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Synopsis

Categorical models of the metalanguage FPC (a
type theory with sums, products, exponentials and
recursive types) are defined. Then, domain-theoretic
models of FPC are axiomatised and a wide subclass of
them —the non-trivial and absolute ones— are proved
to be both computationally sound and adequate.

Examples include: the category of cpos and partial
continuous functions and functor categories over it.

1 Introduction

This paper is an investigation into axiomatic cat-
egorical domain theory as needed for the denotational
semantics of deterministic programming languages.
We particularly consider a metalanguage FPC, a
typed functional language with sums, products, expo-
nentials and recursive types equipped with a call-by-
value operational semantics (see [Plo85, Gun92]). We
wish to axiomatise domain-theoretic models of FPC
and prove that they provide a computationally sound
and adequate denotational semantics.

Such a theorem holds for pCpo [Plo85], the cat-
egory of small cpos (posets, possibly without bottom,
closed under lubs of ω-chains) and partial continuous
functions. The aim of this paper is to generalise to a
wide class of order-enriched categories (Section 2); one
can compare this endeavour to [SP82, Fre90, Fre92]
where a similar programme was carried out for the
solution of recursive domain equations.
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†Research supported by an SERC Senior Fellowship.

In order to provide a direct semantic treatment of
non-termination, we consider order-enriched categor-
ies of partial maps (Section 3). Computational sound-
ness for FPC is then that if the evaluation of a pro-
gram terminates its denotation is total; adequacy is
the converse implication. Here programs are taken to
be closed terms of any closed type.

The categorical structure needed for interpreting
the type constructors of FPC is discussed (Section 4)
in the order-enriched setting. A uniform treatment
of type constructors with mixed variance is provided
by transforming them into covariant type construct-
ors on universal involutory categories (those that are
self-dual via an involution). One can then interpret
recursive types (Section 5) following [Fre91] and using
a notion of parameterised algebraic compactness .

Categorical models of FPC are defined to be
parameterised algebraically compact partial cartesian
closed categories with finite coproducts; they enable a
denotational semantics to be given (Section 6). Ab-
stract examples of categorical models are provided by
domain-theoretic models; the leading example of such
a model is —naturally— pCpo. These models are
specified by order-theoretic conditions intended to be
easy to verify.

The main technical contribution of the paper (Sec-
tion 7) is that non-trivial domain-theoretic models of
FPC satisfying an absoluteness axiom are computa-
tionally sound and adequate.

It follows that the domain-theoretic model spe-
cified by pCpo —as well as many full subcategories
of domains— is computationally adequate. Other ex-
amples are functor categories over pCpo. Categories
of stable functions may provide further models as may
synthetic domain theory [Tay91] —though internally
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in a topos.
Our proof of adequacy depends on certain formal-

approximation relations between semantic and syn-
tactic values (see Subsection 7.2). Lemma 7.11 identi-
fies the essential properties needed to prove their exist-
ence. Recently, a new method of proof has been pro-
posed by Pitts [Pit93] in the context of Cppo⊥ (the
category of small pointed cpos and strict continuous
functions). We hope his approach will extend to our
axiomatic setting. We also wonder whether there is an
abstract version of Abramsky’s approach to adequacy
via Stone duality [Abr90].

We have taken both partiality and order as primit-
ive notions. An attractive alternate possibility would
be to take partiality as the sole primitive notion. In
Section 3 a definition of the order in terms of totality
is proposed. It would be interesting to find natural
axioms on partiality which would yield an (absolute)
domain-theoretic model. Such axioms would provide a
computational justification of Scott’s original consid-
eration of ordered structures. (For an initial investig-
ation in this direction see [Fio94].) A related possib-
ility is to generalise from order-enrichment to general
enrichment. The first problem there is to provide a
good notion of V-domain-structure; any V-category
with such a structure should yield a V-category of
partial maps. As to adequacy, we believe that if
Lemma 7.11 generalises to arbitrary cartesian V, the
formal-approximation relations can be extracted.

It seems that so straightforward an adequacy the-
orem would not be available if one instead axiomat-
ised Cppo (the category of small pointed cpos and
continuous functions) —see [MC88]. The essential dif-
ficulty is that the least element does not correspond
to non-termination at higher types. Again, although
pCpo is equivalent to Cppo⊥ they are conceptually
different. The first seems computationally more nat-
ural, fitting with standard formulations of recursion
theory that emphasise partial functions. The latter
has a natural generalisation to models of intuitionistic
linear type theory with recursion [Plo93]; the connec-
tion with operational notions is unclear.

It would be interesting to make abstract categor-
ical studies of other notions of computation, for ex-
ample nondeterminism or probabilistic computation.
There behaviour concerns more than termination and
semantics more than existence and one should extend
the metalanguage, e.g. with a construct for (probab-
ilistic) choice. One might even investigate notions of
computation in general. Semantical suggestions have
been made: Moggi has proposed the use of Kleisli cat-
egories [Mog89]; models of linear type theory with

recursion form another possibility. However, a cor-
respondingly general view of behaviour is completely
lacking.

2 Order-enriched category theory

For a thorough treatment of enriched category the-
ory consult [Kel82]. In the rest of the paper we let V
stand for either Poset (the category of small posets
and monotone functions) or Cpo (the category of
small cpos and continuous functions). But we stress
that all our V-notions with their associated results
generalise to arbitrary cartesian V (see [Fio94]).

