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Abstract

We propose inference systems for dealing with transitive relations in the context of resolution-
type theorem proving. These inference mechanisms are based on standard techniques from term
rewriting and represent a refinement of chaining methods. We establish their refutational com-
pleteness and also prove their compatibility with the usual simplification techniques used in
rewrite-based theorem provers. A key to the practicality of chaining techniques is the extent to
which so-called variable chainings can be restricted. We demonstrate that rewrite techniques con-
siderably restrict variable chaining, though we also show that they cannot be completely avoided
for transitive relations in general. If the given relation satisfies additional properties, such as sym-
metry, further restrictions are possible. In particular, we discuss (partial) equivalence relations
and congruence relations.
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1 Introduction

Rewrite techniques, as exemplified by completion procedures, have been successfully
applied to many problems in equational theorem proving. The theoretical foundation of
completion is the use of rewrite rules, guided by well-founded syntactic orderings, in such
a way that certain commutation properties are satisfied. Building ordered rewriting into
the inference system, through the concept of rewrite proofs, the explicit generation of the
congruence closure of a set of equations is usually avoided. This is one main advantage
of rewrite techniques over methods based on resolution alone. From a practical point
of view the simplification techniques afforded by rewriting are also important. In the
context of automated theorem proving, rewrite techniques have been typically applied
to equivalence relations. In this paper we investigate their application to arbitrary
(e.g., non-symmetric) transitive relations and design corresponding inference systems for
first-order theories with transitive relations, using resolution as the underlying inference
mechanism.

Resolution, in its different variants, forms the core of many current automated rea-
soning systems. By and large such resolution refinements as hyper-resolution, ordered
resolution, or the set-of-support strategy are quite useful in practice, but for logical
theories with transitive relations, such as logics with equality or inequality relations,
they are not very effective. Special techniques have been devised for such theories:
chaining and variable elimination for inequalities, and paramodulation, which can be
thought of as a form of subterm chaining (cf. Section 5), for equality. Chaining essen-
tially encodes certain resolution steps with the transitivity axiom. For example, if < is
a transitive relation, chaining allows one to derive uoc < vo from u < s and ¢t < v, where
o is a most general unifier of s and ¢. The completeness of this inference mechanism
follows immediately from the completeness of resolution with selection (Bachmair and
Ganzinger 1993c).

We propose the following refinement of chaining: first compare the term so (which
is identical to to) to both uo and vo (using a given well-founded ordering on terms) and
perform the chaining inference only if so is maximal. This form of “ordered chaining”
can be viewed as an application of standard rewrite techniques. More precisely, we argue
that it corresponds to a completion process, aimed at deriving enough rewrite rules so
that the given transitive relation can be described by corresponding rewrite proofs.
The completeness of ordered chaining is based on a suitable commutation property of
the rewrite relations involved which is achieved through completion. In formalizing this
approach we use standard methods from the theory of term rewriting. However, we wish
to apply this approach not only to unit clauses, as is the case with standard completion
procedures, but to general clauses, and therefore have to integrate the notion of rewriting
in this more general context. This is relatively straightforward for Horn clauses, but
more difficult in the case of disjunctions of positive literals, due to the additional degree
of non-determinism in the rewrite relations and certain subtle dependencies between
them. We will discuss the two cases separately.

The practicality of chaining methods crucially depends on the extent to which a
particularly prolific form of chaining, called variable chaining (where s or ¢ is a variable),
can be restricted. Ordered chaining considerably cuts down the number of possible
variable chainings, as the required maximality condition for terms can only be satisfied
if the variable is unshielded, i.e., occurs only as an argument of the predicate <, but not
as an argument of a function symbol or any other predicate symbol. However, we also



show that some variable chainings are needed for transitive relations in general, though
further restriction are possible if additional properties such as symmetry are satisfied.
For instance, in the case of equivalence relations we obtain calculi in which chaining
“into” a variable is not needed.

The paper is organized as follows. After introducing some terminology, we propose,
in Section 3, ordered chaining as an inference mechanism for dealing with transitive
relations and prove its refutational completeness for Horn clauses. Then completeness
for general clauses is established for an extended inference system and in the presence of
a notion of redundancy that covers the usual simplification techniques used in rewrite-
based theorem provers. A discussion of variable chaining concludes the section. We
then consider symmetric transitive relations: (partial) equivalence relations in Section 4
and congruence relations in Section 5; and conclude with a summary and suggestions
for further research.

2 Preliminaries

We consider first-order languages with function symbols, predicate symbols, and vari-
ables. A term is an expression f(t1,...,t,) or x, where f is a function symbol of arity n,
x is a variable, and 1, ...,t, are terms. An atomic formula (or simply atom) is an ex-
pression P(t,...,t,), where P is a predicate symbol of arity n and t1,...,t, are terms.
A literal is an expression A (a positive literal) or = A (a negative literal), where A is an
atomic formula. A clause is a finite multiset of literals. We write a clause by listing its
literals, = Ay, ...,2Am, B1,..., By; or as a disjunction =A;V---V—-A,,VB;---V By; or
as a sequent Aq,..., A, — Bi,...,B,. An expression is said to be ground if it contains
no variables.

By a (Herbrand) interpretation we mean a set I of ground atomic formulas. We say
that an atom A is true (and —A, false) in I if A € I; and that A is false (and —A,
true) in I if A ¢ I. A ground clause is true in an interpretation I if at least one of its
literals is true in [I; and is false otherwise. In general, a clause is said to be true in [ if
all its ground instances are true. The empty clause is false in every interpretation. We
say that I is a model of a set of clauses N (or that N is satisfied by I) if all elements of
N are true in I. Occasionally, a model of N will also be called an N -interpretation. A
set N is satisfiable if it has a model, and unsatisfiable otherwise. For instance, any set
containing the empty clause is unsatisfiable.

