standard notion of probabilistic propositional inference would saythat � j= Pr(�) 2 [�1; �2] if Pr�(�) is within the range [�1; �2] for every distribution � thatsatis�es the constraints in �.Unfortunately, while this is a very natural de�nition, the constraints that one can derivefrom it are typically quite weak. For that reason, Nilsson suggested strengthening this no-tion of inference by applying the principle of maximum entropy: rather than considering alldistributions � satisfying �, we consider only the distribution(s) �� that have the greatestentropy among those satisfying the constraints. As we now show, one implication of ourresults is that the random-worlds method provides a principled motivation for this introduc-tion of maximum entropy to probabilistic propositional reasoning. In fact, the connectionbetween probabilistic propositional reasoning and random worlds should now be fairly clear:� The primitive propositions p1; : : : ; pk correspond to the unary predicates P1; : : : ; Pk.� A propositional formula � over p1; : : : ; pk corresponds uniquely to an essentially propo-sitional formula �� as follows: we replace each occurrence of the propositional symbolpi with Pi(x).� The set � of probabilistic constraints corresponds to a knowledge base KB 0[�]|aconstant-free knowledge base containing only proportion expressions. The correspon-dence is as follows: 57



Grove, Halpern, & Koller{ A probability expression of the form Pr(�) appearing in � is replaced by theproportion expression jj��(x)jjx. Similarly, a conditional probability expressionPr(�j�0) is replaced by k��(x)j��0(x)kx.{ Each comparison connective = is replaced by �i for some i, and each � with �i.(The particular choices for the approximate equality connectives do not matterin this context.)The other elements that can appear in a proportion formula (such as rational num-bers and arithmetical connectives) remain unchanged. For example, the formulaPr(
y jbird) � 0:7 would correspond to the proportion formula kFly(x)jBird(x)kx �i0:7.� There is a one-to-one correspondence between truth assignments and atoms: the truthassignment ! corresponds to the atom A = P 01^ : : :^P 0k where P 0i is Pi if !(pi) = trueand :Pi otherwise. Let !1; : : : ; !K be the truth assignments corresponding to theatoms A1; : : : ; AK , respectively.� There is a one-to-one correspondence between probability distributions over the set
 of truth assignments and points in �K . For each point ~u 2 �K , let �~u denote thecorresponding probability distribution over 
, where �~u(!i) = ui.Remark 4.13: Clearly, !j j= � i� Aj 2 A(��). Therefore, for all ~u, we haveF[��](~u) = Pr�~u(�):The following result demonstrates the tight connection between probabilistic proposi-tional reasoning using maximum entropy and random worlds.Theorem 4.14 : Let � be a conjunction of constraints of the form Pr(�j�0) = � orPr(�j�0) 2 [�1; �2]. There is a unique probability distribution �� of maximum entropysatisfying �. Moreover, for all � and �0, if Pr��(�0) > 0, thenPr1(��(c)j��0(c) ^KB 0[�]) = Pr��(�j�0):Theorem 4.14 is an easy corollary of Theorem 4.11. To check that the preconditionsof the latter theorem apply, note that the constraints in � are linear, and so the spaceS~0[KB 0[�]] has a unique maximum-entropy point ~v. In fact, it is easy to show that �~v isthe (unique) maximum-entropy probability distribution over 
 satisfying the constraints�. In addition, because there are no negated proportion expressions in �, the formulaKB = ��0(c) ^KB 0[�] is certainly essentially positive.Most applications of probabilistic propositional reasoning consider simple constraintsof the form used in the theorem, and so such applications can be viewed as very specialcases of the random-words approach. In fact, this theorem is essentially a very old one.The connection between counting \worlds" and the entropy maximum in a space de�nedas a conjunction of linear constraints is very well-known. It has been extensively studiedin the �eld of thermodynamics, starting with the 19th century work of Maxwell and Gibbs.Recently, this type of reasoning has been applied to problems in an AI context by Paris and58



Random Worlds and Maximum EntropyVencovska (1989) and Shastri (1989). The work of Paris and Vencovska is particularly rele-vant because they also realize the necessity of adopting a formal notion of \approximation",although the precise details of their approach di�er from ours.To the best of our knowledge, most of the work on probabilistic propositional reason-ing and all formal presentations of the entropy/worlds connection (in particular, those of(Paris & Vencovska, 1989; Shastri, 1989)) have limited themselves to conjunctions of lin-ear constraints. Our more general language gives us a great deal of additional expressivepower. For example, it is quite reasonable to want the ability to express that propertiesare (approximately) statistically independent. For example, we may wish to assert thatBird(x) and Yellow(x) are independent properties by saying jjBird(x) ^Yellow(x)jjx �jjBird(x)jjx � jjYellow(x)jjx. Clearly, such constraints are not linear. Nevertheless, our The-orem 4.11 covers such cases and much more.A version of probabilistic propositional reasoning has also been used to provide proba-bilistic semantics for default reasoning (Pearl, 1989). Here also, the connection to randomworlds is of interest. In particular, it follows from Corollary 4.10 that the recent work ofGoldszmidt, Morris, and Pearl (1990) can be embedded in the random-worlds framework.In the rest of this subsection, we explain their approach and the embedding.Consider a language consisting of propositional formulas over the propositional variablesp1; : : : ; pk, and default rules of the form B ! C (read \B's are typically C's"), where Band C are propositional formulas. A distribution � is said to �-satisfy a default rule B ! Cif �(CjB) � 1 � �. In addition to default rules, the framework also permits the use ofmaterial implication in a rule, as in B ) C. A distribution � is said to satisfy such a ruleif �(CjB) = 1. A parameterized probability distribution (PPD) is a collection f��g�>0 ofprobability distributions over 
, parameterized by �. A PPD f��g�>0 �-satis�es a set R ofrules if for every �, �� �-satis�es every default rule r 2 R and satis�es every non-defaultrule r 2 R. A set R of default rules �-entails B ! C if for every PPD that �-satis�es R,lim�!0 ��(CjB) = 1.As shown in (Ge�ner & Pearl, 1990), �-entailment possesses a number of reasonableproperties typically associated with default reasoning, including a preference for more spe-ci�c information. However, there are a number of desirable properties that it does not have.Among other things, irrelevant information is not ignored. (See (Bacchus et al., 1994) foran extensive discussion of this issue.)To obtain additional desirable properties, �-semantics is extended in (Goldszmidt et al.,1990) by an application of the principle of maximum entropy. Instead of considering allpossible PPD's, as above, we consider only the PPD n���;Ro�>0 such that, for each �,���;R has the maximum entropy among distributions that �-satisfy all the rules in R. (See(Goldszmidt et al., 1990) for precise de�nitions and technical details.) Note that, since theconstraints used to de�ne ���;R are all linear, there is indeed a unique such point of maximumentropy. A rule B ! C is an ME-plausible consequence of R if lim�!0 ���;R(CjB) = 1.The notion of ME-plausible consequence is analyzed in detail in (Goldszmidt et al., 1990),where it is shown to inherit all the nice properties of �-entailment (such as the preferencefor more speci�c information), while successfully ignoring irrelevant information. Equallyimportantly, algorithms are provided for computing the ME-plausible consequences of a setof rules in certain cases. 59



Grove, Halpern, & KollerOur maximum-entropy results can be used to show that the approach of (Goldszmidtet al., 1990) can be embedded in our framework in a straightforward manner. We simplytranslate a default rule r of the form B ! C into a �rst-order default rule�r =def k�C(x)j�B(x)kx �1 1;as in our earlier translation of Nilsson's approach. Note that the formulas that arise underthis translation all use the same approximate equality connective �1. The reason is thatthe approach of (Goldszmidt et al., 1990) uses the same � for all default rules. We cansimilarly translate a (non-default) rule r of the form B ) C into a �rst-order constraintusing universal quanti�cation: �r =def 8x (�B(x)) �C(x)):Under this translation, we can prove the following theorem.Theorem 4.15: Let c be a constant symbol. Using the translation described above, for aset R of defeasible rules, B ! C is an ME-plausible consequence of R i�Pr1 �C(c) ������B(c) ^ r̂2R �r! = 1:In particular, this theorem implies that all the computational techniques and resultsdescribed in (Goldszmidt et al., 1990) carry over to this special case of the random-worldsmethod. It also shows that random-world provides a principled justi�cation for the approach(Goldszmidt et al., 1990) present (one which is quite di�erent from the justi�cation givenin (Goldszmidt et al., 1990) itself).4.4 Beyond simple queriesIn Section 4.2 we restricted attention to simple queries. Our main result, Theorem 4.11,needed other assumptions as well: essential positivity, the existence of a unique maximum-entropy point ~v, and the requirement that F[ ](~v) > 0. We believe that this theorem is usefulin spite of its limitations, as demonstrated by the discussion in Section 4.3. Nevertheless,this result allows us to take advantage of only a small fragment of our rich language. Canwe �nd a more general theorem? After all, the basic concentration result (Theorem 3.13)holds with essentially no restrictions. In this section we show that it is indeed possible toextend Theorem 4.11 signi�cantly. However, there are serious limitations and subtleties.We illustrate these problems by means of examples, and then state an extended result.Our attempt to address these problems (so far as is possible) leads to a rather com-plicated �nal result. In fact, the problems we discuss are as interesting and important asthe theorem we actually give: they help us understand more of the limits of maximumentropy. Of course, every issue we discuss in this subsection is relatively minor comparedto maximum entropy's main (apparent) restriction, which concerns the use of non-unarypredicates. For the reader who is less concerned about the other, lesser, issues we remarkthat it is possible to skip directly to Section 5.We �rst consider the restrictions we placed on the KB , and show the di�culties thatarise if we drop them. We start with the restriction to a single maximum-entropy point. As60



Random Worlds and Maximum Entropythe concentration theorem (Theorem 3.13) shows, the entropy of almost every world is nearmaximum. But it does not follow that all the maximum-entropy points are surrounded bysimilar numbers of worlds. Thus, in the presence of more than one maximum-entropy point,we face the problem of �nding the relative importance, or weighting, of each maximum-entropy point. As the following example illustrates, this weighting is often sensitive to thetolerance values. For this reason, non-unique entropy maxima often lead to nonrobustness.Example 4.16: Suppose � = fP; cg, and consider the knowledge baseKB = (kP (x)kx �1 0:3)_ (kP (x)kx �2 0:7):Assume we want to compute Pr1(P (c)jKB). In this case, S~� [KB ] isf(u1; u2) 2 �2 : u1 � 0:3 + �1 or u1 � 0:7� �2g;and S~0[KB ] is f(u1; u2) 2 �2 : u1 � 0:3 or u1 � 0:7g:Note that S~0[KB ] has two maximum-entropy points: (0:3; 0:7) and (0:7; 0:3).Now consider the maximum-entropy points of S~� [KB ] for ~� > ~0. It is not hard to showthat if �1 > �2, then this space has a unique maximum-entropy point, (0:3 + �1; 0:7� �1).In this case, Pr~�1(P (c)jKB) = 0:3 + �1. On the other hand, if �1 < �2, then the uniquemaximum-entropy point of this space is (0:7+ �2; 0:3� �2), in which case Pr~�1(P (c)jKB) =0:7 + �2. If �1 = �2, then the space S~� [KB ] has two maximum-entropy points, and bysymmetry we obtain that Pr~�1(P (c)jKB) = 0:5. So, by appropriately choosing a sequenceof tolerance vectors converging to ~0, we can make the asymptotic value of this fractioneither 0:3, 0:5, or 0:7. Thus Pr1(P (c)jKB) does not exist.It is not disjunctions per se that cause the problem here: if we consider instead thedatabase KB 0 = (kP (x)kx �1 0:3) _ (kP (x)kx �2 0:6), then there is no di�culty. There isa unique maximum-entropy point of S~0[KB 0]|(0:6; 0:4)|and the asymptotic probabilityPr1(P (c)jKB 0) = 0:6, as we would want.7In light of this example (and many similar ones we can construct), we continue to assumethat there is a single maximum-entropy point. As we argued earlier, we expect this to betrue in typical practical applications, so the restriction does not seem very serious.We now turn our attention to the requirement that F[ ](~v) > 0. As we have alreadyobserved, this seems to be an obvious restriction to make, considering that the functionF['j ](~v) is not de�ned otherwise. However, this di�culty is actually a manifestation of amuch deeper problem. As the following example shows, any approach that just uses themaximum-entropy point of S~0[KB ] will necessarily fail in some cases where F[ ](~v) = 0.Example 4.17: Consider the knowledge baseKB = (jjPenguin(x)jjx �1 0)^ (kFly(x)jPenguin(x)kx �2 0) ^ Penguin(Tweety):7. We remark that it is also possible to construct examples of multiple maximum-entropy points by usingquadratic constraints rather than disjunction. 61



