
Relating Word and Tree Automata ?

Orna Kupferman 1

School of Computer Science and Engineering, Hebrew University,Jerusalem 91904,
Israel.

Shmuel Safra

Institute for Advanced Study and Princeton University, Princeton, New Jersey,
USA.

Moshe Y. Vardi 2

Department of Computer Science, Rice University. Houston, TX 77005-1892,
U.S.A.

Abstract

In the automata-theoretic approach to verification, we translate specifications to au-
tomata. Complexity considerations motivate the distinction between different types
of automata. Already in the 60’s, it was known that deterministic Büchi word au-
tomata are less expressive than nondeterministic Büchi word automata. The proof is
easy and can be stated in a few lines. In the late 60’s, Rabin proved that Büchi tree
automata are less expressive than Rabin tree automata. This proof is much harder.
In this work we relate the expressiveness gap between deterministic and nondeter-
ministic Büchi word automata and the expressiveness gap between Büchi and Rabin
tree automata. We consider tree automata that recognize derived languages. For a
word language L, the derived language of L, denoted L4, is the set of all trees all of
whose paths are in L. Since often we want to specify that all the computations of the
program satisfy some property, the interest in derived languages is clear. Our main
result shows that L is recognizable by a nondeterministic Büchi word automaton
but not by a deterministic Büchi word automaton iff L4 is recognizable by a Rabin
tree automaton and not by a Büchi tree automaton. Our result provides a simple ex-
planation to the expressiveness gap between Büchi and Rabin tree automata. Since
the gap between deterministic and nondeterministic Büchi word automata is well
understood, our result also provides a characterization of derived languages that
can be recognized by Büchi tree automata. Finally, it also provides an exponential
determinization of Büchi tree automata that recognize derived languages.

Key words: Tree Automata, Word Automata, Expressive Power.
PACS: 68Q68, 03D05.

Preprint submitted to Elsevier Science 24 January 2005

1 Introduction

While program verification was always a desirable, but never an easy task, the
advent of concurrent programming has made it significantly more necessary
and difficult. The first step in program verification is to come with a formal

specification of the program. One of the more widely used specification lan-
guages for concurrent finite-state programs is temporal logic [Pnu77,MP92].
Temporal logic comes in two varieties: linear and branching. In linear tem-
poral logics, formulas are interpreted over linear sequences and describe a
behavior of a single infinite computation of a program. In branching temporal
logics, formulas are interpreted over infinite trees and describe the behavior
of the possible computations of a nondeterministic program. In both versions,
formulas are generated with respect to a set AP of the program’s atomic
propositions. Each formula describes a language (of either infinite words or
infinite trees) over the alphabet 2AP .

Automata on infinite objects also describe languages [Tho90]. As automata on
finite objects, they either accept or reject an input object. Since a run on an
infinite object does not have a final state, acceptance is determined with re-
spect to the set of states visited infinitely often during the run. For example, in
the Büchi acceptance condition, some of the states are designated as accepting
states and a run is accepting iff it visits states from the accepting set infinitely
often [Büc62]. As temporal logics, automata on infinite objects come in two va-
rieties. Automata on infinite words (word automata, for short) and automata
on infinite trees (tree automata). The automata-theoretic approach to tempo-
ral logic uses the theory of automata as a unifying paradigm for program speci-
fication, verification, and synthesis [ES84,VW86a,EJ91,VW94,Kur94,KVW00].
In this paradigm, both the program and the specification are translated to (or
are given as) automata. Linear temporal logic formulas correspond to word au-
tomata and branching temporal logic formulas correspond to tree automata.
Then, questions about programs and their specifications can be reduced to

? A preliminary version of this paper appears in the Proceedings of the 11th Sympo-
sium on Logic in Computer Science, pages 322-333, IEEE Computer Society Press,
1996.

Email addresses: orna@cs.huji.ac.il (Orna Kupferman),
safra@math.ias.edu (Shmuel Safra), vardi@cs.rice.edu (Moshe Y. Vardi).
1 Supported in part by BSF grant 9800096, and by a grant from Minerva.
2 Supported in part by NSF grants CCR-9988322, CCR-0124077, CCR-0311326,
IIS-9908435, IIS-9978135, EIA-0086264, and ANI-0216467, by BSF grant 9800096,
by Texas ATP grant 003604-0058-2003, and by a grant from the Intel Corporation.

2

questions about automata. More specifically, questions such as satisfiability
of specifications and correctness of programs with respect to their specifica-
tions can be reduced to questions such as nonemptiness and containment of
automata. These reductions yield clean and optimal algorithms and are very
helpful in implementing formal verification methods [Var96].

An important factor to be considered when we examine a specification lan-
guage is its ability to describe behaviors accurately. We can control the expres-

sive power of temporal logics by limiting their syntax. For example, while the
branching temporal logic CTL? permits an arbitrary combination of linear-
time operators in its path formulas, its subset CTL restricts path formulas
to have only a single linear-time operator. This restriction makes CTL less
expressive than CTL? [EH86].

We can also control the expressive power of automata. One way to do it is to re-
strict their transition relations to be deterministic. Every automaton on finite
words can be determinized. This is not true for automata on infinite words. In
[Lan69], Landweber proved that deterministic Büchi word automata are less
expressive than nondeterministic Büchi word automata. That is, he showed
that there exists a language of infinite words that is recognizable by a non-
deterministic Büchi word automaton but not recognizable by any nondeter-
ministic Büchi word automaton 3 . Today, the gap between nondeterministic
and deterministic Büchi word automata is well understood. While nondeter-
ministic Büchi automata can describe any ω-regular language, deterministic
Büchi automata can describe an ω-regular language L iff there exists a regular
language W such that L contains exactly all words that have infinitely many
prefixes in W [Lan69].

Another way to control the expressive power of automata is by defining vari-
ous acceptance conditions. For example, one may wonder whether there exists
an acceptance condition for which deterministic automata are as expressive
as nondeterministic ones. In 1966, McNaughton answered this question to the
positive. In the suggested acceptance condition, now known as the Rabin ac-

ceptance condition, we have a set of pairs of subsets of the states. A run is
accepting iff there exists a pair 〈G,B〉 for which the run visits states from
G infinitely often but visits states from B only finitely often. McNaughton
showed that deterministic Rabin word automata are as expressive as non-
deterministic Rabin word automata and that they are both as expressive as
nondeterministic Büchi word automata [McN66]. A different picture is drawn
when we consider automata on infinite trees. In 1969, Rabin showed that,
though their expressive power with respect to words coincide, nondeterminis-

3 It is easy to see that deterministic automata on infinite trees are less expressive
than their nondeterministic counterpart. Indeed, only the latter can quantify over
paths existentially [TW68].

3

tic Büchi tree automata are less expressive than nondeterministic Rabin tree
automata [Rab69]. That is, there exists a language of infinite trees that is
recognizable by a Rabin tree automaton but not recognizable by any Büchi
tree automaton.

Let us use DBW,NBW,DRW,NRW,NBT, and NRT to denote, respectively,
deterministic Büchi word, nondeterministic Büchi word, deterministic Rabin
word, nondeterministic Rabin word, nondeterministic Büchi tree, and nonde-
terministic Rabin tree automata. We sometimes refer by these notations also
to the set of languages recognizable by the corresponding automata. So, for
example, NBW \ DBW denotes the set of languages that are recognizable by
NBW and are not recognizable by DBW. Let us also use DBW < NBW to
indicate that this set is not empty; i.e., that DBW are less expressive than
NBW. Summarizing the expressiveness results we have mentioned so far, we
have DBW < NBW = DRW = NRW and NBT < NRT.