3 Transitive Relations

The main question we consider in this paper is the satisfiability of sets of clauses in

languages with transitive relations, that is, predicates < that satisfy
r<y,y<z—rr<z.

(We usually use infix notation for binary predicates.) Such clauses present difficulties
for resolution-based provers. A transitivity clause can be resolved with itself to yield a
new clause

T<Y,y1 <y, Y2 < z—r<z

that can again be resolved with the original clause, to yield

<YLY <Y,y <yY3yY3<z—ox <=z



and so on. Certain refinements of resolution provide better control in this regard. For
instance, the self-resolution that is problematic with transitivity, is automatically ex-
cluded by resolution with selection Bachmair and Ganzinger (1993c). More precisely, if
we select the two negative literals in the transitivity axiom, the only kind of inference
in which it can participate are inferences of the form

C,u<s D t<v xzdy,y€z,x<z
Co, Do ,uo < vo

where ¢ is a most general unifier of s and t. The key here is that it is never necessary to
resolve with the non-selected (i.e., positive) literal of the transitivity axiom (for details,
see Bachmair and Ganzinger (1993c)). Therefore we may encode transitivity as an
inference rule:

Chaining;: c b
, U< S ,t<w

Co, Do, uoc < vo

where ¢ is a most general unifier of s and t¢.

Unfortunately, the chaining rule, which was already proposed by Slagle (1972), is
not completely satisfactory, as it explicitly generates the transitive closure of the binary
relation described by >. For example, if a < b and b < ¢ and ¢ < d are given, chaining
will generate the additional unit clauses a < ¢ and b < d and a < d.

We will next outline how standard rewrite techniques can be used in this context to
more effectively restrict the chaining rule. Rewrite systems provide for a more compact
representation of transitive (closures of) relations and are one of the more efficient
techniques for reasoning about chains of terms, such as a < b < ¢ < d in the above
example. Rewrite techniques have typically been applied to equivalence and congruence
relations. We also discuss non-symmetric relations, developing an approach similar in
spirit to what has been called bi-rewriting by Levy and Agust{ (1993).

3.1 Commutation

If R is a binary relation, we denote by R™! its inverse, by R¥ its transitive closure,
and by R* its reflexive-transitive closure. (A binary relation R is called reflexive if
xRx for all z; irreflexive if xRz for no x; and non-reflexive if it is not reflexive.) The
composition of two binary relations R and S is denoted by R o S. Our objective is to
represent transitive (closures of) relations by means of well-founded rewrite relations.!
Two relations Ry and Ry are employed for that purpose.

We say that R commutes with Rg if Ry o Ry C (R{r o R5)U R;Z

Proposition 1 If Ry U RQ_1 is a well-founded binary relation and R commutes with
R, then the two relations (R U Re)" and (Rf o R3) U RS are identical.

The proposition can be proved with standard methods from rewriting theory.? It pro-
vides the starting point for our investigations.

!The relations we talk about are abstract reduction systems in the sense of Klop (1992), but not
necessarily rewrite relations in the sense of Dershowitz and Jouannaud (1990), in that they need not be
closed under context application.

2The relation (R o R3) U R is identical to (R} o R3) U (R} o RY).

3Commutation properties, with a view to their application to termination problems, have been dis-
cussed in Bachmair and Dershowitz (1986), Bellegarde and Lescanne (1987), Geser (1991).



Let = be a (strict) ordering and > be its reflexive closure. We denote by R, the
intersection of R with >; by Ry the intersection of R with =; by R~ the intersection of
R with the inverse < of the relation >~; and by R< the intersection of R with the inverse
=< of ». The relation R- N R< describes the reflexive part of R. If the ordering > is
total, then R = R- U R<. Slightly adapting Proposition 1, we obtain:

Proposition 2 Let R be a binary relation and > be a well-founded ordering that is total
on the given domain. If the relation Ry commutes with R<, then Rt = (R~ N R<) U
(Rf o R*)URY.

This result shows that under suitable commutation properties the non-reflexive part of a
transitive relation can be described by a certain kind of rewrite proofs with R, and R~.
If the two relations Ry and R< do not commute, one may use a so-called completion
process to obtain commuting relations that describe the same transitive closure. Com-
pletion always succeeds for finite ground relations, provided the given syntactic ordering
> is total.* Equational completion procedures, such as ordered completion or condi-
tional completion, have been described by inference rules, e.g., Bachmair, Dershowitz
and Plaisted (1989), Ganzinger (1991), Dershowitz (1991). We will devise similar (refu-
tationally complete) inference systems for transitive relations in general.

3.2 Ordered chaining

Let < be a binary predicate that is assumed to denote a transitive relation. We denote
by T« the set consisting of the corresponding transitivity axiom. We call models of T~
transitivity interpretations. Literals u < v and —(u < v) (also written u £ v) are called
inequalities. Let I be a set of ground atoms, containing inequalities and possibly other
atoms, and let > be an (syntactic) ordering on terms. We define relations —; and <
and =5 as follows. For every inequality u < v in I, we have u —j; v if u > v; u < v
if v = u; and u =; v if u and v are the same. We also write u |; v if u =} o +F v or
U <—;r v. In other words, u J; v if and only if there is a non-empty sequence of rewrites

U=UY) 2] 2] Un =Up <[ STV ="V

where m +n > 1. We call such a sequence a rewrite proof (of u < v). A sequence
u <7 t — v, on the other hand, is called a peak, and is said to commute if u |; v. A
sequence of rewrites is a rewrite proof if and only if it contains no peak as a subsequence.
By the rewrite closure I of I we mean the set I U {u < v :u s v}.