A Poset-category (Cpo-category) is a locally small
category whose hom-sets come equipped with a partial
order (complete partial order) with respect to which
composition of morphisms is a monotone (continuous)
operation.

Both Poset and Cpo with each hom-set ordered
pointwise are examples of Poset-categories; Cpo is
even a Cpo-category.

The terminal V-category 1 has a singleton set of
objects while the only hom is the terminal object in
V. The product, A× B, of the V-categories A and B,
is the V-category with | A × B | = | A | × | B |, and
homs defined as

(A× B)((A,B), (A′, B′)) = A(A,A′)× B(B,B′).

For a V-category A its dual , Aop, is the V-category
with the same objects as A, but with Aop(A,A′) =
A(A′, A). Notice that the order in each hom remains
unchanged.

A V-functor F : A → B between V-categories
A and B, consists of a mapping associating every
A ∈ | A | with some FA ∈ | B | and a functorial
mapping associating every A,A′ ∈ | A | with some
FA,A′ : A(A,A′) → B(FA,FA′) in V. An ordinary
functor F : A → B is said to V-enrich if for every
A,A′ ∈ | A |, the function FA,A′ is in V.

A V-adjunction χ : F a U : A → B is given by
V-categories A and B, V-functors F : B → A and
U : A → B, and a natural isomorphism

χ : A(F , ) ∼= B( , U ) : Bop ×A → V.

A Poset-adjunction involving Cpo-categories estab-
lishes a Cpo-adjunction because the inclusion functor
Cpo → Poset creates isomorphisms.
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3 Partial maps

For a thorough survey of categories of partial maps
consult [RR88].

Definition 3.1 [Mog86, Ros86] A domain structure
is a pair (K,D) consisting of a category K and a well-
powered category D, such that D is a full-on-objects
subcategory of K all of whose morphisms are monos in
K, with the following closure property: every diagram
X

f−→ A
n
� D with f ∈ K and n ∈ D has a pullback in

K and if X
f−1(n)

� f−1(D)
n∗f−→ D is any such pullback

then f−1(n) ∈ D. �

Convention. K is called the category of total maps,
and D is called the category of admissible monos. For
every A ∈ | D |, we write D(A) for the representative
small set of subobjects of A in D guaranteed by well-
powerness.

Definition 3.2 The category of partial maps p(K,D)
induced by a domain structure (K,D) has the same
objects as K; a partial map [m, f ] : A ⇀ B is an

equivalence class of spans A
m
� D

f−→ B in D × K,
where two spans A

m
� D

f−→ B and A
n
� E

g−→ B
are equivalent iff m = n ◦ i and f = g ◦ i for some
isomorphism i : D ∼= E. Composition of partial maps
is given as for relations, by pullback; identities have
the form [idA, idA]. �

Convention. When D is clear from the context we
simply write pK.

K appears as a full-on-objects subcategory of pK
via the faithful inclusion functor J : K → pK sending
a total map f to the partial map [id, f ]. To indicate
that a partial map u is total (i.e. it is in the image of
J) we write u ↓.

The motivating example of a domain structure is
(Cpo,Σ) where Σ is the subcategory of Cpo consist-
ing of all those order-reflecting monos whose subob-
jects are Scott-open. We have: p(Cpo,Σ) ∼= pCpo.

We now consider the interaction of partiality and
order-enrichment.

Definition 3.3 Given a domain structure (K,D) and
a Poset-enrichment v for K, we define a partial order
@∼A,B on every pK(A,B) by setting u @∼A,B v iff for
every x : X → A,

u ◦ x ↓ ⇒ (v ◦ x ↓ ∧ u ◦ x vX,B v ◦ x). �

Proposition 3.4 For every [m, f ], [n, g] : A ⇀ B,

[m, f ] @∼ [n, g] ⇐⇒ m = n ◦ i ∧ f v g ◦ i for unique i.�

See [Fio93] for characterisations of when categories
of partial maps induced by arbitrary domain struc-
tures or uniform domain structures (in the sense of the
definition below) respectively Poset-enrich or Cpo-
enrich with respect to @∼ .

Definition 3.5 A domain structure (K,D) is said to
be uniform if whenever 〈[mk]〉 is an ω-chain in D(A)
with lub [m], where mk : Dk � A and m : D � A, it
follows that µ : 〈Dk,mk+1

−1(mk)〉 .→ D is colimiting
in K where µk = m−1(mk). �

The explicit distinction between partial and total
maps can be used to define a contextual approximation
preorder: for u, v : A ⇀ B,

u @∼
c v ⇐⇒ ∀ context C[ ] in pK. C[u] ↓ ⇒ C[v] ↓

where a context is an incomplete composite w ◦ ◦ x.
The description of partial maps based on domain

structures provides another computationally natural
notion of approximation. For this purpose, admissible
monos are regarded as predicates describing observ-
able properties . The specialisation preorder for partial
maps is defined as follows:

u @∼
s v : A ⇀ B in pK

⇐⇒
u−1( ) ⊆ v−1( ) : D(B) → D(A) in Poset

where the inverse image of [n] under [m, f ] is
[m ◦ f−1(n)].