Grove, Halpern, & KollerSuppose we want to compute Pr1(Fly(Tweety)jPenguin(Tweety)). We can easily concludefrom Theorem 4.1 that this degree of belief is 0, as we would expect. However, we cannotreach this conclusion using Theorem 4.11 or anything like it. For consider the maximum-entropy point of S~0[KB ]. The coordinates v1, corresponding to Fly ^ Penguin, and v2,corresponding to :Fly^Penguin, are both 0. Hence, F[Penguin ](~v) = 0, so that Theorem 4.11does not apply.But, as we said, the problem is more fundamental. The information we need (that theproportion of 
ying penguins is zero) is simply not present if all we know is the maximum-entropy point ~v. We can obtain the same space S~0[KB ] (and thus the same maximum-entropy point) from quite di�erent knowledge bases. In particular, consider KB 0 whichsimply asserts that (jjPenguin(x)jjx �1 0) ^ Penguin(Tweety). This new knowledge basetells us nothing whatsoever about the fraction of 
ying penguins, and in fact it is easy toshow that Pr1(Fly(Tweety)jKB 0) = 0:5. But of course it is impossible to distinguish thiscase from the previous one just by looking at ~v. It follows that no result in the spirit ofTheorem 4.11 (which just uses the value of ~v) can be comprehensive.The example shows that the philosophy behind Theorem 4.11 cannot be extended veryfar, if at all: it is inevitable that there will be problems when F[ ](~v) = 0. But it is natural toask whether there is a di�erent approach altogether in which this restriction can be relaxed.That is, is it possible to construct a technique for computing degrees of belief in those caseswhere F[ ] = 0? As we mentioned in Section 4.1, we might hope to do this by computingPr~�1('jKB) as a function of ~� and then taking the limit as ~� goes to 0. In general, thisseems very hard. But, interestingly, the computational technique of (Goldszmidt et al.,1990) does use this type of parametric analysis, demonstrating that things might not beso bad for various restricted cases. Another source of hope is to remember that maximumentropy is, for us, merely one tool for computing random-worlds degrees of belief. Theremay be other approaches that bypass entropy entirely. In particular, some of the theoremswe give in (Bacchus et al., 1994) can be seen as doing this; these theorems will often applyeven if F[ ] = 0.Another assumption made throughout Section 4.2 is that the knowledge base has a spe-cial form, namely  (c)^KB 0, where  is essentially propositional and KB 0 does not containany occurrences of c. The more general theorem we state later relaxes this somewhat, asfollows.De�nition 4.18: A knowledge base KB is said to be separable with respect to query ' ifit has the form  ^ KB 0, where  contains neither quanti�ers nor proportions, and KB 0contains none of the constant symbols appearing in ' or in  .8It should be clear that if a query '(c) is simple for KB (as assumed in previous subsection),then the separability condition is satis�ed.As the following example shows, if we do not assume separability, we can easily run intononrobust behavior:Example 4.19: Consider the following knowledge base KB over the vocabulary � = fP; cg:(jjP (x)jjx �1 0:3 ^ P (c))_ (jjP (x)jjx �2 0:3 ^ :P (c)):8. Clearly, since our approach is semantic, it also su�ces if the knowledge base is equivalent to one of thisform. 62



Random Worlds and Maximum EntropyKB is not separable with respect to the query P (c). The space S~0[KB ] consists of aunique point (0:3; 0:7), which is also the maximum-entropy point. Both disjuncts of KBare consistent with the maximum-entropy point, so we might expect that the presenceof the conjuncts P (c) and :P (c) in the disjuncts would not a�ect the degree of belief.That is, if it were possible to ignore or discount the role of the tolerances, we wouldexpect Pr1(P (c)jKB) = 0:3. However, this is not the case. Consider the behavior ofPr~�1(P (c)jKB) for ~� > ~0. If �1 > �2, then the maximum-entropy point of S~� [KB ] is(0:3 + �1; 0:7 � �1). Now, consider some � > 0 su�ciently small so that �2 + � < �1. ByCorollary 3.14, we deduce that Pr~�1((jjP (x)jjx > 0:3 + �2) jKB) = 1. Therefore, by The-orem 3.16, Pr~�1(P (c)jKB) = Pr~�1(P (c) jKB ^ (jjP (x)jjx > 0:3 + �2)) (assuming the limitexists). But since the newly added expression is inconsistent with the second disjunct, weobtain that Pr~�1(P (c)jKB) = Pr~�1(P (c) jP (c) ^ (jjP (x)jjx �1 0:3)) = 1, and not 0:3. Onthe other hand, if �1 < �2, we get the symmetric behavior, where Pr~�1(P (c)jKB) = 0. Onlyif �1 = �2 do we get the expected value of 0:3 for Pr~�1(P (c)jKB). Clearly, by appropriatelychoosing a sequence of tolerance vectors converging to ~0, we can make the asymptotic valueof this fraction any of 0, 0:3, or 1, or not exist at all. Again, Pr1(P (c)jKB) is not robust.We now turn our attention to restrictions on the query. In Section 4.2, we restrictedto queries of the form '(c), where '(x) is essentially propositional. Although we intend toease this restriction, we do not intend to allow queries that involve statistical information.The following example illustrates the di�culties.Example 4.20: Consider the knowledge base KB = jjP (x)jjx �1 0:3 and the query ' =jjP (x)jjx �2 0:3. It is easy to see that the unique maximum-entropy point of S~� [KB ] is (0:3+�1; 0:7� �1). First suppose �2 < �1. From Corollary 3.14, it follows that Pr~�1((jjP (x)jjx >0:3 + �2) jKB) = 1. Therefore, by Theorem 3.16, Pr~�1('jKB) = Pr~�1('jKB ^ (jjP (x)jjx >0:3+�2)) (assuming the limit exists). The latter expression is clearly 0. On the other hand,if �1 < �2, then KB [~� ] j= '[~� ], so that Pr~�1('jKB) = 1. Thus, the limiting behavior ofPr~�1('jKB) depends on how ~� goes to ~0, so that Pr1('jKB) is nonrobust.The real problem here is the semantics of proportion expressions in queries. While theutility of the � connective in expressing statistical information in the knowledge base shouldbe fairly uncontroversial, its role in conclusions we might draw, such as ' in Example 4.20, ismuch less clear. The formal semantics we have de�ned requires that we consider all possibletolerances for a proportion expression in ', so it is not surprising that nonrobustness is theusual result. One might argue that the tolerances in queries should be allowed to dependmore closely on tolerances of expressions in the knowledge base. It is possible to formalizethis intuition, as is done in (Koller & Halpern, 1992), to give an alternative semantics fordealing with proportion expressions in queries that often gives more reasonable behavior.Considerations of this alternative semantics would lead us too far a�eld here; rather, wefocus for the rest of the section on �rst-order queries.In fact, our goal is to allow arbitrary �rst-order queries, even those that involve predi-cates of arbitrary arity and equality (although we still need to restrict the knowledge baseto the unary language L�1 ). However, as the following example shows, quanti�ers too cancause problems.Example 4.21: Let � = fP; cg and consider KB1 = 8x:P (x), KB2 = jjP (x)jjx �1 0, and' = 9xP (x). It is easy to see that S~0[KB1] = S~0[KB2] = f(0; 1)g, and therefore the unique63



Grove, Halpern, & Kollermaximum-entropy point in both is ~v = (0; 1). However, Pr1('jKB1) is clearly 0, whereasPr1('jKB2) is actually 1. To see the latter fact, observe that the vast majority of modelsof KB2 around ~v actually satisfy 9xP (x). There is actually only a single world associatedwith (0; 1) at which 9xP (x) is false. This example is related to Example 4.17, because itillustrates another case in which S~0[KB ] cannot su�ce to determine degrees of belief.In the case of the knowledge base KB1, the maximum-entropy point (0; 1) is quitemisleading about the nature of nearby worlds. We must avoid this sort of \discontinuity"when �nding the degree of belief of a formula that involves �rst-order quanti�ers. Thenotion of stability de�ned below is intended to deal with this problem. To de�ne it, we �rstneed the following notion of a size description.De�nition 4.22: A size description (over P) is a conjunction of K formulas: for eachatom Aj over P , it includes exactly one of 9xAj(x) and :9xAj(x). For ~u 2 �K , the sizedescription associated with ~u, written �(~u), is that size description which includes :9xAi(x)if ui = 0 and 9xAi(x) if ui > 0.The problems that we want to avoid occur when there is a maximum-entropy point ~vwith size description �(~v) such that in a neighborhood of ~v, most of the worlds satisfyingKB are associated with other size descriptions. Intuitively, the problem with this is that thecoordinates of ~v alone give us misleading information about the nature of worlds near ~v, andso about degrees of belief.9 We give a su�cient condition which can be used to avoid thisproblem in the context of our theorems. This condition is e�ective and uses machinery (inparticular, the ability to �nd solution spaces) that is needed to use the maximum-entropyapproach in any case.De�nition 4.23: Let ~v be a maximum-entropy point of S~� [KB ]. We say that ~v is safe(with respect to KB and ~�) if ~v is not contained in S~� [KB ^ :�(~v)]. We say that KB and~� are stable for �� if for every maximum-entropy point ~v 2 S~� [KB ] we have that �(~v) = ��and that ~v is safe with respect to KB and ~� .The next result is the key property of stability that we need.Theorem 4.24: If KB and ~� > ~0 are stable for �� then Pr~�1(��jKB) = 1.Our theorems will use the assumption that there exists some �� such that, for all suf-�ciently small ~� , KB and ~� are stable for ��. We note that this does not imply that �� isnecessarily the size description associated with the maximum-entropy point(s) of S~0[KB ].Example 4.25: Consider the knowledge base KB2 in Example 4.21, and recall that ~v =(0; 1) is the maximum-entropy point of S~0[KB2]. The size description �(~v) is :9xA1(x) ^9xA2(x). However the maximum-entropy point of S~� [KB2] for ~� > 0 is actually (�1; 1��1),so that the appropriate �� for such a ~� is 9xA1(x) ^ 9xA2(x).9. We actually conjecture that problems of this sort cannot arise in the context of a maximum-entropy pointof S~� [KB ] for ~� > ~0. More precisely, for su�ciently small ~� and a maximum-entropy point ~v of S~� [KB ]with KB 2 L�1 , we conjecture that Pr~�1[O](�(~v)jKB) = 1 where O is an open set that contains ~v butno other maximum-entropy point of S~� [KB ]. If this is indeed the case, then the machinery of stabilitythat we are about to introduce is unnecessary, since it holds in all cases that we need it. However, wehave been unable to prove this. 64



