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Abstract

A system of set constraints is a system of expressions E C F
where E and F describe sets of ground terms over a ranked alphabet.
Aiken et al. [AKVW93] classified the complexity of such systems. In
[AKW93] it was shown that if negative constraints £ ¢ F were al-
lowed, then the problem is decidable. This was done by reduction to
a Diophantine problem, the Nonlinear Reachability Problem, which
was shown to be decidable.

We show that nonlinear reachability is NP-complete. By bounding
the reduction of [AKW93] we conclude that systems of set constraints,
allowing negative constraints, is NEXPTIME-complete.

1 Introduction

In [AKW93] Aiken et al. show that it is decidable whether a system of set
constraints, including negative constraints, has a solution. The same result
was achieved independently by Gilleron el at. [GTT93|. The result of Aiken
et al. is achieved by reducing the set constraint problem to a hypergraph
reachability problem, which in turn is reduced to the Nonlinear Reachability
Problem (NVRP). They proceed to show that NRP is decidable, thus proving
the set constraint problem decidable.
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In this paper we show that if NRP has a solution, then it must have
one of polynomial size. In particular, this shows NRP € NP, giving the
first elementary bound on the Nonlinear Reachability Problem. It is easy to
show that NRP is NP-hard, so NRP is NP-complete. This also gives the
first elementary bound on the system of set constraints where negative con-
straints are allowed. We bound the reduction of [AKW93] and conclude that
the general set constraint problem can be solved in nondeterministic expo-
nential time. Combining this with the fact that the simpler problem, solving
systems of set constraints with positive constraints only is NEXPTIME-hard
[AKVW93], we have shown the general problem to be NEXPTIME-complete
too.

We proceed by defining the NRP and an associated graph, whose prop-
erties characterize how close the NRP instance is to being solved.

2 The Nonlinear Reachability Problem

In [AKW93] Aiken et al. define the Nonlinear Reachability Problem (NRP).
We will define NRP again, but we refer the reader to [AKW93] for more
details and proofs of some of the lemmas we will use.

Let X be a set of variables ranging over N. Consider a system C of
inequalities of the form p < ¢ with p,q € N[X] where each p is a sum of
variables over X, and each z € X occurs in at most one left hand side p.

If z does occur in a left hand side of a constraint, z is said to be con-
strained, and we denote the constraint by p, < ¢,.

A valuation is a map v : X — N. The map u extends uniquely to a
semiring morphism N X] — N.

For a system C and z € X, z is enabled under wu if either

e z does not occur on any left hand side of C; or

o u(p,) < u(gz)-

The operation of incrementing the value of z under a valuation « will be
denoted by appending z to u, i.e. define uz by

wly)+1 ifz =y,
u(y) otherwise.



The definition of uz extends to uc for any o € X* by defining

uE = u
u(loz) = (uo)z

The valuation wu is said to satisfy C if for all p < g € C, u(p) < u(q). Denote
by Vi be the set of all valuations satisfying C.

For u,v € Vg and z € X, we write u—%>v if v = uz and z is u-enabled.
Define the graph G¢ = (V¢, E) with a directed edge (u, v) labelled z if u-%~v.

Let X*(C,u) denote the set of paths ¢ € X* in the graph G¢ starting
at u. A path ¢ € X*(C,u) gives rise to a new valuation uo : X — N with
uo € Vg. A string o € X* is said to be valid (for (C,u)) if ¢ € X*(C,u). We
will use Greek letters for valuation strings ¢ € X*(C,u), but Roman letters
for valuations u € V.

For a,8 € X*, we write a =x [ if a(z) = B(z) for all z € X. Note that
a =x [ iff a and B are permutations of each other.

Definition 1 The Nonlinear Reachability Problem (NRP) is the following
problem:

Given a system C of constraints in variables X, a valuation s € V
and a special variable zy € X, decide if there exists a o € X*(C, s)
such that so(zg) > 0.

a

3 The Exposure Graph

As in [AKW93] we observe that for ¢ € N[X] and z € X there is a unique way
to write ¢ = Y7~ ¢;2* with ¢; € NIX — {z}], and we say that z is u-ezposed
in ¢ if u(g;) > 0 for some 1 < i < 7.

For an instance (X, C,u) of NRP, we define the ezposure graph to be the
directed graph G(u) = (V, E), where V = X and

E={(z,y) €V xV : zisu-exposed in g,}.

It follows from the definition of exposure that G(u) is contained in G(uo),
i.e. the graph is monotonic under the operation of incrementing the valuation.
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Let 0 € X*(C,u). We say that o is u-orderly if for all a, 3,7 € X* and
z,y € X, if there is a path from z to y in G(uc), then all occurrences of z
in o must occur before all occurrences of y in o.

In this definition z and y may be the same, in which case z occurring
in the u-orderly o implies there is no loop through z in G(uo), self-loops
included.

Lemma 2 Let o € X*(C,u). If o satisfies
Ve e X if z is on a cycle of G(uo) then o(z) =0 (1)
then there exists o' € X*(C,u) with o' =x o such that o' is orderly.