There is a price to expressive power. The more expressive a language is,
the higher is the complexity of solving questions about it. For example, the
complexities of the model-checking and the satisfiability problems for the
logic CTL? are significantly higher than these for its less expressive sub-
set CTL [SC85,VS85]. Similarly, while the containment problem for DBW
can be solved in NLOGSPACE [WVS83,Kur87], it is PSPACE-complete for
NBW [Wol82]. Finally, while the complexity of the nonemptiness problem
for NBT can be solved in quadratic time [VW86b], it is NP-complete for
NRT [Eme85,VS85,EJ88]. The interested readers can find more examples in
[Eme90,Tho90].

In the automata-theoretic approach to verification, we translate specifications
to automata. Which type of automata? The answer, obviously, should be “the
weakest type that is still strong enough to express the required behaviors
accurately”. In this paper we consider tree automata that describe derived

languages. Let L be a language of words. The derived language of L, denoted
L4, consists of all trees all of whose paths are in L. Since often we want to
specify that all the computations of the program satisfy some property, the
interest in derived languages is clear.

Proving that DBW < NBW, Landweber showed that the language L1 = (0 +
1)∗1ω (only finitely many 0’s) is in NBW \ DBW. The proof is simple and
can be stated in a few lines. Much harder is the proof that NBT < NRT.
In [Rab69], Rabin had to use a complicated construction and a complicated
inductive argument. Interestingly, the language that Rabin used in his proof is
the derived language of L1. That is, the set of all trees all of whose paths have
only finitely many 0’s. In terms of temporal logics, if follows from Landweber’s
result that the LTL formula FG1 can not be translated to a DBW, and it
follows from Rabin’s result that the CTL? formula AFG1 can not be translated

4

to a NBT.

Our main result shows that Rabin’s choice of L1 was not at all arbitrary. We
prove that for every word language L, we have that L ∈ NBW \ DBW iff
L4 ∈ NRT \ NBT. Our proof suggests an additional proof and provides a
simple explanation to the expressiveness gap between Büchi and Rabin tree
automata. Since the gap between DBW and NBW is well understood, it also
provides a characterization of derived languages that can be described by
NBT. The difficult part in the proof is to show that if L4 ∈ NBT, then L ∈
DBW. Given a Büchi tree automaton U that recognizes L4, we construct a
deterministic Büchi word automaton A that recognizes L. For U with n states,
the automaton A has 2n+1 states. We can expand A in a straightforward
way to a deterministic tree automaton that recognizes L4. This suggests an
exponential determinization for Büchi tree automata that recognize derived
languages. We note that optimal determinization of a Büchi word automaton
with n states results in a deterministic Rabin word automaton with 2O(n log n)

states and n pairs [Mic88].

We study the problem of deciding whether the language of a given tree automa-
ton is derivable and show that it is EXPTIME-complete. We also consider the
corresponding problem in the temporal-logic paradigm, of deciding whether
the set of trees that satisfy a given branching temporal logic formula is deriv-
able. We show how our result can be used in order to obtain inexpressibility
results in temporal logic and in order to check the derivability of formulas.
Finally, we discuss the exponential blow-up of the construction and question
its optimality.

2 Preliminaries

A Büchi word automaton is A = 〈Σ, Q, δ, Q0, F 〉, where Σ is the input al-
phabet, Q is a finite set of states, δ : Q × Σ → 2Q is a transition function,
Q0 ⊆ Q is a set of initial states, and F ⊆ Q is a set of accepting states. Since
A may have several initial states and since the transition function may specify
many possible transitions for each state and letter, A may be nondeterminis-

tic. If |Q0| = 1 and δ is such that for every q ∈ Q and σ ∈ Σ, we have that
|δ(q, σ)| ≤ 1, then A is a deterministic automaton.

Given an input word σ = σ0 · σ1 · · · in Σω, a run of A on σ can be viewed
as a function r : IN → Q where r(0) ∈ Q0 and for every i ≥ 0, we have
r(i + 1) ∈ δ(r(i), σi); i.e., the run starts in one of the initial states and obeys
the transition function. Note that a nondeterministic automaton can have
many runs on σ. In contrast, a deterministic automaton has a single run on
σ. For a run r, let inf(r) denote the set of states that r visits infinitely often.

5

That is,

inf(r) = {q ∈ Q : for infinitely many i ≥ 0,we have r(i) = q}.

As Q is finite, it is guaranteed that inf(r) 6= ∅. The run r is accepting iff
inf(r) ∩ F 6= ∅. That is, iff there exists a state in F that r visits infinitely
often. A run which is not accepting is rejecting. An automaton A accepts an
input word σ iff there exists an accepting run of A on σ. The language of A
is the set of all words in Σω that A accepts.

The infinite binary tree is the set T = {0, 1}∗. The elements of T are called
nodes, and the empty word ε is the root of T . For every x ∈ T , the nodes x · 0
and x · 1 are, respectively, the left and right successors of x. Each node x is
the root of the subtree T x of T . Formally, T x = {x · y : y ∈ T}. The subtrees
T x·0 and T x·1 are, respectively, the left and right subtrees of T x. We sometimes
simply say that T x·0 is the left subtree of x. A path π of the tree T is a set
π ⊂ T such that ε ∈ π and for every x ∈ π, exactly one successor of x is in π

(we denote strict containment by ⊂). Note that each path π ⊂ T corresponds
to a unique word in {0, 1}ω. For example, the leftmost path corresponds to
0ω. For a path π and j ≥ 0, let π[j] denote the node of length j in π, and let
πj denote the suffix π[j] · π[j + 1] · · · of π. Given an alphabet Σ, a Σ-labeled

tree is a function V : T → Σ that maps each node of T to a letter in Σ.
We sometimes extend V to paths and use V (π) to denote the infinite word
V (π[0]) · V (π[1]) · V (π[2]) · · ·. We denote by Στ the set of all Σ-labeled trees.

Tree automata run on such Σ-labeled trees. A Büchi tree automaton is U =
〈Σ, Q, δ, Q0, F 〉, where Σ, Q, Q0, and F , are as in Büchi word automata, and
δ : Q × Σ → 2Q×Q is a (nondeterministic) transition function. Intuitively, in
each of its transitions, U splits into two copies. One copy proceeds to the left
subtree and one copy proceeds to the right subtree. A pair 〈ql, qr〉 ∈ δ(q, σ)
means that if U is now in state q and it reads the letter σ, then a possible
transition is one in which the copy that proceeds to the left subtree moves to
state ql and the copy that proceeds to the right subtree moves to state qr.

A run of U on an input Σ-labeled tree V is a Q-labeled tree r such that
r(ε) ∈ Q0 and for every x ∈ T , we have that 〈r(x · 0), r(x · 1)〉 ∈ δ(r(x), V (x)).
If, for instance, r(0) = q2, V (0) = a, and δ(q2, a) = {〈q1, q2〉, 〈q4, q5〉}, then
either r(0 · 0) = q1 and r(0 · 1) = q2, or r(0 · 0) = q4 and r(0 · 1) = q5. Given a
run r and a path π ⊂ T , we define

inf(r|π) = {q ∈ Q : for infinitely many x ∈ π,we have r(x) = q}.