Random Worlds and Maximum EntropyAs we now show, the restrictions outlined above and in Section 4.1 su�ce for our nextresult on computing degrees of belief. In order to state this result, we need one additionalconcept. Recall that in Section 4.2 we expressed an essentially propositional formula '(x)as a disjunction of atoms. Since we wish to also consider formulas ' using more thanone constant and non-unary predicates, we need a richer concept than atoms. This is themotivation behind the de�nition of complete descriptions.De�nition 4.26: Let Z be some set of variables and constants. A complete description Dover � and Z is an unquanti�ed conjunction of formulas such that:� For every predicate R 2 � [ f=g of arity r and for every zi1 ; : : : ; zir 2 Z , D containsexactly one of R(zi1 ; : : : ; zir) or :R(zi1 ; : : : ; zir) as a conjunct.� D is consistent.10Complete descriptions simply extend the role of atoms in the context of essentially proposi-tional formulas to the more general setting. As in the case of atoms, if we �x some arbitraryordering of the conjuncts in a complete description, then complete descriptions are mutu-ally exclusive and exhaustive. Clearly, a formula � whose free variables and constants arecontained in Z , and which is is quanti�er- and proportion-free, is equivalent to some dis-junction of complete descriptions over Z . For such a formula �, let A(�) be a set of completedescriptions over Z such that � is equivalent to the disjunction WD2A(�)D, where Z is theset of constants and free variables in �.For the purposes of the remaining discussion (except within proofs), we are interestedonly in complete descriptions over an empty set of variables. For a set of constants Z , wecan view a description D over Z as describing the di�erent properties of the constants in Z .In our construction, when considering a KB of the form  ^ KB 0 which is separable withrespect to a query ', we de�ne the set Z to contain precisely those constants in ' and in . In particular, this means that KB 0 will mention no constant in Z .A complete description D over a set of constants Z can be decomposed into three parts:the unary part D1 which consists of those conjuncts of D that involve unary predicates(and thus determines an atom for each of the constant symbols), the equality part D=which consists of those conjuncts of D involving equality (and thus determines which ofthe constants are equal to each other), and the non-unary part D>1 which consists ofthose conjuncts of D involving non-unary predicates (and thus determines the non-unaryproperties other than equality of the constants). As we suggested, the unary part of sucha complete description D extends the notion of \atom" to the case of multiple constants.For this purpose, we also extend F[A] (for an atom A) and de�ne F[D] for a description D.Intuitively, we are treating each of the individuals as independent, so that the probabilitythat constant c1 satis�es atom Aj1 and that constant c2 satis�es Aj2 is just the product ofthe probability that c1 satis�es Aj1 and the probability that c2 satis�es Aj2 .De�nition 4.27: For a complete description D without variables whose unary part isequivalent to Aj1(c1) ^ : : : ^ Ajm(cm) (for distinct constants c1; : : : ; cm) and for a point10. Inconsistency is possible because of the use of equality. For example, if D includes z1 = z2 as well asboth R(z1; z3) and :R(z2; z3), it is inconsistent. 65



Grove, Halpern, & Koller~u 2 �K , we de�ne F[D](~u) = mỲ=1 uj` :Note that F[D] is depends only on D1, the unary part of D.As we mentioned, we can extend our approach to deal with formulas ' that also usenon-unary predicate symbols. Our computational procedure for such formulas uses themaximum-entropy approach described above combined with the techniques of (Grove et al.,1993b). These latter were used in (Grove et al., 1993b) to compute asymptotic conditionalprobabilities when conditioning on a �rst-order knowledge base KB fo . The basic idea inthat case is as follows: To compute Pr1('jKB fo), we examine the behavior of ' in �nitemodels of KB fo . We partition the models of KB fo into a �nite collection of classes such that' behaves uniformly in each individual class. By this we mean that almost all worlds in theclass satisfy ' or almost none do; i.e., there is a 0-1 law for the asymptotic probability of 'when we restrict attention to models in a single class. In order to compute Pr1('jKB fo) wetherefore identify the classes, compute the relative weight of each class (which is requiredbecause the classes are not necessarily of equal relative size), and then decide for each classwhether the asymptotic probability of ' is zero or one.It turns out that much the same ideas continue to work in this framework. In this case,the classes are de�ned using complete descriptions and the appropriate size description ��.The main di�erence is that, rather than examining all worlds consistent with the knowledgebase, we now concentrate on those worlds in the vicinity of the maximum-entropy points, asoutlined in the previous section. It turns out that the restriction to these worlds a�ects veryfew aspects of this computational procedure. In fact, the only di�erence is in computing therelative weight of the di�erent classes. This last step can be done using maximum entropy,using the tools described in Section 4.2.Theorem 4.28: Let ' be a formula in L� and let KB =  ^KB 0 be an essentially positiveknowledge base in L�1 which is separable with respect to '. Let Z be the set of constantsappearing in ' or in  (so that KB 0 contains none of the constants in Z) and let �6= bethe formula Vc;c02Z c 6= c0. Assume that there exists a size description �� such that, forall ~� > 0, KB and ~� are stable for ��, and that the space S~0[KB ] has a unique maximum-entropy point ~v. ThenPr1('jKB) = PD2A( ^�6=) Pr1('j�� ^D)F[D](~v)PD2A( ^�6=) F[D](~v)if the denominator is positive.Since both ' and ��^D are �rst-order formulas and ��^D is precisely of the required formin (Grove et al., 1993b), then Pr1('j�� ^D) is either 0 or 1, and we can use the algorithmof (Grove et al., 1993b) to compute this limit, in the time bounds outlined there.One corollary of the above is that the formula � 6= holds with probability 1 given anyknowledge base KB of the form we are interested in. This corresponds to a default assump-tion of unique names , a property often considered to be desirable in inductive reasoningsystems. 66



Random Worlds and Maximum EntropyWhile this theorem does represent a signi�cant generalization of Theorem 4.11, it stillhas numerous restrictions. There is no question that some of these can be loosened to someextent, although we have not been able to �nd a clean set of conditions signi�cantly moregeneral than the ones that we have stated. We leave it as an open problem whether such aset of conditions exists. Of course, the most signi�cant restriction we have made is that ofallowing only unary predicates in the KB . This issue is the subject of the next section.5. Beyond unary predicatesThe random-worlds method makes complete sense for the full language L� (and, indeed, foreven richer languages). On the other hand, our application of maximum entropy is limitedto unary knowledge bases. Is this restriction essential? While we do not have a theorem tothis e�ect (indeed, it is not even clear what the wording of such a theorem would be), weconjecture that it is.Certainly none of the techniques we have used in this paper can be generalized signif-icantly. One di�culty is that, once we have a binary or higher arity predicate, we see noanalogue to the notion of atoms and no canonical form theorem. In Section 3.2 and in theproof of Theorem 3.5, we discuss why it becomes impossible to get rid of nested quanti�ersand proportions when we have non-unary predicates. Even considering matters on a moreintuitive level, the problems seem formidable. In a unary language, atoms are useful be-cause they are simple descriptions that summarize everything that might be known about adomain element in a model. But consider a language with a single binary predicate R(x; y).Worlds over this language include all �nite graphs (where we think of R(x; y) as holding ifthere is an edge from x to y). In this language, there are in�nitely many properties thatmay be true or false about a domain element. For example, the assertions \the node x hasm neighbors" are expressible in the language for each m. Thus, in order to partition thedomain elements according to the properties they satisfy, we would need to de�ne in�nitelymany partitions. Furthermore, it can be shown that \typically" (i.e., in almost all graphsof su�ciently great size) each node satis�es a di�erent set of �rst-order properties. Thus,in most graphs, all the nodes are \di�erent", so a partition of domain elements into a �nitenumber of \atoms" makes little sense. It is very hard to see how the basic proof strat-egy we have used, of summarizing a model by listing the number of elements with variousproperties, can possibly be useful here.The di�culty of �nding an analogue to entropy in the presence of higher-arity predicatesis supported by results from (Grove et al., 1993a). In this paper we have shown thatmaximum entropy can be a useful tool for computing degrees of belief in certain cases, ifthe KB involves only unary predicates. In (Grove et al., 1993a) we show that there can beno general computational technique to compute degrees of belief once we have non-unarypredicate symbols in the KB . The problem of �nding degrees of belief in this case is highlyundecidable. This result was proven without statistical assertions in the language, and infact holds for quite weak sublanguages of �rst-order logic. (For instance, in a languagewithout equality and with only depth-two quanti�er nesting.) So even if there is somegeneralized version of maximum entropy, it will either be extremely restricted in applicationor will be useless as a computational tool. 67



Grove, Halpern, & Koller6. ConclusionThis paper has had two major thrusts. The �rst is to establish a connection between max-imum entropy and the random-worlds approach for a signi�cant fragment of our language,one far richer than that considered by Paris and Vencovska (1989) or Shastri (1989). Thesecond is to suggest that such a result is unlikely to obtain for the full language.The fact that we have a connection between maximum entropy and random worlds issigni�cant. For one thing, it allows us to utilize all the tools that have been developed forcomputing maximum entropy e�ciently (see (Goldman, 1987) and the further referencestherein), and may thus lead to e�cient algorithms for computing degrees of belief for a largeclass of knowledge bases. In addition, maximum entropy is known to have many attractiveproperties (Jaynes, 1978). Our result shows these properties are shared by the random-worlds approach in the domain where these two approaches agree. Indeed, as shown in(Bacchus et al., 1994), the random-worlds approach has many of these properties for thefull (non-unary) language.On the other hand, a number of properties of maximum entropy, such as its dependenceon the choice of language and its inability to handle causal reasoning appropriately, havebeen severely criticized (Pearl, 1988; Goldszmidt et al., 1990). Not surprisingly, thesecriticisms apply to random worlds as well. A discussion of these criticisms, and whetherthey really should be viewed as shortcomings of the random-worlds method, is beyond thescope of this paper; the interested reader should consult (Bacchus et al., 1994, Section 7)for a more thorough discussion of these issues and additional references.We believe that our observations regarding the limits of the connection between therandom-worlds method and maximum entropy are also signi�cant. The question of howwidely maximum entropy applies is quite important. Maximum entropy has been gainingprominence as a means of dealing with uncertainty both in AI and other areas. However,the di�culties of using the method once we move to non-unary predicates seem not tohave been fully appreciated. In retrospect, this is not that hard to explain; in almost allapplications where maximum entropy has been used (and where its application can be bestjusti�ed in terms of the random-worlds method) the knowledge base is described in termsof unary predicates (or, equivalently, unary functions with a �nite range). For example, inphysics applications we are interested in such predicates as quantum state (see (Denbigh& Denbigh, 1985)). Similarly, AI applications and expert systems typically use only unarypredicates such as symptoms and diseases (Cheeseman, 1983). We suspect that this is not anaccident, and that deep problems will arise in more general cases. This poses a challenge toproponents of maximum entropy since, even if one accepts the maximum-entropy principle,the discussion above suggests that it may simply be inapplicable in a large class of interestingexamples.Appendix A. Proofs for Section 3.2Theorem 3.5: Every formula in L=1 is equivalent to a formula in canonical form. More-over, there is an e�ective procedure that, given a formula � 2 L=1 constructs an equivalentformula b� in canonical form. 68