The notions of approximation obtained by testing
and by observing partial maps coincide. Writing @∼
for either of them and v for the restriction to total
maps, it can be shown that if v is a partial order
(as in Cpo) then @∼ arises from v as in the more
general situation considered in Definition 3.3. (For
details see [Fio94].)

4 Type constructors

4.1 Binary partial products

Let K have binary products. The partial pairing of
u = [m, f ] : B ⇀ A1 and v = [n, g] : B ⇀ A2 is the
partial map B ⇀ A1 ×A2 defined by

〈〈u, v〉〉 = [m ∩ n, 〈f ◦m−1(n), g ◦ n−1(m)〉]

where 〈 , 〉 is the pairing of total maps. The product
functor × : K×K → K extends to a partial product
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functor ⊗ : pK×pK → pK sending a pair of objects
(A,B) to A × B and a pair of partial maps (u, v) to
〈〈u ◦ π1, v ◦ π2〉〉.

Proposition 4.1 Let (K,v) and (pK, @∼ ) be Poset-
categories. If K has binary Poset-products then ⊗
Poset-enriches. �

4.2 Partial exponentials

As usual for higher types, exponentiation arises as
right adjoint to multiplication. In our case, we let K
have binary products and for every A ∈ | K |, we ask
that pλ : ⊗A a A⇀⇀ : pK → K is an adjunction. We
write ε for the counit of this adjunction and call each
A⇀⇀B a partial-exponential . Partial-exponentials ex-
tend to a functor ⇀⇀ : pKop × pK → pK sending
pairs of objects (A,B) to A⇀⇀B and pairs of partial
maps (u, v) to pλ(v ◦ ε ◦ (id⊗ u)).

Definition 4.2 [LM84] A category of partial maps
pK is partial cartesian closed if K is cartesian and pK
has partial exponentials. �

Proposition 4.3 Let (K,D) be a uniform domain
structure and let v be a Cpo-enrichment for K such
that (pK, @∼ ) is a Cpo-category. Assume pK is partial
cartesian closed. If × : K × K → K Cpo-enriches
then so does ⊗ : pK × pK → pK. �

Proposition 4.4 Let (K,v) and (pK, @∼ ) be Poset-
categories. Assume K has binary Poset-products. If
pλ determines a Poset-adjunction then ⇀⇀ Poset-
enriches.

Moreover, whenever (K,v) and (pK, @∼ ) are Cpo-
categories, if ⊗ Cpo-enriches then so does ⇀⇀ .

�

4.3 Colimits

Proposition 4.5 Let J a L : (pK, @∼ ) → (K,v) be
a Poset-adjunction.

1. If K has binary Poset-coproducts then so does
pK.

2. Assuming K has a terminal object, if K has colim-
its of ω-chains of embeddings then so does pK.�

4.4 Involutory categories

Following a suggestion of John Power, we focus
on involutory categories (those that are self-dual via
an involution). This enables us to transform mixed-
variance functors into covariant ones in a universal
way.

Definition 4.6 The large category InvCAT of in-
volutory locally small categories has objects (C, ( )c)
where C ∈ | CAT | and ( )c : C → Cop is an involu-
tion; a morphism F : (A, ( )a) → (B, ( )b) is a functor
F : A → B such that F op ◦ ( )a = ( )b ◦ F ; and com-
position and identities as in CAT. �

Examples of involutory categories abound: for
every C ∈ | CAT |, (C̆, ( )§) = (Cop × C, 〈Π2, Π1〉) is
involutory. As a morphism F : (Ă, ( )§) → (B̆, ( )§)
is a functor such that F (f ′, f)1 = F (f, f ′)2, functors
in InvCAT are called symmetric. We also call ob-
jects X such that X = Xc symmetric. Thus, FX is
symmetric if F and X are.

The involutory categories (B̆, ( )§) are universal in
that they are characterised by a natural bijective cor-
respondence

BA
F̆

(A, ( )a) (B̆, ( )§)symmetric

F

given by the mapping F 7→ F̆ = 〈F op ◦ ( )a, F 〉. This
property allows us to turn mixed-variance functors on
a category C into covariant symmetric functors on C̆.

Note that InvCAT is cartesian with terminal
object (1, Id) and products (A, ( )a) × (B, ( )b) =
(A× B, ( )a × ( )b).

5 Recursive types

In [Fre91, Fre92], Peter Freyd defined an algebra-
ically complete category as one such that each of its
endofunctors has an initial algebra and remarked that
this should be understood in a 2-categorical setting;
that is, a setting in which the phrase “every endo-
functor” refers to an understood class. For us, this
will be determined by enrichment. One possibility is:

Definition 5.1
(c.f. [Fre91]) A V-category is V-algebraically complete
if every V-endofunctor on it has an initial algebra. �

Algebraic completeness guarantees the existence
of parameterised initial algebras. Let A be
V-algebraically complete and F : X × A → A
be a V-functor. As for every X ∈ | X | we have
that F (X, ) : A → A is a V-functor, we can set
(F †X, ιFX) to be an initial F (X, )-algebra. To
extend the action of F † to morphisms, for every
f : X → X ′ in X , let F †f : F †X → F †X ′ be the

4



unique F (X, )-algebra morphism from (F †X, ιFX) to
( F †X ′, ιFX′ ◦ F (f, F †X ′) ). By the universal prop-
erty of initial algebras, F † is a functor X → A
and, by construction, ιF is a natural transformation
F 〈Id, F †〉 .→ F †. The pair (F †, ιF ) is called an initial
parameterised F -algebra.