A run r is accepting iff for all paths π ⊂ T , we have inf(r|π) ∩ F 6= ∅. That
is, iff for each path π ⊂ T there exists a state in F that r visits infinitely
often along π. An automaton U accepts V iff there exists an accepting run

6

of U on V . Rabin word automata are identical to Büchi word automata, only
that the acceptance condition F ⊆ 2Q×2Q is a set {〈G1, B1〉, . . . , 〈Gk, Bk〉} of
pairs of subsets of Q, and a run r is accepting iff there is 1 ≤ i ≤ k such that
inf(r)∩Gi 6= ∅ and inf(r)∩Bi = ∅. That is, there is a pair 〈Gi, Bi〉 such that
r visits Gi infinitely often but visits Bi only finitely often. Similarly, Rabin

tree automata are identical to Büchi tree automata, only that the accepting
condition is F ⊆ 2Q × 2Q as above, and a run r is accepting iff for each path
π ⊂ T , there is 1 ≤ i ≤ k such that inf(r|π) ∩Gi 6= ∅ and inf(r|π) ∩Bi = ∅.
In the sequel, when we write tree automata, we refer to automata with any
acceptance condition, thus, in particular, Büchi or Rabin automata.

Consider a tree automaton U = 〈Σ, Q, δ, Q0, F 〉. For S ⊆ Q, we denote by US

the tree automaton 〈Σ, Q, δ, S, F 〉, i.e., U with S as the set of initial states,
and denote by U [S] the set of trees accepted by US. A state q of U is null iff
U [{q}] = ∅. We assume that U [Q0] 6= ∅ and eliminate all null states and all
transitions that involve null states (i.e., transitions 〈ql, qr〉 for which either ql

or qr is null).

For S ⊆ Q and a ∈ Σ, we denote by δL(S, a) the set of states reachable from
S by reading a, on the left branch, disregarding what happens on the right
branch, i.e.,

δL(S, a) = {ql : exists qr such that 〈ql, qr〉 ∈
⋃

q∈S

δ(q, a)}.

The set δR(S, a) is defined symmetrically for the right. For two states q and
q′, and a ∈ Σ, we say that q′ is a-reachable from q iff q′ ∈ δL(q, a) ∪ δR(q, a).

For a word language L ⊆ Σω, the derived language of L, denoted by L4, is the
set of all trees all of whose paths are labeled with words in L. Formally,

L4 = {V ∈ Στ : all paths π ⊂ T satisfy V (π) ∈ L}.

For a tree language X and a word language L, we say that L derives X iff
X = L4. We say that X is derivable iff there exists some word language L
such that L derives X.

For a word language L and a letter a, let La = {σ : a · σ ∈ L}. Let U be a
tree automaton, S a subset of the states of U , and let U [S] = L4. It is a good
exercise to see that

U [δL(S, a)] ∪ U [δR(S, a)] = La
4.

Indeed, La
4 contains exactly all trees that are either left or right subtrees of

some tree in L4, with root labeled a. Moreover, as L4 is derivable, then each

7

left subtree of some tree in L4 is also a right subtree of some tree in L4, and
vice versa. Hence, we can strengthen the above and have

U [δL(S, a)] = U [δR(S, a)] = La
4.

What if instead taking S we would have taken some subset S ′ of S? Then,
obviously (e.g., when S ′ = ∅), it might be that

U [δL(S ′, a)] ∪ U [δR(S ′, a)] ⊂ La
4.

Also, here, though U [S] is derivable, it might be that U [δL(S ′, a)] 6= U [δR(S ′, a)].
For example, in a case where U [δL(S ′, a)] = La

4 but U [δR(S ′, a)] ⊂ La
4.

Let U [S] = L4. For a set S ′ ⊆ S, a letter a, and a direction d ∈ {left, right},
we say that S ′ d-covers 〈S, a〉, iff U [δd(S

′, a)] = La
4. That is, S ′ d-covers 〈S, a〉

iff the set of states reachable from S ′ by reading a on the d-branch suffices to
accept all trees accepted by the set of states reachable from S by reading a,
on either the left or the right branch.

As discussed above, U [δd(S
′, a)] may be a strict subset of La

4, thus S ′ need
not d-covers 〈S, a〉. We now show, however, that for every partition S1 ∪ S2 of
S, and partition {d1} ∪ {d2} of {left, right}, either S1 d1-covers 〈S, a〉 or S2

d2-covers 〈S, a〉. Formally, we have the following.

Lemma 2.1 Let U be a tree automaton, S a subset of the states of U , and let

U [S] = L4. Then, for every S ′ ⊆ S, and letter a, either S ′ left-covers 〈S, a〉
or S \ S ′ right-covers 〈S, a〉.

Proof: If S ′ does not left-cover 〈S, a〉, there exists a tree V ∈ La
4\U [δL(S ′, a)].

Consider all trees that have a as their root, V as the left subtree, and some
tree in La

4 as the right subtree. All these trees are in L4, yet none of them is
in U [S ′]. Hence, as L4 = U [S], they are all in U [S \ S ′]. Therefore, since their
right subtree is an arbitrary tree in La

4, it must be that S \ S ′ right-covers
〈S, a〉. 2

3 Determinization

Theorem 3.1 If L ⊆ Σω is such that L4 is recognized by a nondeterministic

Büchi tree automaton, then L is recognized by a deterministic Büchi word

automaton.

Proof: Given a nondeterministic Büchi tree automaton U = 〈Σ, Q, δ, Q0, F 〉
that recognizes L4, we construct a deterministic Büchi word automaton A =
〈Σ, 2Q × {0, 1}, ν, 〈Q0, 1〉, 2

Q × {1}〉 that recognizes L.

8

Intuitively, the states of A consist of subsets of the states of U plus a green

light that can be either off (0) or on (1). The initial state of A is the set of
initial states of U with the green light on. Below we describe the transition
function ν.

We consider only states 〈S, g〉 of A for which U [S] is derivable. The initial
state clearly satisfies this property and, by the definition of ν below, states
that do not satisfy it are not reachable in A from the initial state.

For a state q = 〈S, g〉 with S 6= ∅ and g ∈ {0, 1}, we define ν, for all a ∈ Σ, as
follows.

• If S ∩ F left-covers 〈S, a〉, then ν(q, a) = 〈δL(S ∩ F, a), 1〉.
• Otherwise, by Lemma 2.1, S \F right-covers 〈S, a〉, in which case ν(q, a) =
〈δR(S \ F, a), 0〉.

For a state q = 〈∅, g〉 with g ∈ {0, 1}, we define ν(q, a) = ∅ for all a ∈ Σ.

That is, A always tries to proceed with states from F . As long as it succeeds,
the green light is on. Only when states in F might not suffice, A proceeds
with states not in F and turns the green light off. It is easy to see that A is
deterministic. We show that it recognizes L.

Before we get to the proof we need the following definitions. In each step of A,
its run on a word σ ∈ Σω (and let σ = σ0 ·σ1 · · ·) either gets stuck (in the case
it is in a state 〈∅, g〉), or takes a left move (in the case it proceeds according
to a left-covering set), or takes a right move (in the case where it proceeds
according to a right-covering set). This fixes, for any word σ on which the
run does not get stuck, an infinite path πσ ⊂ T . Precisely, for every j > 0,
we have that πσ[j] = πσ[j − 1] · 0 if A takes a left move in its j’s step, and
πσ[j] = πσ[j − 1] · 1 if A takes a right move. Consider a node x ∈ πσ. The
node x has two subtrees. One subtree contains the suffix of πσ. We say that
this subtree continues with πσ. The other subtree is disjoint with πσ. We say
that this subtree quits πσ.

Given a word σ ∈ Σω, we first show that if A accepts σ, then σ ∈ L.