Random Worlds and Maximum EntropyProof: We show how to e�ectively transform � 2 L=1 to an equivalent formula in canonicalform. We �rst rename variables if necessary, so that all variables used in � are distinct(i.e., no two quanti�ers, including proportion expressions, ever bind the same variable sym-bol).We next transform � into an equivalent 
at formula �f 2 L�1 , where a 
at formulais one where no quanti�ers (including proportion quanti�ers) have within their scope aconstant or variable other than the variable(s) the quanti�er itself binds. (Note that in thistransformation we do not require that � be closed. Also, observe that 
atness implies thatthere are no nested quanti�ers.)We de�ne the transformation by induction on the structure of �. There are three easysteps:� If � is an unquanti�ed formulas, then �f = �.� (�0 _ �00)f = �0f _ �00f� (:�0)f = :(�f ).All that remains is to consider quanti�ed formulas of the form 9x �0, jj�0jj~x, or k�0j�00k~x. Itturns out that the same transformation works in all three cases. We illustrate the transfor-mation by looking at the case where � is of the form jj�0jj~x. By the inductive hypothesis, wecan assume that �0 is 
at. For the purposes of this proof, we de�ne a basic formula to be anatomic formula (i.e., one of the form P (z)), a proportion formula, or a quanti�ed formula(i.e., one of the form 9x�). Let �1; : : : ; �k be all basic subformulas of �0 that do not mentionany variable in ~x. Let z be a variable or constant symbol not in ~x that is mentioned in �0.Clearly z must occur in some basic subformula of �0, say �0. By the inductive hypothesis,it is easy to see that �0 cannot mention any variable in ~x and so, by construction, it is inf�1; : : : ; �`g. In other words, not only do f�1; : : : ; �`g not mention any variable in ~x, butthey also contain all occurrences of the other variables and constants. (Notice that thisargument fails if the language contains any high-arity predicates, including equality. Forthen �0 might include subformulas of the form R(x; y) or x = y, which can mix variablesoutside ~x with those in ~x.)Now, let B1; : : : ; B2` be all the \atoms" over �1; : : : ; �`. That is, we consider all formulas�01 ^ : : : ^ �0̀ where �0i is either �i or :�i. Now consider the disjunction:2_̀i=1(Bi ^ jj�0jj~x):This is surely equivalent to jj�0jj~x, because some Bi must be true. However, if we assumethat a particular Bi is true, we can simplify jj�0jj~x by replacing all the �i subformulas bytrue or false, according to Bi. (Note that this is allowed only because the �i do not mentionany variable in ~x). The result is that we can simplify each disjunct (Bi^jj�0jj~x) considerably.In fact, because of our previous observation about f�1; : : : ; �`g, there will be no constantsor variables outside ~x left within the proportion quanti�er. This completes this step ofthe induction. Since the other quanti�ers can be treated similarly, this proves the 
atnessresult. 69



Grove, Halpern, & KollerIt now remains to show how a 
at formula can be transformed to canonical form. Sup-pose � 2 L�1 is 
at. Let �� 2 L=1 be the formula equivalent to � obtained by using thetranslation of Section 2.1. Every proportion comparison in �� is of the form t � t0"i where tand t0 are polynomials over 
at unconditional proportions. In fact, t0 is simply a product of
at unconditional proportions (where the empty product is taken to be 1). Note also thatsince we cleared away conditional proportions by multiplying by t0, if t0 = 0 then so is t,and so the formula t � t0"i is automatically true. We can therefore replace the comparisonby (t0 = 0) _ (t � t0"i ^ t0 > 0). Similarly, we can replace a negated comparison by anexpression of the form :(t � t0"i) ^ t0 > 0.The next step is to rewrite all the 
at unconditional proportions in terms of atomicproportions. In any such proportion jj�0jj~x, the formula �0 is a Boolean combination ofP (xi) for predicates P 2 P and xi 2 ~x. Thus, the formula �0 is equivalent to a disjunctionWj(Aj1(xi1) ^ : : : ^ Ajm(xim)), where each Aji is an atom over P and ~x = fxi1 ; : : : ; ximg.These disjuncts are mutually exclusive and the semantics treats distinct variables as beingindependent, so jj�0jj~x =Xj mYi=1 jjAji (x)jjx:We perform this replacement for each proportion expression. Furthermore, any term t0 inan expression of the form t � t0"i will be a product of such expressions, and so will bepositive.Next, we must put all pure �rst-order formulas in the right form. We �rst rewrite � topush all negations inwards as far as possible, so that only atomic subformulas and existentialformulas are negated. Next, note that since � is 
at, each existential subformula must havethe form 9x �0, where �0 is a quanti�er-free formula which mentions no constants and onlythe variable x. Hence, �0 is a Boolean combination of P (x) for predicates P 2 P . Again,the formula �0 is equivalent to a disjunction of atoms of the form WA2A(�)A(x), so 9x �0 isequivalent to WA2A(�) 9xA(x). We replace 9x �0 by this expression. Finally, we must dealwith formulas of the form P (c) or :P (c) for P 2 P . This is easy: We can again replace aformula � of the form P (c) or :P (c) by the disjunction WA2A(�)A(c).The penultimate step is to convert � into disjunctive normal form. This essentially bringsthings into canonical form. Note that since we dealt with formulas of the form :P (c) inthe previous step, we do not have to deal with conjuncts of the form :Ai(c).The �nal step is to check that we do not have Ai(c) and either :9xAi(x) or Aj(c) forsome j 6= i as conjuncts of some disjunct. If we do, we simply remove that disjunct.Appendix B. Proofs for Section 3.3Lemma 3.11: There exist some function h : IN ! IN and two strictly positive polynomialfunctions f; g : IN ! IR such that, for KB 2 L�1 and ~u 2 �K, if #worlds~�N [~u](KB) 6= 0,then (h(N)=f(N))eNH(~u) � #worlds~�N [~u](KB) � h(N)g(N)eNH(~u):Proof: To choose a world W 2 WN satisfying KB such that �(W ) = ~u, we must partitionthe domain among the atoms according to the proportions in ~u, and then choose an assign-ment for the constants in the language subject to the constraints imposed by KB . Finally,70



Random Worlds and Maximum Entropyeven though KB mentions only unary predicates, if there are any non-unary predicates inthe vocabulary we must choose a denotation for them.Suppose ~u = (u1; : : : ; uK), and let Ni = uiN for i = 1; : : : ; K. The number of parti-tions of the domain into atoms is � NN1;:::;NK�; each such partition completely determines thedenotation for the unary predicates. We must also specify the denotations of the constantsymbols. There are at most N jCj ways of choosing these. On the other hand, we know thereis at least one model (W;~�) of KB such that �(W ) = ~u, so there there at least one choice. Infact, there is at least one world W 0 2 WN such that (W 0; ~�) j= KB for each of the � NN1;:::;NK�ways of partitioning the elements of the domain (and each such world W 0 is isomorphic toW ). Finally we must choose the denotation of the non-unary predicates. However, ~u doesnot constrain this choice and, by assumption, neither does KB . Therefore the number ofsuch choices is some function h(N) which is independent of ~u.11 We conclude that:h(N) NN1; : : : ; NK! � #worlds~�N [~u](KB) � h(N)N jCj NN1; : : : ; NK!:It remains to estimate  NN1; : : : ; NK! = N !N1!N2! : : :NK ! :To obtain our result, we use Stirling's approximation for the factorials, which says thatm! = p2�mmme�m(1 +O(1=m)):It follows that exist constants L; U > 0 such thatLmme�m � m! � Ummme�mfor all m. Using these bounds, as well as the fact that Ni � N , we get:LUKNK NN QKi=1 eNieN QKi=1NNii � N !N1!N2! : : :NK ! � UNLK NN QKi=1 eNieN QKi=1NNii :Now, consider the expression common to both bounds:NN QKi=1 eNieN QKi=1NNii = NNQKi=1NNii= KYi=1�NNi�Ni= KYi=1 eNi ln(N=Ni)= e�NPKi=1 ui ln(ui) = eNH(~u):11. It is easy to verify that in fact h(N) = YR2��	 2Narity(R) ;where 	 is the unary fragment of � and arity(R) denotes the arity of the predicate symbol R.71



Grove, Halpern, & KollerWe obtain that h(N)LUKNK eNH(~u) � #worlds~�N [~u](KB) � N jCjh(N)UNLK eNH(~u);which is the desired result.We next want to prove Theorem 3.13. To do this, it is useful to have an alternativerepresentation of the solution space S~� [KB ]. Towards this end, we have the followingde�nition.De�nition B.1: Let �~�N [KB ] = f�(W ) : W 2 WN ; (W;~�) j= KBg. Let �~�1[KB ] be thelimit of these spaces. Formally,�~�1[KB ] = f~u : 9N0 s.t. 8N � N0 9~uN 2 �~�N [KB ] s.t. limN!1~uN = ~ug:The following theorem establishes a tight connection between S~� [KB ] and �~�1[KB ].Theorem B.2:(a) For all N and ~� , we have �~�N [KB ] � S~� [KB ].(b) For all su�ciently small ~� , we have �~�1[KB ] = S~� [KB ].Proof: Part (a) is immediate: If ~u 2 �~�N [KB ], then ~u = �(W ) for some W 2 WN suchthat (W;~�) j= KB . It is almost immediate from the de�nitions that �(W ) must satisfy�(KB [~� ]), so �(W ) 2 Sol [�(KB [~� ])]. The inclusion �~�N [KB ] � S~� [KB ] now follows.One direction of part (b) follows immediately from part (a). Recall that �~�N [KB ] �S~� [KB ] and that the points in �~�1[KB ] are limits of a sequence of points in �~�N [KB ]. SinceS~� [KB ] is closed, it follows that �~�1[KB ] � S~� [KB ].For the opposite inclusion, the general strategy of the proof is to show the following:(i) If ~� is su�ciently small, then for all ~u 2 S~� [KB ], there is some sequence of pointsn~uN0 ;~uN0+1;~uN0+2;~uN0+3; : : :o � Sol [�(KB [~� ])] such that, for all N � N0, the coor-dinates of ~uN are all integer multiples of 1=N and limN!1~uN = ~u.(ii) if ~w 2 Sol [�(KB [~� ])] and all its coordinates are integer multiples of 1=N , then ~w 2�~�N [KB ].This clearly su�ces to prove that ~u 2 �~�1[KB ].We begin with the proof of (ii), which is straightforward. Suppose the point~w = (r1=N; r2=N; : : : ; rK=N) is in Sol [�(KB [~� ])]. We construct a world W 2 WN suchthat �(W ) = ~w as follows. The denotation of atom A1 is the set of elements f1; : : : ; r1g,the denotation of atom A2 is the set fr1 + 1; : : : ; r1 + r2g, and so on. It remains to choosethe denotations of the constants (since the denotation of the predicates of arity greaterthan 1 is irrelevant). Without loss of generality we can assume KB is in canonical form.(If not, we consider dKB .) Thus, KB is a disjunction of conjunctions, say Wj �j . Since~w 2 Sol [�(KB [~� ])], we must have ~w 2 Sol [�(�j[~� ])] for some j. We use �j to de�ne theproperties of the constants. If �j contains Ai(c) for some atom Ai, then we make c satisfy72