Unfortunately F † need not V-enrich. To see this let
Z be the Poset-category induced by the ordered mon-
oid Z = (Z,≤, 0, +) and consider the Poset-functor
F : Z × Z → Z : (m,n) 7→ m + 2n. Every i ∈ Z is
an initial algebra for F (Z, ) : Z → Z : n 7→ 2n and
F †m is a morphism from i to i + F (m,F †Z) = i + m
iff F †m = −m, hence F † : Z → Z does not Poset-
enrich.

Definition 5.2 A V-category A is parameterised
V-algebraically complete if it is V-algebraically com-
plete and for every V-functor F : X × A → A and
every family {ιFX : F (X, F †X) → F †X}X ∈ | X | of ini-
tial F (X, )-algebras, the induced functor F † : X → A
V-enriches.

A parameterisation (( )†, ι( )) on A is a pair
of mappings that associates every V-functor
F : X × A → A with a V-functor F † : X → A and a
natural transformation ιF : F 〈Id, F †〉 .→ F † such that
(F †, ιF ) is an initial parameterised F -algebra. �

Convention. From now on, in the situation of the
above definition, the family of initial algebras determ-
ining F † will be left implicit.

Definition 5.3 1. (c.f. [Fre91]) A V-category is
V-algebraically compact if it is V-algebraically
complete and the initial algebra of every
V-endofunctor on it is free, in the sense that its
inverse is a final coalgebra.

2. A V-category is parameterised V-algebraically
compact if it is V-algebraically compact and para-
meterised V-algebraically complete. �

Theorem 5.4 1. [Fio94] (c.f. [Bar92, Adá93]) A
Cpo-category with an e-initial object (an initial
object such that every morphism with it as source
is an embedding) and colimits of ω-chains of em-
beddings is Cpo-algebraically complete.

2. [Fre92] A Cpo-algebraically complete category
with pointed homs and strict composition is Cpo-
algebraically compact.

3. Cpo-algebraic completeness (resp. compactness)
implies parameterised Cpo-algebraic complete-
ness (resp. compactness). �

Theorem 5.5 [Product Theorem] (c.f. [Fre91]) If
A and B are parameterised V-algebraically compact
then so is A× B. �

Algebraic compactness is a self-dual property.
Hence:

Corollary 5.6 1. If A is (parameterised) V-alge-
braically compact then so is Aop.

2. If A is parameterised V-algebraically compact
then so is Ă. �

The last property of compactness that will be
needed is that symmetric functors are closed under
initial parameterised algebras:

Theorem 5.7 Let X and A be V-categories. Assume
that A is parameterised V-algebraically compact. For
a symmetric V-functor F : X̆ × Ă → Ă, every initial
parameterised F -algebra (F †, ιF ) canonically induces
an initial parameterised F -algebra (F ‡, ϕF ) such that
F ‡ is a symmetric V-functor and ϕ§X = ϕ−1

X for every
symmetric X. �

Remark. When X = 1 and F = Ğ for G : Ă → A,
the above theorem provides a canonical and minimal
fixed-point for G.

6 FPC

6.1 The Language

The grammar of FPC requires two syntax classes
of variables: type variables (ranged over by T) and
expression variables (ranged over by x). The syntax
of the language is as follows:

Types τ ::= T | τ1 + τ2 | τ1 × τ2 | τ1⇀⇀τ2 | µT.τ,
Expressions

e ::= x | inlτ1,τ2(e) | inrτ1,τ2(e) |
case e of inl(x1).e1 or inr(x2).e2 |
〈e1, e2〉 | fst(e) | snd(e) | λx : τ.e | e1(e2) |
introµT.τ (e) | elim(e).

A well-formed type Θ ` τ consists of a list of dis-
tinct type variables Θ and a type τ whose free type
variables appear in Θ. Well-formed expression con-
texts Θ ` Γ are finite mappings assigning well-formed
types to expression variables. For the definition of
well-formed expressions Θ,Γ ` e : τ see [Gun92].
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6.2 Operational semantics

The operational semantics is defined by an evalu-
ation relation ( ) on expressions. The call-by-value
evaluation rules are:

var
x   x

+Il
e   v

inl(e)   inl(v)
+Ir

e   v
inr(e)   inr(v)

+El
e inl(v) e1[x1 7→ v] v′

case e of inl(x1).e1 or inr(x2).e2  v′

+Er
e inr(v) e2[x2 7→ v] v′

case e of inl(x1).e1 or inr(x2).e2  v′

×I
e1   v1 e2   v2

〈e1, e2〉   〈v1, v2〉

×E1
e   〈v1, v2〉
fst(e)   v1

×E2
e   〈v1, v2〉
snd(e)   v2

⇀⇀I
λx : τ.e   λx : τ.e

⇀⇀E
e1   λx : τ.e e2   v e[x 7→ v]   v′

e1(e2)   v′

µI
e   v

intro(e)   intro(v)

µE
e   intro(v)
elim(e)   v

The expressions v such that v   v, called values ,
are characterised by the grammar,

Values v ::= x | inlτ1,τ2(v) | inrτ1,τ2(v) |
〈v1, v2〉 | λx : τ. e | introµT.τ (v).