For example, if I contains the atoms a < band b < cand ¢ < d, andifa > b > ¢ > d,
then a —; b and b —; ¢ and ¢ —; d. The relation —; evidently commutes with the
(empty) relation <—j. If we choose the ordering b = ¢ > d > a, the rewrite steps are
a<+r7bandb —; cand ¢ — d, and there is a peak, a <—; b — ¢, that does not commute.
By chaining we generate a < ¢, and the corresponding rewrite step a <y ¢ guarantees
commutation of the peak. Chaining with suitable ordering restrictions provides the basis
for a completion process of which equational completion procedures are a special case
in which the two rewrite relations <—; and —>;1 are the same, cf., Section 4.

When we use ordered chaining, a (ground) inequality will be considered to be true
if there exists a suitable rewrite proof. In the case of theories described by (general)
clauses, the notion of rewriting also has to be reflected in the handling of negative literals.

“For a survey on orderings see Dershowitz (1987).



Take the above example and add another clause a < d — d < e. By transitivity we have
a < d, which we may resolve with the additional clause to obtain d < e. However, with
ordered chaining, we do not derive a < d directly, but only obtain enough inequalities for
a suitable rewrite proof of a < d. We need an inference mechanism that also generates
enough inequalities for a rewrite proof of d < e.

We combine the chaining rules for inequalities with an ordered resolution calculus,
and for that purpose need to extend the ordering > to literals. We assume that > is
well-founded, satisfies the subterm property (i.e., A[s] = s, for all expressions A and
proper subexpressions s of A), and is total on ground terms and ground atoms. We
extend > to a well-founded ordering on ground literals by associating with each such
literal L a complexity measure (mazr,pr, Sr,, ming) defined as follows. Let L be a literal
A or =A. The second component py, is T, if L is negative, and | otherwise. If A is
not an inequality, then maxy is A, and sy, and ming, are both L. If A is an inequality
u < v, then maxy denotes the maximal, and miny the minimal, term of v and v; and
sr, is T if the maximal term occurs as first argument and L otherwise. (We assume that
T and L are new elements with T >~ ¢ > L, for all ¢.)

For example, if s >~ t, then the complexity of s < t is (s, L, T,t), whereas the
complexity of t £ sis (s, T, L,t). The complexity of s < s is (s, L, T,s). The resulting
ordering is total on ground literals. Its extension to (finite) multisets, which we also
denote by the same symbol, is well-founded and total on ground clauses.

We assume that any of these orderings are extended to non-ground expressions as
follows: E = E’ if and only if Eo = E’c, for all ground instances Eo and E’'c. Thus,
we have E % E' if E'c = Eo, for some ground instances Fo and E'c. We say that a
literal L is mazimal in a clause C' if L' = L, for no literal L’ in C; and that L is strictly
mazimal in C if L' = L, for no L' in C.%

We have the following chaining rules for inequalities.

Ordered Chaining:
C,u<s D, ,t<w

Co, Do ,uoc <vo

where o is the most general unifier of s and ¢, uoc < so is strictly maximal in Co,
to < vo is strictly maximal in Do, uo % so, and vo # so.

Negative Chaining;:
C,uts D ,t<w

Co , Do ,vo £ so
where o is the most general unifier of u and t, uoc £ so is maximal in Co, to < vo is
strictly maximal in Do, vo ¥ uo, so ¥ uo, and so # vo; and

C,uts D, ,t<w
Co, Do ,uoc £ to

where o is the most general unifier of s and v, uo £ so is maximal in Co, to < vo is
strictly maximal in Do, uo % so, to % so, and uo # to.

The resolution rule applies to arbitrary literals, including inequalities.

SDepending on the ordering on ground terms, this extension to non-ground expressions may or may
not be decidable. In the latter case one will have to employ a safe and decidable approximation.



Ordered Resolution:
C,A D,-B

Co , Do

where o is the most general unifier of A and B, Ao is strictly maximal in Co, and Bo
is maximal in Do.

The calculus of all these inference rules is denoted by B, or simply B.

Remark. We generally assume that the premises of an inference have no common
variables. If necessary, the variables in one premise are renamed. Thus, it is also possible
to use different variants of a clause as premises in one inference.

3.3 Refutational completeness for Horn clauses

Clauses with at most one positive literal are called Horn clauses. The calculi B are
refutationally complete for such clauses. For the completeness proof we adapt the
model construction approach of Bachmair and Ganzinger (1990) (see also Bachmair
and Ganzinger 1993c).

Given a set N of ground clauses, we define a corresponding Herbrand interpretation
I using induction on >. More precisely, we define for each clause C an interpretation /¢,
intended to be a model for clauses smaller than C, and sets R¢ and E¢ that are designed
to turn Io into a model of C as well. Formally, for every clause C' in N we define R¢
to be the set Ugo, p Ep. By Ic we denote the rewrite closure Ro U {u < v : u |g, v}
of Rc. Furthermore, if C is a clause C’ V A, where A is a positive literal and A = C’°
and C' is false in Io then Ec = {A}. In that case, we also say that C' is productive and
that it produces A. In all other cases, Ec = (). Finally, let R be Uy Ec and let I be the
rewrite closure RU{u < v:u g v} of R.

In what follows we shall also use the notation R® for Rc U E¢ and I€ for the
rewrite closure of R¢. Hence I¢ is the partial interpretation defined by clauses smaller
that C, whereas I¢ additionally includes the effect of C' in this construction. All these
interpretations are rewrite closures of suitable rule sets.

Lemma 1 If a ground Horn clause C' (which need not be in N ) is true in some inter-
pretation Ip or IP, where D = C, then C is also true in I and in any interpretation

Iy and IP?" with D' = D. Furthermore, if a clause C is productive, then it is true in
I¢.