Random Worlds and Maximum EntropyAi. Note that, by De�nition 3.6, if �j has such a conjunct then ui > 0. If �j contains noatomic conjunct mentioning the constant c, then we make c satisfy Ai for some arbitraryatom with ui > 0. It should now be clear that (W;~�) satis�es �j , and so satis�es KB . Notethat in this construction it is important that we started with ~w in Sol [�(KB [~� ])], ratherthan just in the closure space S~� [KB ]; otherwise, the point would not necessarily satisfy�(KB [~� ]).We now consider condition (i). This is surprisingly di�cult to prove; the proof involvestechniques from algebraic geometry. Our job would be relatively easy if Sol [�(KB [~� ])] werean open set. Unfortunately, it is not. On the other hand, it would behave essentially likean open set if we could replace the occurrences of � in �(KB [~� ]) by <. It turns out that,for our purposes here, this replacement is possible.Let �<(KB [~� ]) be the same as �(KB [~� ]) except that every (unnegated) conjunct ofthe form (t � �it0) is replaced by (t < �it0). (Notice that this is essentially the oppositetransformation to the one used when de�ning essential positivity in De�nition 4.4.) Finally,let S<~� [KB ] be Sol [�<(KB [~� ])]. It turns out that, for all su�ciently small ~� , S<~� [KB ] =S~� [KB ]. This result, which we label as Lemma B.5, will be stated and proved later. Fornow we use the lemma to continue the proof of the main result.Consider some ~u 2 S~� [KB ]. It su�ces to show that for all � > 0 there exists N0 suchthat for all N > N0, there exists a point ~uN 2 Sol [�<(KB [~� ])] such that all the coordinatesof~uN are integer multiples of 1=N and such that j~u�~uN j < �. (For then we can take smallerand smaller �'s to create a sequence ~uN converging to ~u.) Hence, let � > 0. By Lemma B.5,we can �nd some~u0 2 Sol [�<(KB [~� ])] such that j~u�~u0j < �=2. By de�nition, every conjunctin �<(KB [~� ]) is of the form q0(~w) = 0, q0(~w) > 0, q(~w) < �iq0(~w), or q(~w) > �iq0(~w), whereq0 is a positive polynomial. Ignore for the moment the constraints of the form q0(~w) = 0,and consider the remaining constraints that ~u0 satis�es. These constraints all involve strictinequalities, and the functions involved (q and q0) are continuous. Thus, there exists some�0 > 0 such that for all ~w for which j~u0 � ~wj < �0, these constraints are also satis�ed by ~w.Now consider a conjunct of the form q0(~w) = 0 that is satis�ed by~u0. Since q0 is positive, thishappens if and only if the following condition holds: for every coordinate wi that actuallyappears in q0, we have u0i = 0. In particular, if ~w and ~u0 have the same coordinates withvalue 0, then q0(~w) = 0. It follows that for all ~w, if j~u0 � ~wj < �0 and ~u0 and ~w have thesame coordinates with value 0, then ~w also satis�es �<(KB [~� ]).We now construct ~uN that satis�es the requirements. Let i� be the index of thatcomponent of ~u0 with the largest value. We de�ne ~uN by considering each of its componentsuNi , for 1 � i � K: uNi = 8><>: 0 u0i = 0dNu0ie=N i 6= i� and u0i > 0uNi �Pj 6=i�(uNj � u0j) i = i�:It is easy to verify that the components of ~uN sum to 1. All the components in ~u0, otherthan the i�'th, are increased by at most 1=N . The component uNi� is decreased by at mostK=N . We will show that ~uN has the right properties for all N > N0, where N0 is such that1=N0 < min(ui� ; �=2; �0)=2K. The fact that K=N0 < ui� guarantees that ~uN is in �K forall N > N0. The fact that 2K=N0 < �=2 guarantees that ~uN is within �=2 of ~u0, and hencewithin � of ~u. Since 2K=N0 < �0, it follows that j~u0 �~uN j < �0. Since ~uN is constructed73



Grove, Halpern, & Kollerto have exactly the same 0 coordinates as ~u0, we conclude that ~uN 2 Sol [�<(KB [~� ])], asrequired. Condition (i), and hence the entire theorem, now follows.It now remains to prove Lemma B.5, which was used in the proof just given. As wehinted earlier, this requires tools from algebraic geometry. We base our de�nitions on thepresentation in (Bochnak, Coste, & Roy, 1987). A subset A of IR` is said to be semi-algebraicif it is de�nable in the language of real-closed �elds. That is, A is semi-algebraic if there isa �rst-order formula '(x1; : : : ; x`) whose free variables are x1; : : : ; x` and whose only non-logical symbols are 0, 1, +, �, < and =, such that IR j= '(u1; : : : ; u`) i� (u1; : : : ; u`) 2 A.12A function f : X ! Y , where X � IRh and Y � IR`, is said to be semi-algebraic if its graph(i.e., f(~u; ~w) : f(~u) = ~wg) is semi-algebraic. The main tool we use is the following CurveSelection Lemma (see (Bochnak et al., 1987, p. 34)):Lemma B.3: Suppose that A is a semi-algebraic set in IR` and ~u 2 A. Then there existsa continuous, semi-algebraic function f : [0; 1]! IR` such that f(0) = ~u and f(t) 2 A forall t 2 (0; 1].Our �rst use of the Curve Selection Lemma is in the following, which says that, in acertain sense, semi-algebraic functions behave \nicely" near limits. The type of phenomenonwe wish to avoid is illustrated by x sin 1x which is continuous at 0, but has in�nitely manylocal maxima and minima near 0.Proposition B.4: Suppose that g : [0; 1] ! IR is a continuous, semi-algebraic functionsuch that g(u) > 0 if u > 0 and g(0) = 0. Then there exists some � > 0 such that g isstrictly increasing in the interval [0; �].Proof: Suppose, by way of contradiction, that g satis�es the hypotheses of the propositionbut there is no � such that g is increasing in the interval [0; �]. We de�ne a point u in [0; 1]to be bad if for some u0 2 [0; u) we have g(u0) � g(u). Let A be the set of all the bad points.Since g is semi-algebraic so is A, since u0 2 A i�9u0 ((0 � u0 < u) ^ (g(u) � g(u0))):Since, by assumption, g is not increasing in any interval [0; �], we can �nd bad pointsarbitrarily close to 0 and so 0 2 A. By the Curve Selection Lemma, there is a continuoussemi-algebraic curve f : [0; 1] ! IR such that f(0) = 0 and f(t) 2 A for all t 2 (0; 1].Because of the continuity of f , the range of f , i.e., f([0; 1]), is [0; r] for some r 2 [0; 1]. Bythe de�nition of f , (0; r]� A. Since 0 62 A, it follows that f(1) 6= 0; therefore r > 0 and so,by assumption, g(r) > 0. Since g is a continuous function, it achieves a maximum v > 0over the range [0; r]. Consider the minimum point in the interval where this maximum isachieved. More precisely, let u be the in�mum of the set fu0 2 [0; r] : g(u0) = vg; clearly,g(u) = v. Since v > 0 we obtain that u > 0 and therefore u 2 A. Thus, u is bad. But thatmeans that there is a point u0 < u for which g(u0) � g(u), which contradicts the choice ofv and u.We can now prove Lemma B.5. Recall, the result we need is as follows.12. In (Bochnak et al., 1987), a set is taken to be semi-algebraic if it is de�nable by a quanti�er-free formulain the language of real closed �elds. However, as observed in (Bochnak et al., 1987), since the theory ofreal closed �elds admits elimination of quanti�ers (Tarski, 1951), the two de�nitions are equivalent.74



Random Worlds and Maximum EntropyLemma B.5: For all su�ciently small ~� , S<~� [KB ] = S~� [KB ].Proof: Clearly S<~� [KB ] � S~� [KB ]. To prove the reverse inclusion we consider dKB ,a canonical form equivalent of KB . We consider each disjunct of dKB separately. Let� be a conjunction that is one of the disjuncts in dKB . It clearly su�ces to show thatSol [�(�[~� ])] � S<~� [�] = Sol [�<(�[~� ])]. Assume, by way of contradiction, that for arbitrarilysmall ~� , there exists some ~u 2 Sol [�(�[~� ])] which is \separated" from the set Sol [�<(�[~� ])],i.e., is not in its closure. More formally, we say that ~u is �-separated from Sol [�<(�[~� ])] ifthere is no ~u0 2 Sol [�<(�[~� ])] such that j~u�~u0j < �.We now consider those ~� and those points in Sol [�(�[~� ])] that are separated fromSol [�<(�[~� ])]:13A = f(~�;~u; �) : ~� > ~0; � > 0; ~u 2 Sol [�(�[~� ])] is �-separated from Sol [�<(�[~� ])]g:Clearly A is semi-algebraic. By assumption, there are points in A for arbitrarily smalltolerance vectors ~� . Since A is a bounded subset of IRm+K+1 (where m is the number oftolerance values in ~�), we can use the Bolzano{Weierstrass Theorem to conclude that thisset of points has an accumulation point whose �rst component is ~0. Thus, there is a point(~0; ~w; �0) in A. By the Curve Selection Lemma, there is a continuous semi-algebraic functionf : [0; 1]! IRm+K+1 such that f(0) = (~0; ~w; �0) and f(t) 2 A for t 2 (0; 1].Since f is semi-algebraic, it is semi-algebraic in each of its coordinates. By Lemma B.4,there is some v > 0 such that f is strictly increasing in each of its �rst m coordinates overthe domain [0; v]. Suppose that f(v) = (~�;~u; �). Now, consider the constraints in �(�[~� ])that have the form q(~w) > �jq0(~w). These constraints are all satis�ed by ~u and they allinvolve strong inequalities. By the continuity of the polynomials q and q0, there exists some� > 0 such that, for all ~u0 such that j~u�~u0j < �, ~u0 also satis�es these constraints.Now, by the continuity of f , there exists a point v0 2 (0; v) su�ciently close to vsuch that if f(v0) = (~� 0;~u0; �0), then j~u � ~u0j < min(�; �). Since f(v) = (~�;~u; �) 2 A andj~u�~u0j < �, it follows that ~u0 62 Sol [�<(�[~� ])]. We conclude the proof by showing that this isimpossible. That is, we show that ~u0 2 Sol [�<(�[~� ])]. The constraints appearing in �<(�[~� ])can be of the following forms: q0(~w) = 0, q0(~w) > 0, q(~w) < �jq0(~w), or q(~w) > �jq0(~w),where q0 is a positive polynomial. Since f(v0) 2 A, we know that ~u0 2 Sol [�(�[~� 0])]. Theconstraints of the form q0(~w) = 0 and q0(~w) > 0 are identical in �(�[~� 0]) and in �<(�[~� ]),and are therefore satis�ed by ~u0. Since j~u0�~uj < �, our discussion in the previous paragraphimplies that the constraints of the form q(~w) > �jq0(~w) are also satis�ed by ~u0. Finally,consider a constraint of the form q(~w) < �jq0(~w). The corresponding constraint in �(�[~� 0])is q(~w) � � 0jq0(~w). Since ~u0 satis�es this latter constraint, we know that q(~u0) � � 0jq0(~u0).But now, recall that we proved that f is increasing over [0; v] in the �rst m coordinates.In particular, � 0j < �j . By the de�nition of canonical form, q0(~u0) > 0, so that we concludeq(~u0) � � 0jq0(~u0) < �jq0(~u0). Hence the constraints of this type are also satis�ed by ~u0. Thisconcludes the proof that ~u0 2 Sol [�<(KB [~� ])], thus deriving a contradiction and provingthe result.We are �nally ready to prove Theorem 3.13.13. We consider only those components in the in�nite vector ~� that actually appear in Sol[�(�[~�])].75