Let r = 〈S0, g0〉, 〈S1, g1〉, 〈S2, g2〉, . . . be the accepting run of A on σ. Since r is
accepting, it does not get stuck and there are infinitely many j’s with gj = 1.
Consider the following (not necessarily binary) Q-labeled tree. The tree has a
root labeled ε. Nodes of length 1 are labeled with states in S0. For i ≥ 0, the
nodes of length i+1 have the following successors. If A proceeds from Si with
a left move, then nodes labeled with a state in Si \ F have no successors and
a node labeled with a state q ∈ Si ∩ F has as successors nodes labeled with
states that are σi-reachable from q. In a dual way, if A proceeds from Si with
a right move, then nodes labeled with a state in Si ∩ F have no successors

9

and a node labeled with a state in Si \F has as successors nodes labeled with
states that are σi-reachable from it. The way we define A implies that the
nodes of length i + 1 are labeled with all states in Si.

By König’s lemma, we can therefore pick a sequence r′ = q0, q1, . . . such that
for all j ≥ 0, we have that qj ∈ Sj, qj+1 is σj-reachable from qj, and there are
infinitely many j’s with qj ∈ F . We show that there exists a tree V , accepted
by U , in which V (πσ) = σ. As U recognizes L4, this implies that σ ∈ L. We
define V according to r′, proceeding over πσ.

For each node πσ[j] of πσ, if the run of A on σ is in Sj and takes a left (right)
move, let q be such that 〈qj+1, q〉 ∈ δ(qj, σj) (〈q, qj+1〉 ∈ δ(qj, σj)). There exists
some tree in U [{q}]. Our tree V has this tree as the right (left) subtree of πσ[j]
(i.e. as the subtree that quits πσ), it has V (πσ[j]) = σj, and definition proceeds
to πσ[j + 1]. It is easy to see that U accepts V with a run that agrees with r

′

over πσ.

We now show that if A does not accept σ, then σ 6∈ L.

Let r = 〈S0, g0〉, 〈S1, g1〉, 〈S2, g2〉, . . . be the rejecting run of A on σ. We first
consider the case where there exists j ≥ 0 for which Sj = ∅. Intuitively, the
existence of such j implies that all runs of U on a tree with a path labeled σ

eventually get stuck. For a word τ ∈ Σω and j ≥ 0, let V j
τ be the tree derived

from {τ j}. We prove that for all τ ∈ L and for all j ≥ 0 for which τ agrees
with σ on their first j letters, we have that V j

τ ∈ U [Sj]. The proof proceeds
by induction on j as follows. Since U [S0] = L4, then clearly, for all τ ∈ L,
we have V 0

τ ∈ U [S0]. Assume that the claim holds for words in L that agree
with σ on their first j letters. Let τ ∈ L be such that τ agrees with σ on their
first j+1 letters. By the definition of A, we have that U [Sj+1] contains either
all trees that are left subtrees in some tree in U [Sj] with root labeled σj, or
all trees that are right subtrees in such a tree. Recall that σj = τj. Hence,
since V j+1

τ is the left and right subtree in V j
τ , that has a root labeled τj and

that, by the induction hypothesis, is in U [Sj], it must be that V j+1
τ ∈ U [Sj+1]

and we are done. Assume now, by way of contradiction, that σ ∈ L. Then, by
the above, there exists j ≥ 0 for which both Sj = ∅ and V j

σ ∈ U [Sj]. This,
however, is not possible.

We now consider the more intriguing case, where Sj 6= ∅ for all j ≥ 0. We
show that there exists a tree V , rejected by U , such that V (πσ) = σ and all
other paths are labeled with words in L. It follows that σ 6∈ L. We define V
according to r, proceeding over πσ. For all j ≥ 0, we have V (πσ[j]) = σj. The
subtree that quits πσ in level j is defined as follows:

• If Sj ∩ F left-covers 〈Sj, σj〉, we chose as the right subtree some tree in
U [δL(Sj ∩ F, σj)].

• Otherwise (in which case Sj \ F right-covers 〈Sj, σj〉), we chose as the left

10

subtree some tree in U [δR(Sj \ F, σj)] \ U [δL(Sj ∩ F, σj)]; i.e., a tree that
causes V not to be accepted by runs r with r(πσ[j]) ∈ Sj ∩ F .

For all j ≥ 0, we denote by Vj the subtree of πσ[j] that quits πσ. That is,
Vj is the right subtree of πσ[j] whenever A takes a left move and it is the
left subtree of πσ[j] whenever A takes a right move. Since r never reach a
state with Sj = ∅, it is guaranteed that for all j ≥ 0, if A takes a left move,
then U [δL(Sj ∩ F, σj)] 6= ∅. In addition, since A takes a right move only when
Sj ∩ F does not left-cover 〈Sj, σj〉, it is guaranteed that if A takes a right
move, then U [δR(Sj \ F, σj)] \ U [δL(Sj ∩ F, σj)] 6= ∅. Thus, in both cases, a
suitable Vj exists.

By the construction, the labels along the path πσ form the word σ. It is not
hard to see that all the other paths of V are labeled with words in L. To see
this, note that each such other path has some finite prefix σ0 · σ1 · · ·σj that
agrees with σ and has a suffix that continues as a path in Vj. Also, by the
definition of V , all the subtrees Vj that quit πσ satisfy Vj ∈ U [Sj+1].

Hence, it is sufficient to prove that for all i ≥ 0, all trees Y in U [Si], and all
paths τ ⊂ T , we have that σ0 · σ1 · · ·σi−1 · Y (τ) ∈ L. The proof proceeds by
induction on i. Since U [S0] = L4, then clearly, all the paths in trees in U [S0]
are in L. Assume now that for all trees Y in U [Si] and all paths τ ⊂ Y , we
have that σ0 · σ1 · · ·σi−1 · Y (τ) ∈ L. Let Y ′ be a tree in U [Si+1]. There exists
a tree in U [Si] such that this tree has a root labeled σi and has Y ′ as its left
or right subtree. Therefore, by the induction hypothesis, all the paths τ ⊂ T

have σ0 · σ1 · · ·σi−1 · (σi · Y
′(τ)) ∈ L, and we are done.

It remains to see that V is rejected.

Let b be a run of U on V and let q0, q1, q2, . . . be the sequence of states that b
visits along πσ. We say that a state qj agrees with ν if the following holds.

• Sj ∩ F left-covers 〈Sj, σj〉 and qj ∈ Sj ∩ F , or
• Sj ∩ F does not left-cover 〈Sj, σj〉 and qj ∈ Sj \ F .

We say that a run b agrees with ν iff almost all the states along πσ agree with
ν. That is, if there exists k ≥ 0 for which all states qj with j ≥ k agree with ν.

In order to show that no run of U accepts V , we prove the following two claims:

Claim 1. For every run b on a tree V with V [πσ] = σ, if b agrees with ν then
b is a rejecting run.

Claim 2. If a run b accepts V , then there exist a tree V ′ and an accepting
run b′ of U on V ′, such that V ′[πσ] = σ and b′ agrees with ν.

According to the above claims, there exists no accepting run of U on V . Indeed,

11

assuming that such a run exists, leads to a contradiction.

We start with Claim 1. Let b be some run on a tree V with V [πσ] = σ, and
let q0, q1, . . . be the sequence of states that b visits along πσ. If b agrees with
ν, then there exists k ≥ 0 such that for every j ≥ k, it is possible that qj

is in F only when Sj ∩ F left-covers 〈Sj, σj〉. That is, only in steps whose
corresponding steps in r cause the green light to turn on. Since r is a rejecting
run, there are only finitely many such states. Thus, a run b that agrees with ν
can visit only finitely many states in F along πσ. Hence, it is a rejecting run.

We now prove Claim 2. We first show that if b accepts V , then for every j ≥ 0,
the subtree V πσ[j] is in U [Sj]. The proof proceeds by induction on j. Since
S0 = Q0, the case j = 0 is straightforward. Assume now that V πσ[j] ∈ U [Sj].
Consider the case where A takes a left move. Then, Sj+1 = δL(Sj ∩ F, σj).
Since Sj ∩ F left covers 〈Sj, σj〉, then all the left subtrees of trees in U [Sj]
with root labeled σj are in U [Sj+1], and we are done. The case where A takes
a right move is similar.