For closed τ , we define

Values(τ) = {v ∈ Values | ` v : τ},
Programs(τ) = {p ∈ Expressions | ` p : τ}.

Convention. We write Θ, Γ ` e   v : τ to indicate
that Θ,Γ ` e : τ is derivable and that e   v. We also
write Θ, Γ ` e X : τ when Θ, Γ ` e   v : τ for some
value v.

6.3 Categorical models

Essentially, the categorical structure needed to in-
terpret FPC is a parameterised algebraically com-
pact partial cartesian closed category with finite cop-
roducts.

Definition 6.1 A V-model of FPC is specified by

• a domain structure (K,D),

• a V-enrichment for pK,

• V-functors +,⊗ : pK × pK → pK and
⇀⇀ : pKop × pK → pK, and

• mappings ( )† and ι( ) associating every
V-functor F : X × pK → pK with a V-functor
F † : X → pK and a natural transformation
ιF : F 〈Id, F †〉 .→ F †

such that

• the underlying functors of +, ⊗ and ⇀⇀ are, re-
spectively, coproduct, partial product and partial
exponential functors, and

• pK is parameterised V-algebraically compact with
parameterisation (( )†, ι( )). �

Remark. It follows that pK has zero object 0 (viz.
a free IdpK-algebra), K has terminal object 1 = 0⇀⇀0
and J ∼= ⊗ 1 : K → pK has right adjoint.

6.4 Denotational semantics

Until the end of this subsection fix a V-model of
FPC. Well-formed types, Θ ` τ , are interpreted as

symmetric functors [[Θ ` τ ]] : p̆K
| Θ |

→ p̆K and well-
formed expressions, Θ,Γ ` e : τ , are interpreted as
families of partial maps

[[Θ, Γ ` e : τ ]]A : [[Θ ` Γ]](A)2 ⇀ [[Θ ` τ ]](A)2

for A ∈ | p̆K |
| Θ |

symmetric.

6.4.1 Interpretation of Types

Definition 6.2 [[Θ ` τ ]] : p̆K
| Θ |

→ p̆K.

• [[Θ ` Θi]] = Πi (1 ≤ i ≤ | Θ |).

• [[Θ ` τ1 + τ2]] = (+ ◦ 〈Π2[[Θ ` τ1]],Π2[[Θ ` τ2]]〉)˘.
• [[Θ ` τ1 × τ2]] = (⊗ ◦ 〈Π2[[Θ ` τ1]], Π2[[Θ ` τ2]]〉)˘.
• [[Θ ` τ1⇀⇀τ2]] = (⇀⇀ ◦ 〈Π1[[Θ ` τ1]], Π2[[Θ ` τ2]]〉)˘.
• [[Θ ` µT.τ ]] = [[Θ, T ` τ ]]‡. �
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Remark. The parameterisation ( )‡ on p̆K appear-
ing in the last item of the above definition is the one
obtained, by Corollary 5.6 (2) and Theorem 5.7, from
the given parameterisation on pK.

By construction and because of Theorem 5.7,
[[Θ ` τ ]] is a symmetric V-functor. The interpretation
of types respects a substitution lemma (Lemma 6.3),
establishing that evaluation is the semantic counter-
part of syntactic substitution. This is needed to inter-
pret expressions.

Lemma 6.3 (Substitution Lemma) There exists
a canonical natural isomorphism

β : [[Θ ` τ1[T 7→ τ2]]] ∼= [[Θ, T ` τ1]]〈Id, [[Θ ` τ2]]〉

such that β§A = β−1
A for every symmetric A. �

6.4.2 Interpretation of Expression Contexts

Definition 6.4 [[Θ ` Γ]] : p̆K
| Θ |

→ p̆K.

• [[Θ ` 〈〉]] = K(1,1) (the constantly (1, 1) functor).

• [[Θ ` Γ, x : τ ]] = (⊗◦ 〈Π2[[Θ ` Γ]],Π2[[Θ ` τ ]]〉)˘. �

Remark. [[Θ ` Γ]] is a symmetric V-functor.

6.4.3 Interpretation of Expressions

The interpretation of expressions is defined in the
standard way. Variables correspond to projections,
inl/inr to coproduct injections, case to coproduct
selection, 〈 , 〉 to partial pairing, fst/snd to pro-
jections, λx. to currying, ( ) to evaluation and
intro/elim to folding/unfolding a recursive type.

Definition 6.5 For symmetric A ∈ | p̆K |
| Θ |

we
define [[Θ,Γ ` e : τ ]]A as follows:

• [[Θ, Γ ` Γi]]A = πi (1 ≤ i ≤ | Γ |).

• [[Θ, Γ ` inl(e) : τ1 + τ2]]A = q1 ◦ [[Θ,Γ ` e : τ1]]A.

• [[Θ, Γ ` inr(e) : τ1 + τ2]]A = q2 ◦ [[Θ,Γ ` e : τ2]]A.