Grove, Halpern, & KollerTheorem 3.13: For all su�ciently small ~� , the following is true. Let Q be the pointswith greatest entropy in S~� [KB ] and let O � IRK be any open set containing Q. Then forall � 2 L� and for lim� 2 flim sup; lim infg we havelimN!1� Pr~�N(�jKB) = limN!1� #worlds~�N [O](� ^KB)#worlds~�N [O](KB) :Proof: Let ~� be small enough so that Theorem B.2 applies and let Q and O be as in thestatement of the theorem. It clearly su�ces to show that the set O contains almost all ofthe worlds that satisfy KB . More precisely, the fraction of such worlds that are in O tendsto 1 as N !1:Let � be the entropy of the points in Q. We begin the proof by showing the existenceof �L < �U (< �) such that (for su�ciently large N) (a) every point ~u 2 �~�N [KB ] where~u 62 O has entropy at most �L and (b) there is at least one point ~u 2 �~�N [KB ] with ~u 2 Oand entropy at least �U .For part (a), consider the space S~� [KB ] � O. Since this space is closed, the entropyfunction takes on a maximum value in this space; let this be �L. Since this space doesnot include any point with entropy � (these are all in Q � O), we must have �L < �.By Theorem B.2, �~�N [KB ] � S~� [KB ]. Therefore, for any N , the entropy of any point in�~�N [KB ]�O is at most �L.For part (b), let �U be some value in the interval (�L; �) (for example (�L + �)=2) andlet ~v be any point in Q. By the continuity of the entropy function, there exists some � > 0such that for all ~u with j~u � ~vj < �, we have H(~u) � �U . Because O is open we can, byconsidering a smaller � if necessary, assume that j~u� ~vj < � implies ~u 2 O. By the secondpart of Theorem B.2, there is a sequence of points~uN 2 �~�N [KB ] such that limN!1~uN = ~v.In particular, for N large enough we have j~uN � ~vj < �, so that H(~uN ) > �U , proving part(b).To complete the proof, we use Lemma 3.11 to conclude that for all N ,#worlds~�N (KB) � #worlds~�N [~uN ](KB) � (h(N)=f(N))eNH(~uN ) � (h(N)=f(N))eN�U :On the other hand,#worlds~�N [�K �O](KB) � X~u2�~�N [KB]�O#worlds~�N [~u](KB)� jf~w 2 �~�N [KB ] : ~w 62 Ogj h(N)g(N)eN�L� (N + 1)Kh(N)g(N)eN�L:Therefore the fraction of models of KB which are outside O is at most(N + 1)Kh(N)f(N)g(N)eN�Lh(N)eN�U = (N + 1)Kf(N)g(N)eN(�U��L) :Since (N + 1)kf(N)g(N) is a polynomial in N , this fraction tends to 0 as N grows large.The result follows. 76



Random Worlds and Maximum EntropyAppendix C. Proofs for Section 4Proposition 4.6: Assume that KB is essentially positive and let Q be the set of maximum-entropy points of S~0[KB ] (and thus also of S�~0[KB ]). Then for all � > 0 and all su�cientlysmall tolerance vectors ~� (where \su�ciently small" may depend on �), every maximum-entropy point of S~� [KB ] is within � of some maximum entropy-point in Q.Proof: Fix � > 0. By way of contradiction, assume that that there is some sequenceof tolerance vectors ~�m, m = 1; 2; : : :, that converges to ~0, and for each m a maximum-entropy point ~um of S~�m [KB ] such that for all m, ~um is at least � away from Q. Sincethe space �K is compact, we can assume without loss of generality that this sequenceconverges to some point ~u. Recall that �(KB) is a �nite combination (using \and" and\or") of constraints, where every such constraint is of the form q0(~w) = 0, q0(~w) > 0,q(~w) � "jq0(~w), or q(~w) > "jq0(~w), such that q0 is a positive polynomial. Since the overallnumber of constraints is �nite we can assume, again without loss of generality, that all the~um's satisfy precisely the same constraints. We claim that the corresponding conjuncts in��(KB [~0]) are satis�ed by ~u. For a conjunct of the form q0(~w) = 0 note that, if q0(~um) = 0for all m, then this also holds at the limit, so that q(~u) = 0. A conjunct of the form q0(~w) > 0translates into q0(~w) � 0 in ��(KB [~0]); such conjuncts are trivially satis�ed by any pointin �K . If a conjunct of the form q(~w) � "jq0(~w) is satis�ed for all ~um and ~�m, then atthe limit we have q(~u) � 0, which is precisely the corresponding conjunct in ��(KB [~0]).Finally, for a conjunct of the form q(~w) > "jq0(~w), if q(~um) > �mj q0(~um) for all m, then atthe limit we have q(~u) � 0, which again is the corresponding conjunct in ��(KB [~0]). Itfollows that ~u is in S�~0[KB ].By assumption, all points ~um are at least � away from Q. Hence, ~u cannot be in Q.If we let � represent the entropy of the points in Q, since Q is the set of all maximum-entropy points in S�~0[KB ], it follows that H(~u) < �. Choose �L and �U such that H(~u) <�L < �U < �. Since the entropy function is continuous, we know that for su�cientlylarge m, H(~um) � �L. Since ~um is a maximum-entropy point of S~�m [KB ], it followsthat the entropy achieved in this space for su�ciently large m is at most �L. We derive acontradiction by showing that for su�ciently largem, there is some point in Sol [�(KB [~�m])]with entropy at least �U . The argument is as follows. Let ~v be some point in Q. Since ~vis a maximum-entropy point of S~0[KB ], there are points in Sol [�(KB [~0])] arbitrarily closeto ~v. In particular, there is some point ~u0 2 Sol [�(KB [~0])] whose entropy is at least �U .As we now show, this point is also in Sol [�(KB [~� ])] for all su�ciently small ~� . Again,consider all the conjuncts in �(KB [~0]) satis�ed by ~u0 and the corresponding conjuncts in�(KB [~� ]). Conjuncts of the form q0(~w) = 0 and q0(~w) > 0 in �(KB [~0]) remain unchangedin �(KB [~� ]). Conjuncts of the form q(~w) � �jq0(~w) in �(KB [~� ]) are certainly satis�edby ~u0, since the corresponding conjunct in �(KB [~0]), namely q(~w) � 0, is satis�ed by ~u0,so that q(~u0) � 0 � �jq0(~u0) (recall that q0 is a positive polynomial). Finally, consider aconjunct in �(KB [~� ]) of the form q(~w) > �jq0(~w). The corresponding conjunct in �(KB [~0])is q(~w) > 0. Suppose q(~u0) = � > 0. Since the value of q0 is bounded over the compactspace �K , it follows that for all su�ciently small �j , �jq0(~u0) < �. Thus, q(~u0) > �jq0(~u0) forall su�ciently small �j , as required. It follows that ~u0 is in Sol [�(KB [~� ])] for all su�cientlysmall ~� and, in particular, in Sol [�(KB [~�m])] for all su�ciently large m. But H(~u0) � �U ,whereas we showed that the maximum entropy achieved in S~�m [KB ] is at most �L < �U .77



Grove, Halpern, & KollerThis contradiction proves that our assumption was false, so that the conclusion of theproposition necessarily holds.Theorem 4.9: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if Qis the set of maximum-entropy points in S~� [KB ] and F[ ](~v) > 0 for all ~v 2 Q, then forlim� 2 flim sup; lim infg we havelimN!1� Pr~�N ('(c)jKB) 2 " inf~v2QF['j ](~v); sup~v2QF['j ](~v)# :Proof: Let W 2 W�, and let ~u = �(W ). The value of the proportion expression jj (x)jjxat W is clearly XAj2A( ) jjAj(x)jjx = XAj2A( )uj = F[ ](~u):If F[ ](~u) > 0, then by the same reasoning we conclude that the value of k'(x)j (x)kx atW is equal to F['j ](~u).Now, let �L and �R be inf~v2Q F['j ](~v) and sup~v2Q F['j ](~v) respectively; by our as-sumption, F['j ](~v) is well-de�ned for all ~v 2 Q. Since the denominator is not 0, F['j ] isa continuous function at each maximum-entropy point. Thus, since F['j ](~v) 2 [�L; �R] forall maximum-entropy points, the value of F['j ](~u) for ~u \close" to some ~v 2 Q, will eitherbe in the range [�L; �U ] or very close to it. More precisely, choose any � > 0, and de�ne�[�] to be the formula k'(x)j (x)kx 2 [�L � �; �U + �]:Since � > 0, it is clear that there is some su�ciently small open set O around Q suchthat this proportion expression is well-de�ned and within these bounds at all worlds in O.Thus, by Corollary 3.14, Pr~�1(�[�]jKB) = 1. Using Theorem 3.16, we obtain that for lim�as above, limN!1� Pr~�N ('(c)jKB) = limN!1� Pr~�N('(c)jKB ^ �[�]):But now we can use the direct inference technique outlined earlier. We are interested inthe probability of '(c), where the only information we have about c in the knowledge baseis  (c) and where we have statistics for k'(x)j (x)kx. These are precisely the conditionsunder which Theorem 4.1 applies. We conclude thatlimN!1� Pr~�N ('(c)jKB) 2 [�L � �; �U + �]:Since this holds for all � > 0, it is necessarily the case thatlimN!1� Pr~�N ('(c)jKB) 2 [�L; �U ];as required.Theorem 4.11: Suppose '(c) is a simple query for KB. If the space S~0[KB ] has a uniquemaximum-entropy point ~v, KB is essentially positive, and F[ ](~v) > 0, thenPr1('(c)jKB) = F['j ](~v):78