Proof. The proof is straightforward, once one has observed that the ordering > is de-
signed so that whenever a negative literal A occurs in C' and A is false in Ip or IP
with D € N and D > C, then A remains false in [. O

This lemma will often be applied in its contrapositive form to infer that C is false in I
and I¢ whenever it is false in I or I”, for some D’ > C.

We say that a set of (possibly non-ground) clauses N is saturated (with respect to
an inference system J) if it contains all conclusions of inferences (in J) from N. Let us
also use —7 as an abbreviation for =; U — (and similarly for <—7 and |T), for any set
I of ground atoms.

5Tn writing A = C’ we use A to denote a positive unit clause.



Lemma 2 Let N be a set of ground Horn clauses that is saturated with respect to B
and does not contain the empty clause, and let I be the interpretation constructed from
N. Then for every clause C' in N, we have:

(1) If C is a productive clause C'V A, with A = C’, then C' is false in I.

(2) The relation —%c commutes with <%, and hence the relation |Tc is transitive,
and I€ as well as I are transitivity interpretations.

(3) C is true in I€.

Proof. We use induction on ». Let C be a ground clause in N, such that (1)-(3) are
satisfied for all smaller clauses in N.

(1) Suppose C' is a productive clause of the form C’V A, with A = C’. Since C' is a
Horn clause, C’ contains only negative literals. Furthermore, C’ is false in Io. Thus, if
-B € C’, then B € I C I, from which we conclude that C” is false in I.

(2) By the induction hypothesis, peaks that involve only R¢c commute, hence I is
a transitivity interpretation. The assertion for I¢ is thus trivially true if Eo does not
contain an inequality, or if Ec = {t < v} where v = t. Suppose C = C’ Vv < t produces
v < t with v = t. If there is another clause D = D’V u < v that produces u < v with
v > u, then there exists a peak u <—g, v =g, t. But by ordered chaining we obtain
from C and D the clause C” = C'v D' Vu < t. Since N is saturated and C = C”
we may apply the induction hypothesis, to infer that C” is true in I¢”. But ¢’V D’ is
false in I and RC" C Rc, so that either u g, t or else u =t and u < t € R¢, which
establishes the required commutation property.

(3) If C'is false in 19, then it cannot be productive, hence must violate the condition
imposed on productive clauses, that is, the maximal literal in C' is negative. Let us
therefore assume C can be written as C' V = A, with a maximal atom —A that is false
in Ic. Thus the atom A is true in Io. If A is produced by some (smaller) clause
D = D'V A, then the resolvent C” = D'V C’" of C and D is smaller than C (since
—A > D’), contained in N, and false in I and hence false in T C”__which contradicts
the induction hypothesis. The only remaining possibility is that A is an inequality u < v
with u | g, v. In that case there exists a suitable productive clause D V u < v' (where
v Jgo v) or DV < v (where u | g, u'), which through negative chaining with C
produces a clause C” smaller than C, that is contained in N and is false in I¢”, which
is again a contradiction. Thus, C' must be true in I¢, which completes the proof. O

The lemma indicates that all interpretation I and I are transitivity interpretations.
As an immediate corollary of the lemma we obtain:

Theorem 1 If a set of Horn clauses N is saturated with respect to B, then the set
N UT. is unsatisfiable if and only if it contains the empty clause.

Proof. If N contains the empty clause, N U T is unsatisfiable. Suppose N does not
contain the empty clause. Let I be the Herbrand interpretation constructed from the
set of all ground instances of N. It follows from standard results in resolution theory
(usually called “lifting lemmas”) that if N is saturated with respect to B, then the set of
its ground instances is also saturated. Therefore we may use the above lemma to infer
that the relation | g is transitive and that I is a model of N UT.. O

We can use this theorem to check the unsatisfiability of sets of Horn clauses over lan-
guages with transitive relations: saturate the given set of clauses with respect to the



inference system B; if the set if unsatisfiable, a contradiction in the form of the empty
clause will eventually be generated. In the following section we generalize the ordered
chaining calculus B to arbitrary clauses. First, though, we describe a suitable concept
of redundancy that is compatible with chaining.

3.4 Redundancy

We sketch the main ideas of an abstract notion of redundancy and refer to Bachmair
and Ganzinger (1993c) for further details.

Let N and E be sets of clauses and C' be a ground clause (not necessarily a ground
instance of N). We call C' E-redundant with respect to IV if there exist ground instances
C1,...,C) of N such that C' is true in every E-model of (1, ...,C) and C' > C}, for all
j with 1 < j < k. It can easily be seen that the clauses C1, ..., C) can be assumed to be
non-redundant. A non-ground clause is called E-redundant if all its ground instances
are.

Tautologies are F-redundant in this sense, for any E, and most cases of proper
subsumption are also covered by this notion of redundancy. The axioms in E are all
E-redundant by definition (presumably they are built into the inference mechanism).

A ground inference with conclusion B and maximal premise C' is called F-redundant
with respect to IV if either some premise is redundant, or else there exist ground instances
Cy,...,Cy of N such that B is true in every E-model of C1,...,Cy and C' ¢ C}, for
all j with 1 < j < k. A non-ground inference is called E-redundant if all its ground
instances are.

We say that a set of clauses N is saturated up to E-redundancy if all inferences from
N are E-redundant.

For the remaining part of this section, redundancy is meant to refer to T--redundacy.
One way to render an inference in B redundant is to add its conclusion to the set N.

3.5 Ordered chaining for general clauses

The inference system B is refutationally complete for Horn clauses, but not for general
clauses. In particular, a factoring rule is needed for disjunctions of positive literals.