• [[Θ, Γ ` case e of inl(x1).e1 or inr(x2).e2 : τ ]]A

= [[[Θ, 〈Γ, x1 : τ1〉 ` e1 : τ ]]A, [[Θ, 〈Γ, x2 : τ2〉 ` e2 : τ ]]A]
◦ δA ◦ 〈〈id, [[Θ, Γ ` e : τ1 + τ2]]A〉〉
where δA is the canonical natural isomorphism

[[Θ ` Γ]](A)2 ⊗ ([[Θ ` τ1]](A)2 + [[Θ ` τ2]](A)2)
∼=

([[Θ ` Γ]](A)2 ⊗ [[Θ ` τ1]](A)2)
+

([[Θ ` Γ]](A)2 ⊗ [[Θ ` τ1]](A)2).

• [[Θ,Γ ` 〈e1, e2〉 : τ1 × τ2]]A

= 〈〈[[Θ,Γ ` e1 : τ1]]A, [[Θ, Γ ` e2 : τ2]]A〉〉.

• [[Θ, Γ ` fst(e) : τ1]]A = π1 ◦ [[Θ,Γ ` e : τ1 × τ2]]A.

• [[Θ,Γ ` snd(e) : τ2]]A = π2 ◦ [[Θ, Γ ` e : τ1 × τ2]]A.

• [[Θ, Γ ` λ : τ1x.e : τ1⇀⇀τ2]]A

= pλ([[Θ, 〈Γ, x : τ1〉 ` e : τ2]]A).

• [[Θ,Γ ` e(e1) : τ2]]A

= ε ◦ 〈〈[[Θ,Γ ` e : τ1⇀⇀τ2]]A, [[Θ,Γ ` e1 : τ1]]A〉〉.

• [[Θ, Γ ` intro(e) : µT.τ ]]A

= IA ◦ [[Θ, Γ ` e : τ [T 7→ µT.τ ]]]A

where IA = (ϕ[[Θ, T `τ ]]
A ◦ βA)2.

• [[Θ, Γ ` elim(e) : τ [T 7→ µT.τ ]]]A

= EA ◦ [[Θ, Γ ` e : µT.τ ]]A

where EA = (ϕ[[Θ, T `τ ]]
A ◦ βA)1. �

Remark. By Theorem 5.7 and Lemma 6.3, IA and
EA are mutual inverses.

The interpretation of expressions is well-defined:

Proposition 6.6 For A ∈ | p̆K |
| Θ |

symmetric,

[[Θ, Γ ` e : τ ]]A : [[Θ ` Γ]](A)2 ⇀ [[Θ ` τ ]](A)2. �

Remark. It can be shown [Fio94] that the interpret-
ation of expressions in Poset-models induced by do-
main structures with a Poset-category of total maps
is parametric with respect to representations [Rey74].

6.5 Domain-theoretic models

In this subsection, the results of Sections 4 and 5 are
combined to produce Cpo-models of FPC. Domain-
theoretic models correspond to uniform domain struc-
tures with a Cpo-category of total maps whose cat-
egory of partial maps is a Cpo-model with respect to
the induced order (Definition 3.3) and where algebraic
compactness arises from the limit/colimit coincidence.

Definition 6.7 A domain-theoretic model of FPC is
specified by a uniform domain structure (K,D) and a
Cpo-enrichment v for K satisfying:

DTM1. (K,v) has chosen binary Poset-coproducts.

DTM2. (K,v) has chosen binary Poset-products.
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DTM3. (pK, @∼ ) is a Poset-category with chosen
Poset-partial-exponentials.

DTM4. pK has a chosen zero object.

DTM5. K has chosen colimits of ω-chains of embed-
dings. �

Theorem 6.8 [Fio94] If (K,D,v) is a domain-
theoretic model of FPC then (p(K,D), @∼ ) is a Cpo-
model of FPC. �

Example 6.9 For W a small Cpo-category,
let ([W,Cpo],v) be the Cpo-functor-category of
Cpo-functors W → Cpo and natural transfor-
mations ordered pointwise, and let ΣC[W,Cpo]
be the subcategory of [W,Cpo] of all pointwise-
admissible and cartesian natural transformations.
Then, ([W,Cpo],ΣC[W,Cpo],v) specifies a domain-
theoretic model. �

7 Computational adequacy

The relationship between the operational notion of
termination and the denotational notion of totality is
examined. It is shown that in any model of FPC the
interpretation of expressions is computationally sound ,
meaning that if the evaluation of a program terminates
then it has a total interpretation. Further, certain ab-
solute domain-theoretic models are shown to be com-
putationally adequate, meaning that if a program has
a total interpretation then its evaluation terminates.

7.1 Computational Soundness

The strategy for proving computational soundness
is as usual: observe that values have total interpreta-
tions and that the interpretation of programs is pre-
served under evaluation:

Lemma 7.1 In any V-model of FPC,

1. [[Θ, Γ ` v : τ ]]A ↓ for every value v.

2. if Θ, Γ ` e   v : τ then [[Θ, Γ ` e : τ ]]A =
[[Θ, Γ ` v : τ ]]A. �

Theorem 7.2 (Computational Soundness)
In any V-model of FPC, if Θ,Γ ` eX : τ then
[[Θ, Γ ` e : τ ]]A ↓. �

7.2 Adequacy

Convention. We write [[` τ ]] for [[` τ ]]() and [[` p : τ ]]
for [[` p : τ ]]().