Random Worlds and Maximum EntropyProof: Note that the fact that S~0[KB ] has a unique maximum-entropy point does notguarantee that this is also the case for S~� [KB ]. However, Proposition 4.6 implies thatthe maximum-entropy points of the latter space are necessarily close to ~v. More precisely,if we choose some � > 0, we conclude that for all su�ciently small ~� , all the maximum-entropy points of S~� [KB ] will be within � of ~v. Now, pick some arbitrary � > 0. SinceF[ ](~v) > 0, it follows that F['j ] is continuous at ~v. Therefore, there exists some � > 0such that if ~u is within � of ~v, F['j ](~u) is within � of F['j ](~v). In particular, this is thecase for all maximum-entropy points of S~� [KB ] for all su�ciently small ~� . This allowsus to apply Theorem 4.9 and conclude that for all su�ciently small ~� and for lim� 2flim sup; lim infg, lim�N!1Pr~�N ('(c)jKB) is within � of F['j ](~v). Hence, this is also thecase for lim~�!~0 lim�N!1Pr~�N ('(c)jKB). Since this holds for all � > 0, it follows thatlim~�!~0 lim infN!1 Pr~�N ('(c)jKB) = lim~�!~0 lim supN!1 Pr~�N('(c)jKB) = F['j ](~v):Thus, by de�nition, Pr1('(c)jKB) = F['j ](~v).Theorem 4.14: Let � be a conjunction of constraints of the form Pr(�j�0) = � orPr(�j�0) 2 [�1; �2]. There is a unique probability distribution �� of maximum entropysatisfying �. Moreover, for all � and �0, if Pr��(�0) > 0, thenPr1(��(c)j��0(c) ^KB 0[�]) = Pr��(�j�0):Proof: Clearly, the formulas '(x) = ��(x) and  (x) = ��0(x) are essentially propositional.The knowledge base KB 0[�] is in the form of a conjunction of simple proportion formulas,none of which are negated. As a result, the set of constraints associated with KB = (c)^KB 0[�] also has a simple form. KB 0[�] generates a conjunction of constraints whichcan be taken as having the form q(~w) � "jq0(~w). On the other hand,  (c) generatessome Boolean combination of constraints all of which have the form wj > 0. We begin byconsidering the set S�~0[KB ] (rather than S~0[KB ]), so we can ignore the latter constraintsfor now.S�~0[KB ] is de�ned by a conjunction of linear constraints which (as discussed earlier)implies that it is convex, and thus has a unique maximum-entropy point, say ~v. Let �� = �~vbe the distribution over 
 corresponding to ~v. It is clear that the constraints of ��(KB [~0])on the points of �K are precisely the same ones as those of �. Therefore, �� is the uniquemaximum-entropy distribution satisfying the constraints of �. By Remark 4.13, it followsthat F[��0 ](~v) = ��(�0). Since we have assumed that ��(�0) > 0, we are are almost in aposition to use Theorem 4.11. It remains to prove essential positivity.Recall that the di�erence between ��(KB [~0]) and �(KB [~0]) is that the latter may havesome conjuncts of the form wj > 0. Checking de�nitions 3.4 and 3.6 we see that such termscan appear only due to ��0(c) and, in fact, together they assert that F[��0 ](~w) > 0. But wehave assumed that F[��0 ](~v) > 0 and so ~v is a maximum-entropy point of S~0[KB ] as well.Thus, essential positivity holds and so, by Theorem 4.11,Pr1('(c)j (c)^KB 0[�]) = F['j ](��) = Pr��(�j�0)as required. 79



Grove, Halpern, & KollerTheorem 4.15: Let c be a constant symbol. Using the translation described in Section 4.3,for a set R of defeasible rules, B ! C is an ME-plausible consequence of R i�Pr1 �C(c) ������B(c) ^ r̂2R �r! = 1:Proof: Let KB 0 denote Vr2R �r. For all su�ciently small ~� and for � = �1, let �� denote���;R. It clearly su�ces to prove thatPr~�1(�C(c)j�B(c) ^KB 0) = Pr��(CjB);where by equality we also mean that one side is de�ned i� the other is also de�ned. It iseasy to verify that a point ~u in �K satis�es �(KB 0[~� ]) i� the corresponding distribution� �-satis�es R. Therefore, the maximum-entropy point ~v of S~� [KB 0] (which is unique,by linearity) corresponds precisely to ��. Now, there are two cases: either ��(B) > 0 or��(B) = 0. In the �rst case, by Remark 4.13, Pr��(�B(c)) = F[�B(c)](~v), so the latter isalso positive. This also implies that ~v is consistent with the constraints �( (c)) entailedby  (c) = �B(c), so that ~v is also the unique maximum-entropy point of S~� [KB ] (whereKB = �B(c)^KB 0). We can therefore use Corollary 4.10 and Remark 4.13 to conclude thatPr~�1(�C(c)jKB) = F[�C(c)j�B(c)](~v) = Pr��(CjB) and that all three terms are well-de�ned.Assume, on the other hand, that ��(B) = 0, so that Pr��(CjB) is not well-de�ned. In thiscase, we can use a known result (see (Paris & Vencovska, 1989)) for the maximum-entropypoint over a space de�ned by linear constraints, and conclude that for all � satisfying R,necessarily �(B) = 0. Using the connection between distributions � satisfying R and points~u in S~� [KB 0], we conclude that this is also the case for all ~u 2 S~� [KB 0]. By part (a) ofTheorem B.2, this means that in any world satisfying KB 0, the proportion jj�B(x)jjx isnecessarily 0. Thus, KB 0 is inconsistent with �B(c), and Pr~�1(�C(c)j�B(c)^KB 0) is also notwell-de�ned.Appendix D. Proofs for Section 4.4Theorem 4.24: If KB and ~� > ~0 are stable for �� then Pr~�1(��jKB) = 1.Proof: By Theorem 3.14, it su�ces to show that there is some open neighborhood con-taining Q, the maximum-entropy points of S~� [KB ], such that every world W of KB in thisneighborhood has �(W ) = ��. So suppose this is not the case. Then there is some sequenceof worlds W1;W2; : : : such that (Wi; ~�) j= KB ^ :�� and limi!1min~v2Q j�(Wi)� ~vj = 0.Since �K is compact the sequence �(W1); �(W2); : : : must have at least one accumulationpoint, say ~u. This point must be in the closure of the set Q. But, in fact, Q is a closedset (because entropy is a continuous function) and so ~u 2 Q. By part (a) of Theorem B.2,�(Wi) 2 S~� [KB ^ :��] for every i and so, since this space is closed, ~u 2 S~� [KB ^ :��] aswell. But this means that ~u is an unsafe maximum-entropy point, contrary to the de�nitionand assumption of stability.In the remainder of this section we prove Theorem 4.28. For this purpose, �x KB = ^ KB 0, ', and �� to be as in the statement of this theorem, and let ~v be the uniquemaximum-entropy point of S~0[KB ]. 80



Random Worlds and Maximum EntropyLet Z = fc1; : : : ; cmg be the set of constant symbols appearing in  and in '. Due tothe separability assumption, KB 0 contains none of the constant symbols in Z . Let �6= bethe formula Vi 6=j ci 6= cj . We �rst prove that �6= has probability 1 given KB 0.Lemma D.1: For � 6= and KB 0 as above, Pr1(�6=jKB 0) = 1.Proof: We actually show that Pr1(:�6=jKB 0) = 0. Let c and c0 be two constant symbolsin fc1; : : : ; cmg and consider Pr1(c = c0jKB 0). We again use the direct inference technique.Note that for any world of size N the proportion expression jjx = x0jjx;x0 denotes exactly1=N . It is thus easy to see that Pr1(jjx = x0jjx;x0 �i 0jKB 0) = 1 (for any choice of i). Thus,by Theorem 3.16, Pr1(c = c0jKB 0) = Pr1(c = c0jKB 0 ^ jjx = x0jjx;x0 �i 0). But since c andc0 appear nowhere in KB 0 we can use Theorem 4.1 to conclude that Pr1(c = c0jKB 0) = 0.It is straightforward to verify that, since :� 6= is equivalent to a �nite disjunction, eachdisjunct of which implies c = c0 for at least one pair of constants c and c0, we must havePr1(:� 6=jKB 0) = 0.As we stated in Section 4.4, our general technique for computing the probability of anarbitrary formula ' is to partition the worlds into a �nite collection of classes such that 'behaves uniformly over each class and then to compute the relative weights of the classes.As we show later, the classes are essentially de�ned using complete descriptions. Theirrelative weight corresponds to the probabilities of the di�erent complete descriptions givenKB .Proposition D.2: Let KB = KB 0 ^  and ~v be as above. Assume that Pr1( jKB 0) > 0.Let D be a complete description over Z that is consistent with  .(a) If D is inconsistent with �6=, then Pr1(DjKB) = 0.(b) If D is consistent with � 6=, thenPr1(DjKB) = F[D](~v)PD02A( ^�6=) F[D0](~v) :Proof: First, observe that if all limits exist and the denominator is nonzero, thenPr1(:�6=j ^KB 0) = Pr1(:�6= ^  jKB 0)Pr1( jKB 0) :By hypothesis, the denominator is indeed nonzero. Furthermore, by Lemma D.1, Pr1(:�6=^ jKB0) � Pr1(:�6=jKB 0) = 0. Hence Pr1(� 6=jKB) = Pr1(� 6=jKB 0 ^  ) = 1. We cantherefore use Theorem 3.16 to conclude thatPr1(DjKB) = Pr1(DjKB ^ � 6=):Part (a) of the proposition follows immediately.To prove part (b), recall that  is equivalent to the disjunction WE2A( )E. By simpleprobabilistic reasoning, the assumption that Pr1( jKB0) > 0, and part (a), we concludethat Pr1(Dj ^ KB 0) = Pr1(D ^  jKB 0)Pr1( jKB0) = Pr1(D ^  jKB 0)PE2A( ^�6=)Pr1(EjKB0) :81



Grove, Halpern, & KollerBy assumption, D is consistent with � 6= and is in A( ). Since D is a complete description,we must have that D )  is valid. Thus, the numerator on the right-hand side of thisequation is simply Pr1(DjKB 0). Hence, the problem of computing Pr1(DjKB) reduces toa series of computations of the form Pr1(EjKB0) for various complete descriptions E.Fix any such description E. Recall that E can be decomposed into three parts: theunary part E1, the non-unary part E>1, and the equality part E=. Since E is in A(� 6=),we conclude that � 6= is equivalent to E=. Using Theorem 3.16 twice and some probabilisticreasoning, we get:Pr1(E>1 ^ E1 ^E=jKB 0) = Pr1(E>1 ^E1 ^ E=jKB 0 ^ � 6=)= Pr1(E>1 ^E1jKB 0 ^ � 6=)= Pr1(E>1jKB 0 ^ �6= ^ E1) � Pr1(E1jKB 0 ^ �6=)= Pr1(E>1jKB 0 ^ �6= ^ E1) � Pr1(E1jKB 0):In order to simplify the �rst expression, recall that none of the predicate symbols in E>1occur anywhere in KB 0 ^ �6= ^ E1. Therefore, the probability of E>1 given KB 0 ^ �6= isequal to the probability that the elements denoting the jZj (di�erent) constants satisfy someparticular con�guration of non-unary properties. It should be clear that, by symmetry, allsuch con�gurations are equally likely. Therefore, the probability of any one of them is aconstant, equal to 1 over the total number of con�gurations.14 Let � denote the constantwhich is equal to Pr1(E>1jKB 0 ^ �6= ^E1) for all E.The last step is to show that, if E1 is equivalent to Vmj=1Aij(cj), then Pr1(E1jKB 0) =F[D](~v):Pr1( m̂j=1Aij (cj)jKB 0) = Pr1(Ai1(c1)j m̂j=2Aij (cj) ^KB 0) � Pr1(Ai2(c2)j m̂j=3Aij (cj) ^KB 0)� : : : � Pr1(Aim�1(cm�1)jAim(cm) ^KB 0) � Pr1(Aim(cm)jKB 0)= vi1 � : : : � vim (using Theorem 4.11; see below)= F[D](~v):The �rst step is simply probabilistic reasoning. The second step uses m applications ofTheorem 4.11. It is easy to see that Aij(cj) is a simple query for Aij+1(cj+1) ^ : : : ^Aim(cm) ^KB 0. We would like to show thatPr1(Aij(cj)j m̂`=j+1Ai`(c`) ^ KB 0) = Pr1(Aij(cj)jKB 0) = vij ;where Theorem 4.11 justi�es the last equality. To prove the �rst equality, we show that forall j, the spaces S~0[KB 0] and S~0[Vm̀=j+1 Ai`(cj) ^ KB 0] have the same maximum-entropypoint, namely ~v. This is proved by backwards induction; the j = m case is trivially true.The di�erence between the (j � 1)st and jth case is the added conjunct Aij (cj), whichamounts to adding the new constraint wij > 0. There are two possibilities. First, if vij > 0,14. Although we do not need the value of this constant in our calculations below, it is in fact easy to verifythat its value is QR2(��	) 2marity(R) , where m = jZj.82