Ordered Factoring:
C,A B

Co, Ao
where ¢ is the most general unifier of A and B, and Ac is maximal in Co.
Unfortunately, it also turns out that for disjunctions of positive inequalities with

multiple occurrences of the maximal term of a clause the inference mechanism of negative
and ordered chaining is insufficient. For example, take the set of clauses

— ¢c<b

— b<ec

— a<ba<c
a<ba<c —

where a = b > c. This set of clauses is unsatisfiable. The third clause implies that a < b
or a < c is true. But by the first two clauses, if one of the two inequalities is true, so is



the other. This contradicts the last clause. From the first two clauses we obtain ¢ < ¢
by chaining. From the last two clauses we obtain b £ bV a £ ¢V a < ¢ by negative
chaining. This inference is redundant, as its conclusion is a tautology. Thus, by adding
¢ < c the set is saturated up to redundancy, but does not contain the empty clause.

The following inference rules restore refutational completeness and guarantee com-
patibility with redundancy.

Transitivity Resolution:

C,u<v,u <v D,s<t
Do ,to £ v'o, so <vo

where o is the most general unifier of u, v’ and s; the inequality uoc < wvo is strictly
maximal in Co V v/oc < v'o; the inequality so < to is strictly maximal in Do; and
vo ¥ uo, vV'o F uo, v'o ¥ vo, to F so, and vo ¥ to.

C,u<v,u <v D,s<t
Do ,u'oc £ so ,u'o < to

where o is the most general unifier of v, v/ and ¢; the inequality uoc < vo is strictly
maximal in Co V v/oc < v'o; the inequality so < to is strictly maximal in Do; and
uo % vo, u'oc ¥ vo, u'c F uo, so ¥ to, and uc ¥ so.

These inference rules represent the controlled application of resolution with the tran-
sitivity axiom. For instance, the clause Do V to £ v'o V so < v'o is an instance of the
conclusion of the resolution inference

Do,so<tc zLy,yLz,x<z
Do to £ z,s0<z

In other words, the conclusion of a transitivity resolution inference 7 is an instance of a
resolvent between the second premise of m and the transitivity axiom. The first premise
of 7 regulates which instances and resolvents are needed.

The calculus consisting of B. plus ordered factoring and transitivity resolution is
denoted by C. (or C). These calculi are refutationally complete for arbitrary clause sets
with a transitivity axiom. The completeness proof is based on a slightly modified model
construction.

Let N be a set of ground clauses. For every clause C' in N, let Rc be the set
Ucsp Ep and Ic be the rewrite closure R U {u < v : u g, v} of Rc. Furthermore,
if C' is a clause C' V A, where A is a positive literal and A = C’, and C is false in Io
and C’ is false in the rewrite closure of Ro U {A}, then Ec = {A}. In all other cases,
Ec = (0. We denote by R the set |J~ Ec and by I the rewrite closure of R. As before,
RC denotes Rc U Ec and I€ the rewrite closure of RC.

Lemma 3 If a ground clause C' (which need not be in N ) is true in some interpretation
Ip or IP, where D = C, then C is also true in I and in any interpretation I and IP'
with D' = D.

Lemma 4 Let N be a set of clauses that is saturated up to redundancy with respect to C
and does not contain the empty clause, and let I be the interpretation constructed from
all ground instances of N. Then for every ground instance C of a clause in N we have:



(1) If C is productive then it is non-redundant.

(2) The relation — 4o commutes with <5, and hence the relation | 3o is transitive
and Ic as well as I€ are transitivity interpretations.

(3) The clause C is true in the rewrite closure of RC.

(4) If D is a productive clause D'V A, with A = D’ and if C = D, then D’ is false

in the rewrite closure of RC.

Proof. We use induction on >. Let C' be a ground clause in N, such that (1)—(4) are
satisfied for all smaller clauses in N.

(1) Let C be T<-redundant in N. Then there exist ground instances Cj,...,C), of
N such that C logically follows from the Cj, that is, is true in every T'<-model of the
C;. Applying the induction hypothesis of (2) and (3) we infer that I¢ is a T=-model of
the C;. Therefore C' is true in I and, hence, not productive.

(2) The commutation property is a consequence of saturation under ordered chain-
ing. By the induction hypothesis, peaks that involve only Rc commute, hence I¢ is
a transitivity interpretation. The assertion for I is thus trivially true if E¢ does not
contain an inequality, or if Ec = {t < v} where v = t. Suppose C = C’ Vv < t produces
v < t with v = t. By the definition of E¢, the clause C” is false in I¢. If there is
another clause D = D’V u < v that produces u < v with v = u, then there exists a peak
U 4R, UV —E, t. Since C' = D we may apply the induction hypothesis to conclude that
D' is also false in I¢. Furthermore, C' and D are by (1) non-redundant and produce
C" =C'"Vv D'V u <t by ordered chaining. Since N is saturated up to redundancy, the
clause C” must logically follow from clauses strictly smaller than C. That is, C” must
be true in I¢. Since C' VvV D' is false in I, we conclude that u < t is true in I¢, which
establishes the required commutation property.

(3) We already know that all ground instances of N that are smaller than C are
true in I and that Io is a transitivity interpretation. If C' is redundant, then it has to
be true in I¢ and in hence in I¢. If C is productive, it is by construction true in the
rewrite closure of RY. Let C' be a non-redundant, non-productive clause.

(3.1) First suppose the maximal literal in C' is negative and C' can be written as
C'V —A, with a maximal atom —A that is false in I¢. Thus A is true in I¢.

If A is produced by some (smaller) clause D = D'V A, then the resolvent C” = D'V’
of C' and D is smaller than C (since =A > D’). Since N is saturated up to redundancy,
C" must follow from clauses smaller than C, all of which are true in I. Therefore C”
must be true in Io. By the induction hypothesis, D’ is false in I. Therefore C”, and
also C, is true in I¢.