Definition 7.3 A V-model of FPC is computationally
adequate if, for every p ∈ Programs(τ),

[[` p : τ ]] ↓ implies ` p X : τ . �

Fix a domain-theoretic model of FPC. Computa-
tional adequacy cannot be proved directly by induc-
tion. To establish it (see Lemma 7.13), we inductively
prove the following stronger version

[[` p : τ ]] ↓ ⇒ ∃ v. p   v ∧ [[` p : τ ]] �τ v

where { �τ ⊆ K(1, [[` τ ]]2) × Values(τ)} is a family
of formal-approximation relations with the following
closure properties:

R1. x �σ+τ inl(v) ⇐⇒ ∃x′ �σ v. x = q1 ◦ x′

x �σ+τ inr(v) ⇐⇒ ∃x′ �τ v. x = q2 ◦ x′

R2. x �σ×τ 〈v1, v2〉
⇐⇒

(π1 ◦ x �σ v1) ∧ (π2 ◦ x �τ v2)

R3. f �σ⇀⇀τ λx : σ. e
⇐⇒

(∀x ∈ K(1, [[` σ]]2). ∀ v ∈ Values(σ).
x �σ v ⇒ ε ◦ 〈〈f, x〉〉 -τ e[x 7→ v])

where u - p ⇐⇒ (u ↓ ⇒ ∃ v. p   v ∧ u � v).

R4. x �µT. τ intro(v) ⇐⇒ E ◦ x �τ [T 7→ µT. τ ] v.

We now embark on the major task of establishing
the existence of the formal-approximation relations.
The difficulty is that they are defined recursively and
one should guarantee that this definition makes sense.
This is better discussed with the aid of some defini-
tions.

For closed τ , generalising from the formal-
approximation relations, we set

| R(τ) | = {(A,�) | A ∈ | K |∧ �⊆ K(1, A)×Values(τ)}

and given � ⊆ K(1, A) × Values(τ), we define
its extension to partial maps and programs
- ⊆ pK(1, A)× Programs(τ), by

u - p ⇐⇒ (u ↓ ⇒ ∃ v. p   v ∧ u � v).

Now, to provide an equational description of the
closure properties of �σ?τ (? ∈ {+,×, ⇀⇀}) and to
clarify the closure property of �µT.τ , the type con-
structors are logically extended to relations following
(R1)–(R3):
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Definition 7.4 For closed σ and τ ,

1. Let +σ,τ : | R(σ) | × | R(τ) | → | R(σ + τ) |
be the function mapping ((A,�A), (B,�B)) to
(A + B,�A + �B) where

x (�A + �B) inl(v) ⇐⇒ (∃x′ �A v. x = q1 ◦ x′)
and
x (�A + �B) inr(v) ⇐⇒ (∃x′ �B v. x = q2 ◦x′).

2. Let ⊗σ,τ : | R(σ) | × | R(τ) | → | R(σ × τ) |
be the function mapping ((A,�A), (B,�B)) to
(A⊗B,�A ⊗ �B) where

x (�A ⊗ �B) 〈v1, v2〉
⇐⇒

(π1 ◦ x �A v1) ∧ (π2 ◦ x �B v2).

3. Let ⇀⇀σ,τ : | R(σ) | × | R(τ) | → | R(σ⇀⇀τ) | be
the function mapping ((A,�A), (B,�B)) to
(A⇀⇀B,�A ⇀⇀ �B) where

f (�A ⇀⇀ �B) λx : σ. e
⇐⇒

(∀x ∈ K(1, A). ∀ v ∈ Values(σ).
x �A v ⇒ ε ◦ 〈〈f, x〉〉 -B e[x 7→ v]). �

Then, (R1)–(R3) can be written as

�σ+τ = �σ + �τ ,

�σ×τ = �σ ⊗ �τ ,

�σ⇀⇀τ = �σ ⇀⇀ �τ .

In the case of recursive types (R4) we intuitively have
that

E : �µT.τ ∼= I (�τ [T 7→ µT.τ ]) (1)

where x (I �) intro(v) ⇐⇒ x � v. And this is exactly
where the difficulty in constructing �µT. τ resides as we
have to solve a recursive equation between relations!

We make | R(τ) | into the objects of a category; the
notion of morphism is suggested by (1):

Definition 7.5 The category R(τ) has objects
| R(τ) | and morphisms u : (A,�A) ⇀ (B,�B) where
u : A ⇀ B is such that for every x ∈ K(1, A) and every
v ∈ Values(τ), if x �A v then u◦x -B v. Composition
and identities are as in pK. �

Proposition 7.6 The functions +σ,τ , ⊗σ,τ and ⇀⇀σ,τ

extend to functors satisfying

Uσ+τ ◦+σ,τ = + ◦ (Uσ × Uτ ),

Uσ×τ ◦ ⊗σ,τ = ⊗ ◦ (Uσ × Uτ ),

Uσ⇀⇀τ ◦⇀⇀σ,τ = ⇀⇀ ◦ (Uop
σ × Uτ )

where Uτ : R(τ) → pK is the evident forgetful functor.
�

The type constructors on pK have been extended to
the R(τ)’s but there are too many relations in them to
be able to find recursive types. The way out is to find
subcategories pK(τ) of R(τ) in which this is possible.