Consider a state qj that appears in the run b along πσ. If j > 0 and qj−1

agrees with ν, then, by the definition of ν, the state qj must be in Sj. Also,
q0 is always in S0. Therefore, if j = 0 or qj−1 agrees with ν, and qj does not
agree with ν, then one of the following holds:

• Sj ∩ F left-covers 〈Sj, σj〉 and qj ∈ Sj \ F , or
• Sj ∩ F does not left-cover 〈Sj, σj〉 and qj ∈ Sj ∩ F .

Since whenever Sj ∩ F does not left-cover 〈Sj, σj〉 we have as Vj a tree that
leaves all the states in Sj ∩ F “helpless” (Vj 6∈ U [δL(Sj ∩ F, σj)]), the latter
disagreement can not happen in an accepting run. Hence, if we come across a
state qj such that j = 0 or qj−1 agrees with ν, and qj does not agree with ν,
then it must be that Sj∩F left-covers 〈Sj, σj〉 and qj ∈ Sj \F . Moreover, since
r is a rejecting run (and hence visits only finitely many states in which the
green light is on), there are only finitely many j’s for which Sj ∩ F left-covers
〈Sj, σj〉. Thus, there exists k ≥ 0 such that for all j ≥ k, we have that Sj ∩ F
does not left-cover 〈Sj, σj〉. By the above, if k = 0 or if qk−1 agrees with ν,
then so do all qj for j ≥ k.

Given V and b, we define V ′ and b′ as follows. Let k be as above. If k = 0,
then b agrees with ν, we define b′ = b, V ′ = V , and we are done. Otherwise,
consider the set Sk. It is guaranteed that Sk \ F right-covers 〈Sk, σk〉. Let q′k
be a state in Sk \ F for which there exist q and q′ such that 〈q′, q〉 ∈ δ(q′k, σk)
and the right subtree of πσ[j] (the one that continues with πσ) is in U [{q}].
Since Sk \ F right-covers 〈Sk, σk〉 and since the right subtree of πσ[j] is in
U [Sk+1], it is guaranteed that such q′k exists. The tree V ′ has some tree in
U [{q′}] as the left subtree of πσ[j] (instead Vk that was there in V). The run
b′ has b′(πσ[k]) = q′k, and it continues on the left and right subtrees with some

12

accepting run. It is guaranteed that along the suffix πk
σ, all the states agree

with ν.

We are still not done. The run b′ is not a legal run: replacing qk with q′k, we
did not make sure that q′k is σk−1-reachable from qk−1. We now climb up πσ

and repair b′ further. By definition, q′k ∈ Sk. Therefore, there exists q′k−1 ∈
Sk−1 such that q′k is σk−1-reachable from q′k−1. Let q be such that 〈q, q′k〉 ∈
δ(q′k−1, σk), in case we reach Sk with a left move, or 〈q′k, q〉 ∈ δ(q′k−1, σk), in
case we reach Sk with a right move. We define V ′

k−1 as some tree in U [{q}]. The
run b′ has b′(πσ[k − 1]) = q′k−1 and it continues on V ′

k−1 with some accepting
run. Since q′k−1 ∈ Sk−1 we can go on climbing πσ until we reach the root of
V . It is easy to see that the repair results in a legal run b′ that agrees with
ν. Since each path of b′ eventually reaches a subtree of an accepting run, b′ is
accepting.

2

4 Relating Word and Tree Automata

Given a deterministic word automaton A = 〈Σ, Q, δ, Q0, F 〉, let At = 〈Σ, Q, δt, Q
0, F 〉

be the tree automaton where for every q ∈ Q and a ∈ Σ with δ(q, a) = q ′,
we have δt(q, a) = 〈q′, q′〉. Since each prefix of a word in Σω corresponds to a
single prefix of a run of A, the following lemma is straightforward.

Lemma 4.1 For every deterministic word automaton A and word language

L, if A recognizes L, then At recognizes L4.

We note that the fact A is deterministic is crucial. A similar construction for
a nondeterministic A results in At whose language may be strictly contained
in L4. The dual construction, as we shall now see, does work also for nonde-
terministic automata. Given a tree automaton U = 〈Σ, Q, δ, Q0, F 〉, we define
the word automaton Uw = 〈Σ, Q, δw, Q

0, F 〉, where for every q ∈ Q and a ∈ Σ,
we have δw(q, a) = {q′ : q′ is a-reachable from q in δ}.

Lemma 4.2 For every tree automaton U and word language L, if U recognizes

L4, then Uw recognizes L.

Proof: We first prove that if σ ∈ L then Uw accepts σ. Let Vσ be the tree
derived from {σ}. Since Vσ ∈ L4, there exists an accepting run r of U on it. It
is easy to see that each path of r suggests a legal and accepting run of Uw on
σ. Assume now that Uw accepts σ. It is easy to see that then, we can construct
a tree V such that V has a path labeled σ and V is accepted by U . Hence, it
must be that σ ∈ L. 2

13

We can now relate the expressiveness gap between NRT and NBT and the one
between NBW and DBW.

Theorem 4.3 For every word language language L,

L ∈ NBW \ DBW ⇔ L4 ∈ NRT \ NBT.

Proof: We prove the following four claims. The ⇒ direction follows from the
first two claims and the ⇐ direction follows from the last two.

(1) L ∈ NBW ⇒ L4 ∈ NRT.
(2) L4 ∈ NBT ⇒ L ∈ DBW.
(3) L4 ∈ NRT ⇒ L ∈ NBW
(4) L ∈ DBW ⇒ L4 ∈ NBT.

Lemma 4.1 implies Claim 4. Also, as NBW=DRW, the lemma implies Claim 1
too. Claim 3 follows from Lemma 4.2 and the fact that NBW=NRW. Finally,
Claim 2 follows from Theorem 3.1. 2

5 Derivability and Expressiveness

Our results in Section 4 consider derivable languages and tree automata that
recognize derivable language. In this section we study the problem of deciding
whether the language of a given tree automaton is derivable. We also consider
branching temporal logics and formulas that define derivable languages.

Theorem 5.1 For a Büchi tree automaton U , checking whether L(U) is deriv-

able is EXPTIME-complete.

Proof: We start with the upper bound. Let U be an NBT with n states and
let A be the DBW constructed from U in Theorem 3.1. The size of A is 2O(n).
We claim that L(U) = L(A)4 iff L(U) is derivable. First, if L(U) = L(A)4,
then L(A) derives L(U), thus L(U) is derivable. Also, by Theorem 3.1, if L(U)
is derivable, then L(U) = L(A)4. So, checking the derivability of U can be
reduced to checking the equivalence of L(U) and L(A)4. This involves two
checks:

(1) L(U) ⊆ L(A)4. Let C be an NBW that complements A. That is, L(C) =
L(A). By [Kur87], the size of C is 2O(n). We can expand C to an NBT
B that accepts a tree 〈T, V 〉 iff there exists a path π ⊆ T such that
V (π) ∈ L(C). (in each transition, B guesses both its next state and the
direction in the tree to which it proceed). The size of B is also 2O(n),
and L(B) = L(A)4. It follows that L(U) ⊆ L(A)4 iff the intersection
L(U)∩L(B) is empty. Let U ×B be the product of U and B, thus L(U ×

14

B) = L(U) ∩ L(B). By [VW86b], it is possible to construct U × B as an
NBT of size |U| · |B|. Since the nonemptiness problem for NBT can be
solved in quadratic time [VW86b], the check can be performed in time
exponential in n.