If A is an inequality v < v with u |r, v, then there exists a suitable productive
clause D'V u < v' (where v/ |g, v) or D' Vu' < v (where u |r, u'). By negative
chaining we get either C'V D' Vv £ v or C'V D' Vu £ u/. In either case we may use
saturation up to redundancy to infer that C’, and hence C, is true in I¢.

(3.2) If C is of the form C'V AV A, with multiple occurrences of the maximal literal
A, then the smaller clause C’ V A is obtained from C by ordered factoring. Using the
induction hypothesis and saturation up to redundancy, we may infer that C'V A and C
must be true in I¢.

(3.3) Suppose C' can be written as C' Vu < vV u < v', where u = v > v and v < v/
is true in Io. Transitivity resolution of C' with itself produces C” = C' Vv £ v/ Vu < v'.
Using the induction hypothesis and saturation up to redundancy, we may infer that C”
is true in Io. Since v £ v’ is false in I, this implies that C' V u < v/, and hence C, is
true in Io.
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Similar arguments apply if C is of the form C” Vu < vV u' < v, where v = u = v’

Cases (3.1)—(3.3) cover all the possibilities for a non-redundant clause C' to be non-
productive. In each case we have shown C' to be true in I, which completes this case.

(4) Suppose D is a productive clause of the form D'V A with A = D" and C = D.
By means of inductive reasoning we may assume that D’ is false in I. (This is easily
confirmed for the base case C' = D.) Suppose D’ is true in the rewrite closure of RC.
There are essentially two cases. One is that C' is of the form C’V u < v and produces
u < v with u = v; and moreover A is an inquality u < ¢t and D’ is of the form D" Vu < ¢/,
such that v < ¢’ is true in I, but ¢t < t’ is false in I>. But then we may obtain the clause
C"=C'"Vv £ t'Vu <t by transitivity resolution from C and D. Since N is saturated
up to redundancy, and all clauses smaller than C are true in I, we may infer that C”
is true in I. Also, since C is productive, C” is false in I. Therefore, u < ¢’ must be
true in Io. This contradicts our assumption that D’ is false in Io. The other, similar
case that C is of the form C’ V v < v and produces u < v with v = u, corresponds to
the other version of transitivity resolution. Details are left to the reader. O

As an immediate corollary of the above lemma we obtain the following completeness
theorem.

Theorem 2 If a set of clauses N is saturated up to redundancy with respect to C, then
the set N UT< is unsatisfiable if and only if it contains the empty clause.

3.6 Variable chaining

In chaining we put together two inequalities (one of which may be negative) by unifying
the first argument of one with the second argument of the other. If one of the two terms
thus unified is a variable we speak of a variable chaining. More specifically, we speak of
chaining into a variable if the inequality with the variable is not smaller (with respect
to >) than the other inequality; and speak of chaining from a variable if the inequality
with the variable is not bigger than the other inequality. Since the unification of a term
with a variable not occurring in it always succeeds, variable chaining can be particularly
prolific. Fortunately, the combination of redundancy, which by Theorem 2 is compatible
with chaining, and ordering constraints drastically cuts down on variable chaining.
Consider, for instance, an ordered chaining inference

C,u<zxz D,t<w
Co,D,uc <w

where xo = t. The constraints imposed on an ordered chaining inference require x
to be a maximal term in the first premise, which implies that = does not occur in a
negative literal and also is unshielded in the clause in the sense that it occurs only as an
argument of < but not as an argument of any other predicate symbol or any function
symbol. Moreover, the inference is redundant if the variable x is linear in the first
premise, i.e., does not occur in C' or u. For in that case the conclusion is C'V DV wu < v,
and is either properly subsumed by C'V u < x or else is identical to C V u < x up to
renaming of variables. Similar arguments apply to inferences

C,u<s D,xz<w
C,Do,u<vo

where the variable occurs as the first argument of an inequality.
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In sum, ordered chaining through a variable is only necessary if the variable is non-
linear and unshielded and occurs only in positive literals. For Horn clauses these con-
ditions cannot be satisfied simultaneously, so that ordered chaining through variables
is not needed at all. But negative chaining into non-linear unshielded variables is still
necessary, even for Horn clauses, as the following example shows. Take the set of clauses

- a<d
— d<c
— b<lt/
— b <e
a<z,b<x —

where ¢ = bV = b = a’ = a. This set of clauses is unsatisfiable. From the first two
clauses we obtain a < ¢; from the third and fourth clause b < ¢. The two inequalities
contradict the last clause. No ordered chaining is possible. We may resolve the third
with the last clause, to get a £ b, from which we get a £ b by chaining with the third
clause again. Any other inferences require chaining through a variable. In other words,
no contradiction can be derived if we exclude variable chaining. If we use the fourth and
fifth clause to chain through a variable, we get a £ ¢V b £ V', from which a contradiction
can be derived by one more chaining and two resolution steps.

In the next section we show that chaining into variables can be avoided if the given
transitive relation is also symmetric.

4 Partial Equivalence Relations
Let ~ be a transitive relation that also satisfies the symmetry axiom
T~y —Y~T.

This clause can be resolved with every clause C'V s ~ t for which s ~ t is a strictly
maximal literal, to yield C' V t ~ s. Thus, symmetry is usually built into chaining by
using literals s ~ ¢ in both directions.