Definition 7.7 Let pK(τ) be the full subcategory of
R(τ) consisting of all those objects (A,�) such that
for every v ∈ Values(τ), �−1 (v) is closed under lubs
of ω-chains in pK(1, A). �

In order that the notion of approximation on the
pK(τ)’s be inherited from pK (i.e. that the forgetful
functor pK(τ) → pK be a Cpo-functor) we restrict
attention to absolute models:

Definition 7.8 A Cpo-model of FPC is absolute if
for every A ∈ | K |, K(1, A) is inaccessible by lubs of
ω-chains in pK(1, A). �

In domain-theoretic models absoluteness has a
simple characterisation:

Proposition 7.9 A domain-theoretic model of FPC
is absolute iff [id1] is inaccessible by lubs of ω-chains
in D(1). �

Remark. The above could have been stated as: the
D-classifier 1 � Σ (i.e. the counit of the represent-
ation K( , Σ) ∼= pK( , 1) ∼= D( ) : Kop → Set) is
inaccessible by lubs of ω-chains in K(1, Σ).

Example 7.10 For a small Cpo-category W , the
domain-theoretic model ([W,Cpo],ΣC[W,Cpo]) is ab-
solute iff W has a finite number of connected compon-
ents. �

From now on let our fixed domain-theoretic model
of FPC be non-trivial and absolute. Then, we have
the following lemma which displays the essential cat-
egorical structure needed to prove the existence of the
formal-approximation relations.

Lemma 7.11

A1. (pK(τ), @∼ ) is a Cpo-category and the forgetful
functor pK(τ) → pK Cpo-enriches.

A2. (pK(τ), @∼ ) is parameterised Cpo-algebraically
compact.

A3. For ? = +,⊗ (resp. ⇀⇀), the functor ?σ,τ restricts
to a Cpo-functor pK(σ) × pK(τ) → pK(σ ? τ) (resp.
pK(σ)op × pK(τ) → pK(σ⇀⇀τ)).
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A4. IµT. τ : pK(τ [T 7→ µT. τ ]) ∼= pK(µT. τ) : EµT. τ

where

IµT. τ : (A,�) 7→ (A, I �)
with x (I �) intro(v) ⇐⇒ x � v

and
EµT. τ : (A,�) 7→ (A,E �)

with x (E �) v ⇐⇒ x � intro(v).

A5. [Strict Uniformity] For every pair of symmetric
Cpo-functors F and G, if

pK(σ)˘

p̆K

pK(σ1)˘× . . .× pK(σm)˘× pK(σ)˘

p̆K × . . .× p̆K × p̆K

F

G

commutes then for every initial parameterised
G-algebra (G†, ιG) there exists an initial paramet-
erised F -algebra (F †, ιF ) such that

pK(σ1)˘× . . .× pK(σm)˘ pK(σ)˘
ιF

∼=

F 〈Id, F †〉

F †

p̆K × . . .× p̆K p̆KιG

∼=

G〈Id, G†〉

G†

commutes. �

Once the Properties (A1)–(A5) are known to hold,
the formal-approximation relations are constructed by
providing a non-standard interpretation of types in the
pK(τ)’s (Proposition 7.12) which extends the inter-
pretation of types (Definition 6.2) respecting the fold-
ing and unfolding of recursive types and the substitu-
tion of types.

Convention. Given Θ ≡ T1, . . . , Tm and closed σi

(1 ≤ i ≤ m) we write ~σ for σ1, . . . , σm and [Θ 7→ ~σ]
for [T1 7→ σ1, . . . , Tm 7→ σm].

Proposition 7.12 There exists an interpretation

〈[Θ ` τ ]〉(~σ) : pK(σ1)
˘× . . .× pK(σ|Θ|)

˘→ pK(τ [Θ 7→ ~σ])˘

such that 〈[Θ ` τ ]〉(~σ) is a symmetric Cpo-functor and

pK(σ1)˘× . . .× pK(σ|Θ|)
˘

p̆K × . . .× p̆K

〈[Θ ` τ ]〉(~σ)

[[Θ ` τ ]]

pK(τ [Θ 7→ ~σ])˘

p̆K

commutes. �

From the non-standard interpretation of types, the
formal-approximation relations are easily extracted as
the second component of 〈[` τ ]〉()2.

The following main lemma is now proved by induc-
tion on the structure of e:

Lemma 7.13 For Γ ≡ x1 : τ1, . . . , xn : τn, if xi �τi vi

(1 ≤ i ≤ n) then

[[Γ ` e : τ ]] ◦ 〈〈x1, . . . , xn〉〉 -τ e[x1 7→ v1, . . . , xn 7→ vn].�

Finally, since [[` p : τ ]] -τ p, we conclude:

Theorem 7.14 (Computational Adequacy)
Every absolute non-trivial domain-theoretic model of
FPC is computationally adequate. �

Remark. Using (A3), domain structures with a
Cpo-category of total maps satisfying the axioms
(DTM1)–(DTM4) and absoluteness, and equipped
with structure for interpreting natural numbers and
booleans can be shown to be computationally ad-
equate for call-by-value PCF with sums and products
(c.f. [BCL85]).

Corollary 7.15 For every non-empty small
Cpo-category W, the domain-theoretic model spe-
cified by ([W,Cpo],ΣC[W,Cpo]) is computationally
adequate. �

Remark. Thus there are computationally-adequate
non-absolute domain-theoretic models.
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