Proof. If 0 = ¢ then o itself is orderly. Assume |o| > 1, and write
o = azf3, where for all y € af3, there is no path in G(uo) from y to z. Such a
partition of ¢ exists since otherwise for every element z; of o there would be
another element z;,; of o with a path from z,.; to z; in G(uo). Since there
are finitely many variables z;, we would eventually get a repeated occurrence
of some variable of o, contradicting the property (1).

Since 0 = axf and for no y € o is (y,z) an edge of G(uc), we have that
T is u-enabled. We claim that za € X*(C,u).

If not, say o = a;2aq, where zq; is valid but za;z is not. Since a;z is
valid, z and z must have the same defining constraint, p < q.

Since zay € X*(C,u) and ayz € X*(C,u) we have uza;(q¢ —p) = 0 and
uai(q — p) = 1. We note that 2 cannot be ua;-exposed in ¢ (then z would
have a self-loop in G(u0), contradicting (1) above), so ua;z(q¢—p) = 0. Since
T 18 uay zag-enabled but not ua; z-enabled, there is some y € ay where (y, z)
is an edge of G(uo), contradicting the choice of z. Hence, za must be valid,
and so is zaf.

By induction, a8 can be rearranged to be uz-orderly, say a8 =x . Then
7y =x 0, and zv is orderly. O

Lemma 3 Letay € X*(C,u) witha € X* andy € X. If a is u-orderly and
y 15 u-enabled, then ya € X*(C,u).

Proof. We use induction, the case a = ¢ being trivial. Assume a = yz.
We will show that yyz € X*(C,u). Then by induction yy € X*(C,u) and



hence yyz € X*(C,u). If y is not constrained, the lemma holds trivially, so
assume p < ¢ is the constraint of y.

In an orderly string a variable cannot change from enabled to nonenabled
and back to enabled. Thus y is enabled throughout «.

If z is also constrained by p < g we cannot have uy(q — p) = 1, because
that would imply (z, z) were an edge of G(ua), contradicting that o is orderly.
Hence uy(q — p) > 1 and we clearly have yyz € X*(C,u).

If 2 is not constrained by p < g then since vy € X*(C,u) we clearly have
yyz € X*(C,u). O

Lemma 4 Let a € X*(C,u),z € X,n = |X| with a(z) > 0. If a is orderly
and G(u) = G(ua), then there exists ' = ajap € X*(C,u) with o =x a,
ai(z) > 0, |a1| < n and ay orderly.

Proof. Write o = fzv. Either z is u-enabled or there is some z; € 3
such that (z1,z) is an edge of G(u). Continuing this way we get a path
Tk, ..., 1, in G(u), where z; is u-enabled. Since « is orderly, kK < n. Then
we can write 8 = [1zx02. By applying Lemma 3 on 1z, we see that 15,52
is valid. Then (3,0, is orderly since § = (1202 is. Now note that zj._; is
uzi-enabled and zx_1,..., 71, is a path in G(uzx) = G(ue). By induction,
we get that Sz =x zxzk—1--- 2120 where 74241 -+~ 120 € X*(C,u). O

For a valuation u, let sign u denote the valuation

. 1, ifu(y) >0,
sign v(s) = { ¢ o) 20

Lemma 5 Letz € X, p < g€ C andu,v € V. Ifsign u(y) < sign v(y)
for ally € X — {z} and x is u-exposed in q, then z is v-exposed in q. In
particular if sign u = sign v then G(u) = G(v).

Proof. This is Lemma 6.5(i) of [AKW93]. O

Lemma 6 Assume ax € X*(C,u) where a is orderly and G(u) = G(ua) C
G(uax). Then there exist fy € X*(C,u) such that

1. By =x ar,
2. 18| < n?,



3. G(uaz) = G(upf).

Proof. By Lemma 4, any variable of a can be assumed to be fired within
n steps of a, with the remainder of « orderly. Thus it can be assumed that if
a fires k < n variables, they are all fired within kn steps. So we can assume
a = ajog with |a;| < kn and ay orderly.

If z is uog-enabled, by Lemma 3 ayzay, € X*(C,u). If z is not ua;-
enabled, there is y € as such that y is u-exposed in ¢,. By Lemma 3 we can
assume y is fired within n steps of a;. Since sign ua; = sign ua, y will still
be exposed in ¢, by Lemma 5.

We have shown that az =x By with |§| < n? and sign az = sign 3.
Along with Lemma 5 this proves conditions 1-3 of this lemma. O

Lemma 7 For a system (X,u,C) with |X| = n, let 0 € X*(C,u) with
o(zo) > 0. Then there exists a o' € X*(C,u) with o' = af8, 0’ =x o and
la| < n?, where o satisfies either

1. G(ua) has a self-loop based on an exposed variable; or

2. G(ua) has a cycle whose vertices are in at least two different con-
straints; or

3. Oé((l?o) > 0.

Proof. 1t is clear that every o that is a solution for the system satisfies the
third condition of the lemma. Let a be the smallest prefix of ¢ satisfying one
(or more) of the conditions of the lemma. If @ = ¢ we are done, otherwise
write @ = @/y. By Lemma 2 we can assume o’ is orderly.