(2) L(A)4 ⊆ L(U). Consider the DBW A. We can expand A to an NBT B
that accepts L(A)4 (in each transition, B proceeds to its next state in all
directions, thus B is really deterministic). The size of B is 2O(n). Let C be
a Streett tree automaton that complements U . That is, L(C) = L(U). By
[MS95], the automaton C has 2O(n log n) states and O(n) pairs 4 . It follows
that L(A)4 ⊆ L(U) iff the intersection L(B) ∩ L(C) is empty. Let D be
the product B and C. That is L(D) = L(B)∩L(C). The automaton D is a
Streett automaton with 2O(n log n) states and O(n) pairs (each state of D
is a pair 〈qB, qC〉, thus D follows B in its first element and follows C in its
second element. The acceptance condition of D adds to that of C a new
pair imposing infinitely many visits in the accepting set of B). Since the
nonemptiness problem for nondeterministic Streett tree automata can be
solved in time polynomial in the number of states and exponential in the
number of pairs [EJ88,PR89,KV98b], the check can be performed in time
exponential in n.

For the lower bound, we do a reduction from alternating linear-space Turing
machines. Given a machine T , we construct an NBT U , of size linear in T ,
such that L(U) is derivable iff the machine T does not accept the empty tape.
For that, we define U to accept an input tree iff the tree does not represent an
accepting computation tree of T on the empty tape (we assume that once T
reaches a final configuration it looks there forever, which is why we can handle
infinite trees). In Appendix A, we describe the construction of U in detail. The
construction is similar to a construction described in [Sei90] for automata on
finite words. Let Σ be the alphabet of U . We prove two claims:

(1) The machine T rejects the empty tape iff U is universal. Indeed, T re-
jects the empty tape iff there exists no tree that represents an accepting
computation tree of T on the empty tape, which holds iff U accepts all
trees.

(2) The NBT U is universal iff L(U) is derivable. Clearly, if U is universal,
then L(U) is derivable. For the other direction, assume that L(U) is
derivable. Then, L(U) = L4 for some L ⊆ Σω. We claim that L = Σω,

4 The Streett acceptance condition is dual to the Rabin acceptance condition. That
is, F ⊆ 2Q×2Q, and a run r is accepting if for each path π of the tree and each pair
〈Gi, Bi〉 in F , either r visits Gi only finitely often along π, or r visits Bi infinitely
often along π. The automaton C is obtained by first dualizing U to an alternating
co-Büchi automaton (this involves no blow up), and then removing the alternation,
which involves an exponential blow up in the number of states and a linear blow up
in the number of pairs.

15

in which case U is universal. Consider a word w ∈ Σω. Clearly, w can be
extended to a tree that does not represent an accepting computation tree
of T on the empty tape. Hence, w can be extended to a tree accepted by
U . Since L(U) = L4, it must be that w ∈ L.

From the two claims it follows that T rejects the empty tape iff L(U) is
derivable. 2

Recall that automata are used in order to specify the behaviors of reactive
systems. If the language of a tree automaton is derivable, the specification
it induces is really a linear specification, and it refers to the system’s set
of computations, ignoring its tree structure. Often, specifications are given as
formulas in temporal logics. We say that a formula ψ of the branching temporal
logic CTL? is derivable iff the set of trees that satisfy ψ is derivable. Derivable
formulas constitute a strict fragment of the universal fragment ∀CTL? of CTL?

[GK94]. By [GK94], a CTL? formula is derivable (called strongly linear in
[GK94]) iff it is equivalent to some formula of the linear temporal logic LTL. By
[CD88], a CTL? formula is equivalent to some LTL formula iff it is equivalent
to the LTL formula obtained by eliminating its path quantifiers. Given a CTL?

formula ψ, let ψlin be the LTL formula obtained from ψ by eliminating its path
quantifiers. By the above, ψ is derivable iff the CTL? formula ψ ↔ Aψlin is
valid. Since validity of CTL? is 2EXPTIME-complete [ES84,VS85,EJ88], this
suggests a 2EXPTIME upper bound for the problem of deciding whether a
given CTL? formula is derivable.

Symbolic model-checking, which enables the verification of large systems, pro-
ceeds by calculating fixed-point expressions over the system’s set of states. The
µ-calculus is a branching-time temporal logic with fixed-point operators. As
such, it is a convenient logic for symbolic model-checking tools. In particular,
the alternation-free fragment of µ-calculus (AFMC [EL86]) has a restricted
syntax, making the symbolic evaluation of its formulas computationally easy.
On the other hand, specifiers find the µ-calculus inconvenient, and they often
prefer to use linear-time formalisms. Such formalisms, however, cannot in gen-
eral be translated to AFMC, and their symbolic evaluation involves nesting
of fixed-points. Our results can be used to obtain simple proofs for inexpress-
ibility results for temporal logics. It is known, for example, that formulas of
AFMC can be translated to NBT [VW86b,KVW00]. As the LTL formula FGp
can not be translated to a DBW, it follows from Theorem 4.3 that the CTL?

formula AFGp can not be expressed in AFMC. Previous proofs of this inex-
pressibility result follows from the work in [Rab70,MSS86,KVW00] and are
complicated. More generally, our results here are used in [KV98a] in order
to show that a linear-time property can be specified in AFMC iff it can be
recognized by a deterministic Büchi automaton.

16

6 The Translation Blow-up

In Section 3, we constructed, given a nondeterministic Büchi tree automaton
U that recognizes L4, a deterministic Büchi word automaton A that recog-
nizes L. For U with n states, the automaton A has 2n+1 states. Our motivation
was the study of the expressive power of automata and we ignored the com-
plexity of the construction. In this section we question the optimality of the
construction and conjecture that a better, perhaps even linear, construction
is possible. For that, we show that in the case of finite trees with arbitrary
branching degrees, a linear construction is possible. Note that an existence
of a linear construction would imply that, in the context of derivable lan-
guages, nondeterminism adds no power to tree automata, neither in terms of
expressiveness nor in terms of succinctness.

We first adjust the definition of derivable languages to the case of finite trees
with an arbitrary branching degree. For k ≥ 1, let [k] = {1, . . . , k}. A finite
tree with branching degrees at most k is a finite prefix closed set T ⊆ [k]∗. A
Σ-labeled tree is 〈T, V 〉, where T is a tree as above and V : T → Σ maps each
node of T to a letter in Σ. Given a regular language R ⊆ Σ∗ and an integer
k ≥ 1, the language Rk

4 consists of all the Σ-labeled trees with branching
degrees at most k all of whose paths are labeled by words in R. Finally,
R4 =

⋃

k≥1R
k
4.

Let R ⊆ Σ∗ be a regular language, k ≥ 1, and let U be a nondeterministic
tree automaton that recognizes Rk

4. Since U recognizes a derivable language,
we can assume that its transition relation is closed under symmetry; that is,
if 〈q1, q2〉 ∈ δ(q, σ), then {〈q1, q1〉, 〈q2, q2〉, 〈q2, q1〉} ⊆ δ(q, σ) (since we assume
that U has no empty states, we can close it to symmetry if this is not the
case). Accordingly, it is convenient to define nondeterministic tree automata
recognizing derivable languages as having a transition function δ : Q × Σ →
22Q

, where a set S ∈ δ(q, σ) stands for all the tuples with elements in S.
Thus, when U runs on a tree 〈T, V 〉 and it visits a node x with V (x) = σ at
state q, then δ(q, σ) = {S1, . . . , Sm} means that U should chose a set Si and
send to all the successors of x copies in states in Si. Formally, a run of U on
〈T, V 〉 is a Q-labeled tree 〈T, r〉, where r(ε) ∈ Q0, and for all x ∈ T , there is
S ∈ δ(r(x), V (x)) such that for all d ∈ [k] with x · d ∈ T , we have r(x · d) ∈ S.