Consider now a chaining inference

C,s~t D,usdzx
C,Do,uc #t

where xo = s, t % s, s ~ t is strictly maximal in C, and uo # s is maximal in Do. Let
7 be a substitution with 7 = t. Then the conclusion of the chaining inference follows
from D7V ur #t and C'V s ~ t, and the inference can easily be seen to be redundant.
Thus, chaining into a variable in a negative literal is unnecessary. (Note that this holds
for clauses in general, not just Horn clauses.) As a consequence, the resolution inferences
with the symmetry axiom mentioned above are the only inferences in which this axiom
can participate. Thus, the presence of the symmetry axiom allows us to restrict variable
chainings, which in turn cuts down on the number of inferences with symmetry.
Similar arguments as above apply to most” chainings into a variable in a positive
inequality. Chaining from a variable (in a positive literal) is still needed, though. For

"namely those which are not also chainings from a variable
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example, the set of two clauses

— T ~a

a~b —

is unsatisfiable. But if ¢ > b > a (and because of the minimality of the constant a, also
x > a), then we need to chain through z in the first clause to derive a contradiction. (If
a is not minimal, we can chain the first clause with itself through a, to obtain = ~ vy,
which can then be resolved with the second clause to yield a contradiction.)

An important consequence of symmetry is that transitivity resolution can be re-
stricted. More precisely, let S be the inference system C., but with the inference rules
modified so that symmetry of ~ is taken into account and with the transitivity resolution
rules replaced by the following inference rule.

Equality Factoring;:
C,u~v,u ~1

Co ,vo #v'o,uc ~v'o

where o is the most general unifier of u and v'; vo % uo, v'o # uo, and v'o % vo; and
uo ~ vo is strictly maximal in Co V v/o ~ V0.

Equality factoring corresponds to transitivity resolution of a (suitable) clause with
itself. Any other transitivity resolutions are unnecessary for symmetric relations. More
precisely, Lemma 4 can be strengthened as outlined below.

We first modify the model construction to take account of symmetry. For any ground
atom A, we define A~! as follows. If A is an atom u ~ v, let A~! be v ~ wu; otherwise
let A=! be A. Let N be a set of ground clauses. The sets R, R, Ic, I€, R, and I
are defined as before. However, if C is a clause C’ V A, where A is a positive literal
and A > C’, and C is false in Ic and C’ is false in the rewrite closure of Ro U {4},
then E¢ = {A, A™'}. Thus rewrite rules in R¢ can be used in both directions (which is
reflected in the inference rules of S).

Let us denote by ST the set consisting of the symmetry and transitivity axioms for
the predicate ~.

Lemma 5 Let N be a set of clauses that is saturated up to ST..-redundancy with respect
to S and does not contain the empty clause, and let I be the interpretation constructed
from all ground instances of N. Then for every ground instance C' of a clause in N we
have:

(1) if C is productive then it is non-redundant.

(2) The relation —qo commutes with <o, and hence the relation | 5c is transitive.
Furthermore, the interpretations Ic and I satisfy ST-.

(3) The clause C' is true in IC.

(4) If C is a productive clause C'V u ~ v (or C'V v ~ u) with uw > v, and D is a
productive clause D'V s ~t (or D'Vt ~ s) with s = t, and if in addition C = D, then
the terms u and s are different.

Proof. The proof is similar to the proof of Lemma 4, and parts (1)-(3) are essentially
the same.

(4) Let C and D be productive, and hence non-redundant, clauses as indicated, and
suppose s and u are the same. Then we may obtain the clause C” = C'V D'Vt ~ v
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by ordered chaining. Using saturation up to redundancy and the induction hypothesis,
we may infer that C” is true in I, whereas C' \V D’ is false in Io. Consequently, t ~ v
must be true in I. But since s ~ t is also true in I~ and I satisfies ST.., we conclude
that s ~ v is true in I, which contradicts the assumption that C is productive. O

This lemma does indeed strengthen Lemma 4. For if C = C’ V A is productive, then C’
is false in I, as any atom in I \ Ic can only be used to rewrite terms bigger than the
maximal term in C. The lemma also indicates that a ground term can be rewritten by
at most one rule in R. In other words, rewrite proofs are “deterministic” on the ground
level, which may be of advantage in checking for redundancy.

Let us conclude this section with a remark on equivalence relations, which are tran-
sitive symmetric relations that are also reflexive, a property that can be built in as an
(harmless) inference:

Reflexivity Resolution:
usgv,C
Co

where ¢ is a most general unifier of v and v and uo ¢ vo is a maximal literal in Co.

5 Congruence Relations

Rewrite techniques have primarily been applied to equivalence relations ~ that also
satisfy the congruence axioms

r~y — floox )= f(oy,.)
z~y,P(..,z,...) — P(..,y,...)

for all function symbols f and predicate symbols P. (For each symbol of arity n, we
need n axioms.)

Repeated resolutions with congruence axioms allow one to build a “context” around
the terms in a maximal positive literal, so that from a clause C'V s &~ ¢t with maximal
“equality” literal s ~ ¢t we may produce any clause C'V u[s] ~ u[t]. Combining such
inferences with chaining, we obtain what may be called subterm chaining, but is actually
known as paramodulation or superposition. (Paramodulation corresponds to ordinary
chaining, while superposition also includes ordering restrictions.) A typical example is
the following inference rule.

Superposition:
C,s=t D,uls]=wv
Co , Do, u[t]o =~ vo

where (i) o is a most general unifier of s and ¢/, (ii) so = to is strictly maximal in Co,
and to % so, (iii) uo &~ vo is strictly maximal in Do, and vo % uo, and (iv) s’ is not a
variable.

A similar inference rule is needed for superposition into negative equalities. The
congruence axioms for predicate symbols also require one to paramodulate into arbitrary
literals.
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Ordered Paramodulation:
C,s~t D,L[s]
Co , Do, Ltlo

where (i) o is a most general unifier of s and s, (ii) so ~ to is strictly maximal in Co,
and to % so, (iii) L[s']o is maximal in Do, and (iv) s’ is not a variable.