Random Worlds and Maximum Entropythen ~v satis�es this new constraint anyway and so remains the maximum-entropy point,completing this step of the induction. If vij = 0 this is not the case, and indeed, theproperty we are trying to prove can be false (for j < m). But this does not matter, becausewe then know that Pr1(Aij(cj)jVm̀=j+1 Ai`(c`)^KB 0) = Pr1(Aij(cj)jKB 0) = vij = 0. Sinceboth of the products in question include a 0 factor, it is irrelevant as to whether the otherterms agree.We can now put everything together to conclude thatPr1(DjKB) = Pr1(DjKB 0)PE2A( ^�6=)Pr1(EjKB0) = F[D](~v)PE2A( ^�6=) F[E](~v) ;proving part (b).We now address the issue of computing Pr1('jKB) for an arbitrary formula '. To dothat, we must �rst investigate the behavior of Pr~�1('jKB) for small ~� . Fix some su�cientlysmall ~� > 0, and let Q be the set of maximum-entropy points of S~� [KB ]. Assume KB and~� are stable for ��. By de�nition, this means that for every ~v 2 Q, we have �(~v) = ��. LetI be the set of i's for which �� contains the conjunct 9xAi(x). Since �(~v) = �� for all ~v,we must have that vi > 0 for all i 2 I . Since Q is a closed set, this implies that there existssome � > 0 such that for all ~v 2 Q and for all i 2 I , we have vi > �. Let �[�] be the formulaî2I jjAi(x)jjx > �:The following proposition is now easy to prove:Proposition D.3: Suppose that KB and ~� are stable for �� and that Q, i, �[�], and � 6=are as above. ThenPr~�1('jKB) = XD2A( )Pr~�1('jKB 0 ^ �[�] ^ �� ^D) � Pr~�1(DjKB):Proof: Clearly, �[�] satis�es the conditions of Corollary 3.14, allowing us to conclude thatPr~�1(�[�]jKB) = 1. Similarly, by Theorem 4.24 and the assumptions of Theorem 4.28,we can conclude that Pr~�1(��jKB) = 1. Since the conjunction of two assertions that haveprobability 1 also has probability 1, we can use Theorem 3.16 to conclude that Pr~�1('jKB) =Pr~�1('jKB ^ �[�] ^ ��).Now, recall that  is equivalent to the disjunction WD2A( )D. By straightforwardprobabilistic reasoning, we can therefore conclude thatPr~�1('jKB ^ �[�] ^ ��) = XD2A( )Pr~�1('jKB ^ �[�] ^ �� ^D) � Pr~�1(DjKB ^ �[�] ^ ��):By Theorem 3.16 again, Pr~�1(DjKB^�[�]^��) = Pr~�1(DjKB). The desired expression nowfollows.We now simplify the expression Pr~�1('jKB ^ �[�] ^ �� ^D):83



Grove, Halpern, & KollerProposition D.4: For ', KB, ��, D, and �[�] as above, if Pr~�1(DjKB) > 0, thenPr~�1('jKB ^ �[�] ^ �� ^D) = Pr1('j�� ^D);and its value is either 0 or 1. Note that since the latter probability only refers to �rst-orderformulas, it is independent of the tolerance values.Proof: That the right-hand side is either 0 or 1 is proved in (Grove et al., 1993b), where itis shown that the asymptotic probability of any pure �rst-order sentence when conditionedon knowledge of the form �� ^D (which is, essentially, what was called a model descriptionin (Grove et al., 1993b)) is either 0 or 1. Very similar techniques can be used to show thatthe left-hand side is also either 0 or 1, and that the conjuncts KB ^ �[�] do not a�ect thislimit (so that the left-hand side and the right-hand side are in fact equal). We brie
y sketchthe relevant details here, referring the reader to (Grove et al., 1993b) for full details.The idea (which actually goes back to Fagin (1976)) is to associate with a model descrip-tion such as �� ^D a theory T which essentially consists of extension axioms. Intuitively,an extension axiom says that any �nite substructure of the model de�ned by a completedescription D0 can be extended in all possible ways de�nable by another description D00. Wesay that a description D00 extends a description D0 if all conjuncts ofD0 are also conjuncts inD00. An extension axiom has the form 8x1; : : : ; xj (D0 ) 9xj+1D00), where D0 is a completedescription over X = fx1; : : : ; xjg and D00 is a complete description over X [ fxj+1g, suchthat D00 extends D0, both D0 and D00 extend D, and both are consistent with ��. It isthen shown that (a) T is complete (so that for each formula �, either T j= � or T j= :�)and (b) if � 2 T then Pr1(�j�� ^ D) = 1. From (b) it easily follows that if T j= �, thenPr1(�j�� ^ D) is also 1. Using (a), the desired 0-1 law follows. The only di�erence fromthe proof in (Grove et al., 1993b) is that we need to show that (b) holds even when wecondition on KB ^ �[�] ^ �� ^D, instead of just on �� ^D.So suppose � is the extension axiom 8x1; : : : ; xj (D0 ) 9xj+1D00). We must show thatPr1(�jKB ^ �[�] ^ �� ^ D) = 1. We �rst want to show that the right-hand side of theconditional is consistent. As observed in the previous proof, it follows from Theorem 3.16that Pr1(DjKB) = Pr~�1('jKB ^�[�]^��). Since we are assuming that Pr1(DjKB) > 0, itfollows that Pr1(KB ^ �[�]^�� ^D) > 0, and hence KB ^ �[�]^�� ^D must be consistent.Fix a domain size N and consider the set of worlds satisfying KB ^ �[�] ^ �� ^D. Nowconsider some particular j domain elements, say d1; : : : ; dj, that satisfy D0. Observe that,since D0 extends D, the denotations of the constants are all among d1; : : : ; dj. For a givend 62 fd1; : : : ; djg, let B(d) denote the event that d1; : : : ; dj; d satisfy D00, given that d1; : : : ; djsatisfy D0. What is the probability of B(d) given KB ^ �[�] ^ ��^D? First, note that sinced does not denote any constant, it cannot be mentioned in any way in the knowledge base.Thus, this probability is the same for all d. The description D00 determines two typesof properties for xj+1. The unary properties of xj+1 itself|i.e., the atom Ai to whichxj+1 must belong|and the relations between xj+1 and the remaining variables x1; : : : ; xjusing the non-unary predicate symbols. Since D00 is consistent with ��, the description ��must contain a conjunct 9xAi(x) if D00 implies Ai(xj+1). By de�nition, �[�] must thereforecontain the conjunct jjAi(x)jjx > �. Hence, the probability of picking d in Ai is at least�. For any su�ciently large N , the probability of picking d in Ai which is di�erent fromd1; : : : ; dj (as required by the de�nition of the extension axiom) is at least �=2 > 0. The84



Random Worlds and Maximum Entropyprobability that d1; : : : ; dj; d also satisfy the remaining conjuncts of D00, given that d isin atom Ai and d1; : : : ; dj satisfy D0, is very small but bounded away from 0. (For thisto hold, we need the assumption that the non-unary predicates are not mentioned in theKB .) This is the case because the total number of possible ways to choose the propertiesof d (as they relate to d1; : : : ; dj) is independent of N . We can therefore conclude that theprobability of B(d) (for su�ciently large N), given that d1; : : : ; dj satisfy D, is boundedaway from 0 by some � independent of N . Since the properties of an element d and itsrelation to d1; : : : ; dj can be chosen independently of the properties of a di�erent elementd0, the di�erent events B(d); B(d0); : : : are all independent. Therefore, the probability thatthere is no domain element at all that, together with d1; : : : ; dj , satis�es D00 is at most(1 � �)N�j. This bounds the probability of the extension axiom being false, relative to�xed d1; : : : ; dj. There are �Nj � ways of these choosing j elements, so the probability of theaxiom being false anywhere in a model is at most �Nj �(1��)N�j . This tends to 0 as N goesto in�nity. Therefore, the extension axiom 8x1; : : : ; xj (D0 ) 9xj+1D00) has asymptoticprobability 1 given KB ^ �[�] ^ �� ^D, as desired.Finally, we are in a position to prove Theorem 4.28.Theorem 4.28: Let ' be a formula in L� and let KB = KB 0 ^  be an essentiallypositive knowledge base in L�1 which is separable with respect to '. Let Z be the set ofconstants appearing in ' or in  (so that KB 0 contains none of the constants in Z) andlet �6= be the formula Vc;c02Z c 6= c0. Assume that there exists a size description �� suchthat, for all ~� > 0, KB and ~� are stable for ��, and that the space S~0[KB ] has a uniquemaximum-entropy point ~v. ThenPr1('jKB) = PD2A( ^�6=) Pr1('j�� ^D)F[D](~v)PD2A( ^�6=) F[D](~v)if the denominator is positive.Proof: Assume without loss of generality that  mentions all the constant symbols in ',so that A( ^ � 6=) � A( ). By Proposition D.3,Pr~�1('jKB) = XD2A( )Pr~�1('jKB ^ �[�] ^ �� ^D) � Pr~�1(DjKB):Note that we cannot easily take limits of Pr~�1('jKB ^ �[�]^�� ^D) as ~� goes to ~0, becausethis expression depends on �[�] and the value of � used depends on the choice of ~� . However,applying Proposition D.4, we getPr~�1('jKB) = XD2A( )Pr1('j�� ^D) � Pr~�1(DjKB):We can now take the limit as ~� goes to ~0. To do this, we use Proposition D.2. Thehypotheses of the theorem imply that Pr1( jKB 0) > 0 (for otherwise, the denominatorPD2A( ^�6=) F[D](~v) would be zero). Part (a) of the proposition tells us we can ignore thosecomplete descriptions that are inconsistent with � 6=. We can now apply part (b) to get thedesired result. 85
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