Myhill and Nerode study optimization of deterministic automata on finite
words. Let R be a regular language over an alphabet Σ. We say that two words
x and y in Σ∗ are R-equivalent (x ∼R y) iff for every word z ∈ Σ∗, we have
x.z ∈ R iff y.z ∈ R. Let 〈R〉 be the set of equivalence classes of the relation
∼R. Myhill and Nerode show that the smallest deterministic automaton that
recognizes R has |〈R〉| states. This result is constructive. Namely, given a
nondeterministic automaton for R, we know how to construct a deterministic

17

automaton with |〈R〉| states for R.

Theorem 6.1 Let R ⊆ Σ∗ be a regular language, and let k = |〈R〉|. If Rk
4 is

recognized by a nondeterministic tree automaton with n states, then R can be

recognized by a deterministic word automaton with |Σ| · n states.

Proof: Let U be a nondeterministic tree automaton that recognizes Rk
4

with n states. We prove that k ≤ |Σ| · n, implying that R can be recognized
by a deterministic word automaton with at most |Σ| · n states. Recall that
k = |〈R〉|. So, there are k heads (words in Σ∗) h1, . . . , hk such that for each
pair 1 ≤ i < j ≤ k, there either exists a tail (a word in Σ∗) ti,j such that
hi · ti,j ∈ R and hj · ti,j 6∈ R, or exists a tail tj,i such that hi · tj,i 6∈ R and
hj · tj,i ∈ R. For every 1 ≤ i ≤ k, let Ti be the set of tails ti,j defined above
(Note that Ti can have any size from 0 to k−1). Consider the tree T described
in Figure 1. From the root, T branches to k paths, with the i’th path labeled

hk

T2 Tk

h1 h2

t1,jm
t1,ji

t1,j2

. . .

. . .

Fig. 1. The tree T .

by hi. At the end of hi, the tree T branches to a subtree that contains paths
labeled by exactly all tails in Ti. Clearly, all the words labeling paths of T are
in R. Thus, T ∈ Rk

4 and U has an accepting run r on T . For all 1 ≤ i ≤ k,
let r(i) be the state U in r when it reads the last letter of hi.

Assume, by way of contradiction, that k > |Σ| · n. Then, there must be two
heads hj and hl, such that hj and hl agree on their last letter and r(j) = r(l).
Assume, without less of generality, that Tj contains the word tj,l. Consider
the tree T ′ obtained from T by switching Tj and Tl. The tree T ′ contains the
word hl · tj,l, which is not in R. On the other hand, the run r′ of U on T ′ that
is obtained by switching the subtrees Tj and Tl of r is a legal and accepting
run of U on T ′. If follows that U accepts a tree not in Rk

4 and we reach a
contradiction. 2

The proof of Theorem 6.1 make use of the fact that every regular language
R has a minimal deterministic automaton, whose states are the equivalence
classes of the relation ∼R. This helpful fact does not hold for deterministic
Büchi automata, and Theorem 6.1 cannot be applied. A Büchi automaton U
is weak [MSS86] if each strongly connected component in the transition graph
of U is either contained in F or is disjoint from F . Note that a run of an
automaton eventually gets trapped in some strongly connected component.
Thus, in a weak automaton, a run is accepting if this component is contained
in F and is rejecting if the component is disjoint from F . Deterministic weak

18

automata are used in reasoning about real numbers [BJW01] and enjoy sev-
eral combinatorial properties that deterministic Büchi automata do not have
(c.f., [MS97,KMM04]). In particular, it is shown in [Lod01] that the analy-
sis of Myhill and Nerode apply to deterministic weak automata. Thus, like
finite automata, every language R that is recognized by a deterministic weak
automaton has a minimal deterministic automaton whose states are the equiv-
alence classes of the relation ∼R. It is then shown in [Mor03] that Theorem 6.1
applies also to weak automata.

Determinizing a nondeterministic automaton on finite words may involve an
exponential blow up. Thus, there is a regular language R such that the trans-
lation from an NFW for R to an NFW for R is exponential. By Lemma 4.2,
an NFT for Rk

4 induces an NFW for R of the same size. Hence, it follows
from Theorem 6.1 that there is a language R such that the translation from
an NFW for R to an NBT for Rk

4 is exponential. Let $ be a letter not in Σ,
and let R ·$ω be the ω-regular language obtained by appending $ω to words in
R. An NFW for R induces an NBW for R ·$ω with the same number of states.
Also, an NBT for (R · $ω)k

4 induces an NFT for Rk
4 with the same number

of states. Hence, there is an ω-regular language L such that the translation
from an NBW for L to an NBT for Lk

4 is exponential.

So, our conjecture that the construction can be improved is supported by
two evidences. The first is that such an improved construction is possible for
the case of finite trees and even trees accepted by a weak automaton, and
the second is that the translation from an NBW for L to an NBT for Lk

4

may be exponential, just like the translation from NBW to DBW. Thus, the
computational advantage of nondeterminism in the case of derivable languages
is not clear.

7 Related and Future Work

In a recent related work [NW98], Niwinski and Walukiewicz relate hierarchies
of deterministic word automata with hierarchies of nondeterministic tree au-
tomata. They consider parity and co-parity automata. In parity automata, the
acceptance condition is a set {G1, G2, . . . , Gk} with G1 ⊂ G2 ⊂ . . . ⊂ Gk = Q,
and a run r satisfies the acceptance condition iff the minimal 1 ≤ i ≤ k for
which inf(r)∩Gi 6= ∅ is even. In co-parity automata, the minimal i is required
to be odd. The number k of sets in the acceptance condition is called the index

of the automaton. Languages of words and trees can be characterized by the
minimal index of a parity or the co-parity automaton that recognizes them.
It is proven in [NW98], that a word language L can be recognized by a de-
terministic parity word automaton of index k iff the tree language L4 can
be recognized by a nondeterministic parity tree automaton of index k, and

19

similarly for co-parity automata. In particular, it follows that L ∈ DBW iff
L4 ∈ NBT .

The proof in [NW98] considers the structure of the deterministic automata
that recognize L. The authors show that whenever L cannot be recognized by a
deterministic parity word automaton of a certain index k, the transition graph
of a deterministic automaton that does recognize L contains some special
subgraph (called flower in [NW98]). This subgraph prevents nondeterministic
tree automata of index k from recognizing L4.

Thus, unlike our proof, the proof in [NW98] does not involve a direct construc-
tion of a deterministic word automaton for L. An interesting open problem is
to combine the two works and extend our construction in Theorem 3.1 so that,
given a nondeterministic parity tree automaton of index k for L4, it would
construct deterministic parity word automaton of index k for L.

References

[BJW01] B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for
deciding linear arithmetic with integer and real variables. In Proc. International
Joint Conference on Automated Reasoning (IJCAR), volume 2083 of Lecture
Notes in Computer Science, pages 611–625, Siena, June 2001. Springer-Verlag.

[Büc62] J.R. Büchi. On a decision method in restricted second order arithmetic.
In Proc. Internat. Congr. Logic, Method and Philos. Sci. 1960, pages 1–12,
Stanford, 1962. Stanford University Press.

[CD88] E.M. Clarke and I.A. Draghicescu. Expressibility results for linear-time and
branching-time logics. In J.W. de Bakker, W.P. de Roever, and G. Rozenberg,
editors, Proc. Workshop on Linear Time, Branching Time, and Partial Order in
Logics and Models for Concurrency, volume 354 of Lecture Notes in Computer
Science, pages 428–437. Springer-Verlag, 1988.