Paramodulation was introduced by Robinson and Wos (1969), but all early com-
pleteness proofs assumed the presence of “functional-reflexive axioms” and required
paramodulation into variables (i.e., chaining into variables). Brand (1975) was the first
to prove that the functional-reflexive axioms are not needed, and his proof requires only
a very limited form of paramodulation into a variable. The first proof that paramod-
ulation into a variable is not needed at all was given by Peterson (1983), while Hsiang
and Rusinowitch (1991) were the first to explicitly put some ordering restrictions on
paramodulation. The more restrictive superposition calculus described in Zhang and
Kapur (1988), Zhang (1988) turns out to be incomplete; for a counterexample see Bach-
mair and Ganzinger (1990). The superposition calculus with equality factoring was
introduced by Bachmair and Ganzinger (1990). There are also alternatives to equal-
ity factoring: Rusinowitch (1991) weakens some ordering constraints, while merging
paramodulation is proposed in Bachmair and Ganzinger (1990), see also Pais and Peter-
son (1991). More recently new paramodulation and superposition calculi have been pro-
posed by Bachmair, Ganzinger, Lynch, et al. (1992) and Nieuwenhuis and Rubio (1992).

We emphasize that the above results apply to symmetric relations. There are in-
teresting examples of theories with non-symmetric operators that satisfy congruence or
similar properties. For example, to define ring structures we may need axioms, such as

r<y — rt+z<y-+z
r<y — —-yY<-—-x

that express monotonicity or anti-monotonicity properties of a binary relation with re-
spect to certain functions. Naturally, (subterm) chaining methods for general clauses
(Manna and Waldinger 1986, Manna and Waldinger 1992) and completion-like proce-
dures for unit clauses (Levy and Agusti 1993) have been proposed for such relations,
but for completeness chaining into the variables of functional-reflexive axioms (cf. the
“variable instance pairs” in Bachmair, Dershowitz and Hsiang 1986) is required, which
is impractical in general.

For example, given two inequalities ¢ < = * x and a < b, and a syntactic ordering
in which a = b and = * x > x, we need the “variable subterm chaining” (or “variable
overlap”) a < a*xa < axb to derive a < ax*b. (If < were symmetric, we would also have
a <b<bxb< axband the chaining would be unnecessary.) This example, which is
typical of the problems variable overlaps may cause for completion procedures, depends
on the syntactic ordering > and on the non-linearity of the variable x. In the case of
non-unit clauses, proper handling of negative literals poses further difficulties.

Take the set of two clauses

— a<b
f@) < f(fly) —

(and the monotonicity axiom = < y — f(z) < f(y). This set of clauses is unsatisfiable:
from the first clause and the congruence axiom we get f(f(a)) < f(f(b)), which con-
tradicts the second clause. However, we cannot get a contradiction from the first two
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clauses by chaining even at variable subterms (regardless of how the ordering is defined).
In this example we can get a contradiction by an inference that combines chaining into
a variable with a subsequent unification of terms. Thus, we get f(z) < f(f(a)) by
chaining, and the empty clause, because f(x) and f(f(a)) are unifiable. This is a lim-
ited form of resolution, which may be called context resolution, in which a context is
put around one of the literals before the actual resolution takes place. In the example
above, the context is determined by the chaining and the subsequent unification. Un-
fortunately, in the presence of non-linear variables, the context may have to be guessed.
Take the clauses a < b and f(g(b),z,z) £ f(v,y,9(a)). Assuming suitable congruence
axioms, the first clause implies f(g(b),g(a),g(a)) < f(g(b),g(b),g(a), which indicates
the appropriate context for a < b, so that resolution with the second clauses yields a
contradiction.

6 Summary

We have proposed chaining with ordering restrictions as an inference mechanism for deal-
ing with transitive relations and have established its refutational completeness for Horn
clauses. We have also presented an extension to the inference system for Horn clauses
that renders it refutationally complete for general clauses and, in the case of symmetric
transitive relations, reduces to equality factoring, which is known from superposition
calculi. All inference systems are compatible with a notion of redundancy that covers
the simplification techniques commonly used in rewrite-based theorem provers.

In this paper we have discussed transitive relations, partial equivalence relations,
and congruence relations. But our approach and methodology are also applicable to
other theories, of which perhaps total orderings, satisfying the axiom

rT<yYy,Yy<zTr,r=Y

are of particular interest, as they require the consideration of a combination of two tran-
sitive relations—equality and inequality—and their corresponding commutation prop-
erties. A related topic is the integration of equational theories such as associativity and
commutativity in, say, a superposition calculus, where one also has to deal with the
combination of two equational theories and corresponding commutation properties, see
Bachmair and Ganzinger (1993a).

Chaining techniques have also been applied to set theory Hines (1990), though no
completeness results are known yet for the theorem proving systems that have been
proposed. Other applications include the application of standard theorem proving tech-
niques to certain modal and temporal logics based on their Kripke semantics. The
accessibility relations on which these semantics are based are usually transitive (see
Ohlbach 1993 for an overview of translation methods for such logics). In these logics the
entailment is still monotone so that it can be identified with entailment in first-order
logic. It is conceivable that ordered chaining can also be applied fruitfully to certain
logics for which entailment is non-monotone but transitive.

A key question in all applications of chaining, also from a practical point of view,
is to what extent variable chaining is needed. The ordering restrictions imposed in our
calculi considerably cut down on such chainings, though some are still needed. In the
presence of symmetry, chaining into variables is not needed. Variable chainings can
be completely excluded for dense total orderings with no endpoints, provided certain
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variable elimination rules are applied (Bledsoe and Hines 1980, Bledsoe, Kunen and
Shostak 1985, Hines 1992). The application of rewrite techniques to such theories is
discussed in Bachmair and Ganzinger (1993b).
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