If G(ua) has a cycle, then every edge of the cycle can be added within
n? steps, by Lemma 6. Hence we can assume o creates the cycle within n®
steps.

If G(ua) contains a self-loop based on an exposed variable z, we can
again assume « creates the loop within n® steps. By a proof similar to that
of Lemma 6, it takes at most n more steps to enable the variable z. O

4 Reducing Solutions

We restate three important lemmas from [AKW93].
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Lemma 8 Let (X,u,C) be an instance of NRP, p < q € C and C' =
C —{p < q}. Ifz € X is unconstrained and exposed in q, then (X,u,C)
has a solution if and only if (X,u,C") does. Furthermore, any solution to
(X,u,C) is also solution to (X,u,C").

Proof. This is just a restatement of Lemma 6.14 in [AKW93]. O

Lemma 9 Let (X,u,C) be an instance of NRP. Let x € X and assume
p < q € C constrains x. Let

Cyz{(C—{quDU{p—qu—wL if g — 2 € NX]
C—-{p<gq} otherwise.

If  is u-enabled then (X,u,C) has a solution if and only if (X, u,C") does.
Furthermore, any solution to (X,u,C) is also solution to (X,u,C").

Proof. This is just a restatement of Lemma 6.15 in [AKW93], except for
the last statement, which is implicit in the proof given in [AKW93]. O

Lemma 10 Let (X,u,C) be an instance of NRP. Assume 1,...,zr € X
have pairwise different constraints p; < ¢; € C, 1 < i < k. Define

k
po= Zpi
=1
k
ql = ZQi,
=1

C¢' = (C-D)u{p <d}

If £1---z is a loop in G(u), then (X,u,C) has a solution if and only
if (X,u,C") does. Furthermore, any solution to (X,u,C) is a solution to
(X,u,C").

Proof. This is just a rewording of Lemma 6.16 in [AKW93]. O

Remark We note that if G(u) contains a simple loop z1, ..., zx, where z;
and z; have the same constraint, 0 < ¢ < j < k, then z;,. .. ,Zj_1 is also a
loop. So whenever G(u) contains a loop, it contains either a self-loop or a
cycle, where all the constraints of the vertices differ. O
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We now have a simple nondeterministic algorithm to compute a solution
to an instance of NRP, if such a solution exists. Consider the initial system
(X,u,C). If u(zo) > 0, we are done.

1. If for some p < ¢q € C there is an unconstrained variable z € X exposed
in g, we can remove p < q from C by Lemma 8.

2. If G(u) contains a self-loop based on z € X and z is u-exposed, either
replace p < g by p— 2 < ¢ — z or remove p < q from C, as determined
by Lemma 9.

3. If G(u) contains a cycle through variables with different constraints,
P1 < q1,...,Pt < @, collapse these into one constraint, p; + -+ + p; <
1+ -+ + g, by Lemma 10.

By the lemmas mentioned, the reduced system has a solution iff the original
system does.

Guess a string o € X*, where ¢ is the smallest string invoking one of
the events of Lemma 7. By that lemma, |o| < n*. We can recursively solve
(X, uo,C).

Each time we invoke one of the events of Lemma 7, it leads either to a so-
lution, or it removes a constraint from C or it makes a variable unconstrained.
Each of the events can happen at most n times, so this is a nondeterministic
O(n®) algorithm to find a solution.

Theorem 11 NRP is NP-complete.

Proof. By the above argument, NRP € NP. It remains to show that
NRP is NP-hard. We give a reduction from CNFSAT.

Let B = AiZ, C; be a Boolean formula in conjunctive normal form over

neg

the Boolean variables y,...,2,. Let 27>, z;® and ¢; be integer variables,
1<i<n,1< 7 <m. For every clause C; = V;erz; V Ve T; we create an
inequality

¢ <Y b+ e

i€l jeJ
Adding the inequalities

:L‘?OS + m;\eg S 1

m
b S H Ciy
=1
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we have an instance of NRP where the special variable b can be fired iff B is
satisfiable. O

5 Application to Systems of Set Constraints

In [AKVW93] the complexity of solving systems S of set constraints is con-
sidered. Assuming only positive set constraints (of the form E C F), the
problem is shown to be NEXPTIMFE-complete in general.

When negative set constraints are also allowed (E ¢ F'), the problem
becomes significantly harder. In [AKW93] this problem is reduced to a hy-
pergraph problem. An instance S of set constraints is reduced nondetermin-
istically to a hypergraph (U, E;|f € ), where |U| = 290D, The hypergraph
is then reduced to a disjunction of NRP instances V,cy N(v), where each
problem instance has size [N (v)| = [U|°®") and |V | = O(|U]).

In particular, we have an overall nondeterministic reduction of a general
system S of set constraints to an NRP instance of size 2"°. Since NRP is
in NP, we have a NEXPTIME algorithm to solve systems of set constraints,
where negative constraints are allowed.

Since the simpler problem of solving set constraints with positive con-
straints only is NEXPTIME-hard we have shown:

Corollary 12 A system of set constraints, including negative constraints, is
NEXPTIME -complete. O
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