[EH86] E.A. Emerson and J.Y. Halpern. Sometimes and not never revisited: On
branching versus linear time. Journal of the ACM, 33(1):151–178, 1986.

[EJ88] E.A. Emerson and C. Jutla. The complexity of tree automata and logics
of programs. In Proc. 29th IEEE Symposium on Foundations of Computer
Science, pages 328–337, White Plains, October 1988.

[EJ91] E.A. Emerson and C. Jutla. Tree automata, µ-calculus and determinacy.
In Proc. 32nd IEEE Symposium on Foundations of Computer Science, pages
368–377, San Juan, October 1991.

[EL86] E.A. Emerson and C.-L. Lei. Efficient model checking in fragments of the
propositional µ-calculus. In Proc. 1st Symposium on Logic in Computer Science,
pages 267–278, Cambridge, June 1986.

20

[Eme85] E.A. Emerson. Automata, tableaux, and temporal logics. In Proc.
Workshop on Logic of Programs, volume 193 of Lecture Notes in Computer
Science, pages 79–87. Springer-Verlag, 1985.

[Eme90] E.A. Emerson. Temporal and modal logic. Handbook of Theoretical
Computer Science, pages 997–1072, 1990.

[ES84] E.A. Emerson and A. P. Sistla. Deciding branching time logic. In Proc. 16th
ACM Symposium on Theory of Computing, Washington, April 1984.

[GK94] O. Grumberg and R.P. Kurshan. How linear can branching-time be. In Proc.
First International Conference on Temporal Logic, volume 827 of Lecture Notes
in Artificial Intelligence, pages 180–194, Bonn, July 1994. Springer-Verlag.

[Kur87] R.P. Kurshan. Complementing deterministic Büchi automata in polynomial
time. Journal of Computer and System Science, 35:59–71, 1987.

[Kur94] R.P. Kurshan. Computer Aided Verification of Coordinating Processes.
Princeton Univ. Press, 1994.

[KMM04] O. Kupferman, G. Morgenstern, and A. Murano, Typeness for ω-regular
automata. In Proc. 2nd International Symposium on Automated Technology for
Verification and Analysis, volume 3299 of Lecture Notes in Computer Science,
pages 324-338, Springer-Verlag, 2004.

[KV98a] O. Kupferman and M.Y. Vardi. Freedom, weakness, and determinism:
from linear-time to branching-time. In Proc. 13th IEEE Symposium on Logic
in Computer Science, pages 81–92, June 1998.

[KV98b] O. Kupferman and M.Y. Vardi. Weak alternating automata and tree
automata emptiness. In Proc. 30th ACM Symposium on Theory of Computing,
pages 224–233, Dallas, 1998.

[KVW00] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic
approach to branching-time model checking. Journal of the ACM, 47(2):312–
360, March 2000.

[Lan69] L.H. Landweber. Decision problems for ω–automata. Mathematical Systems
Theory, 3:376–384, 1969.

[Lod01] C. Löding. Efficient Minimization of Deterministic Weak Omega-Automata.
Information Processing Letters, volume 79, number 3, pages 105-109, 2001.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521–530, 1966.

[Mic88] M. Michel. Complementation is more difficult with automata on infinite
words. CNET, Paris, 1988.

[Mor03] G. Morgenstern. Expressiveness results at the bottom of the ω-regular
hierarchy. M.Sc. Thesis, The Hebrew University, 2003.

[MP92] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer-Verlag, Berlin, January 1992.

21

[MS95] D.E. Muller and P.E. Schupp. Simulating alternating tree automata by
nondeterministic automata: New results and new proofs of theorems of Rabin,
McNaughton and Safra. Theoretical Computer Science, 141:69–107, 1995.

[MS97] O. Maler and L. Staiger. On syntactic congruences for ω-languages.
Theoretical Computer Science, 183(1):93–112, 1997.

[MSS86] D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak
monadic theory of the tree and its complexity. In Proc. 13th Int. Colloquium
on Automata, Languages and Programming, volume 226 of Lecture Notes in
Computer Science. Springer-Verlag, 1986.

[NW98] D. Niwinski and I. Walukiewicz. Relating hierarchies of word and tree
automata. In Symposium on Theoretical Aspects in Computer Science, volume
1373 of Lecture Notes in Computer Science. Springer Verlag, 1998.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symposium
on Foundation of Computer Science, pages 46–57, 1977.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
16th ACM Symposium on Principles of Programming Languages, pages 179–
190, Austin, January 1989.

[Rab69] M.O. Rabin. Decidability of second order theories and automata on infinite
trees. Transaction of the AMS, 141:1–35, 1969.

[Rab70] M.O. Rabin. Weakly definable relations and special automata. In Proc.
Symp. Math. Logic and Foundations of Set Theory, pages 1–23. North Holland,
1970.

[SC85] A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal
logic. Journal ACM, 32:733–749, 1985.

[Sei90] H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on
Computing, 19(3):424–437, 1990.

[Tho90] W. Thomas. Automata on infinite objects. Handbook of Theoretical
Computer Science, pages 165–191, 1990.

[TW68] J.W. Thatcher and J.B. Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Mathematical System
Theory, 2:57–81, 1968.

[Var96] M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In
F. Moller and G. Birtwistle, editors, Logics for Concurrency: Structure versus
Automata, volume 1043 of Lecture Notes in Computer Science, pages 238–266.
Springer-Verlag, Berlin, 1996.

[VS85] M.Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal
logics of programs. In Proc 17th ACM Symp. on Theory of Computing, pages
240–251, 1985.

22

[VW86a] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. First Symposium on Logic in Computer Science,
pages 332–344, Cambridge, June 1986.

[VW86b] M.Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logics
of programs. Journal of Computer and System Science, 32(2):182–221, April
1986.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, November 1994.

[Wol82] P. Wolper. Synthesis of Communicating Processes from Temporal Logic
Specifications. PhD thesis, Stanford University, 1982.

[WVS83] P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite
computation paths. In Proc. 24th IEEE Symposium on Foundations of
Computer Science, pages 185–194, Tucson, 1983.

A Derivability Lower Bound

Consider an alternating linear-space Turing machine T = 〈Γ, Qu, Qe, 7→, q0, Facc, Frej〉,
where the four sets of states, Qu, Qe, Facc, and Frej are disjoint, and contain the
universal, the existential, the accepting, and the rejecting states, respectively.
We denote their union (the set of all states) by Q. Our model of alternation
prescribes that 7→⊆ Q × Γ × Q × Γ × {L,R} has a binary branching degree,
is universal in its even-numbered steps, and is existential in its odd-numbered
ones. Thus, 7→ is really a subset of (Qe×Γ×Qu×Γ×{L,R})∪(Qu×Γ×Qe×
Γ × {L,R}). In particular, q0 ∈ Qe. When a universal or an existential state
of T branches into two states, we distinguish between the left and the right
branches. Accordingly, we use (q, a) 7→l (ql, bl,∆l) and (q, a) 7→r (qr, br,∆r)
to indicate that when T is in state q ∈ Qu ∪ Qe reading input symbol a, it
branches to the left with (ql, bl,∆l) and to the right with (qr, br,∆r). (Note
that the directions left and right here have nothing to do with the movement
direction of the head; these are determined by ∆l and ∆r.) Finally, we assume
that once T reaches a final state, it loops there forever.

Let s : IN → IN be the linear function such that T uses s(n) cells in its working
tape in order to process an input of length n. We encode a configuration of
T by a string #γ1γ2 . . . (q, γi) . . . γs(n). That is, a configuration starts with
#, and all its other letters are in Γ, except for one letter in Q × Γ. The
meaning of such a configuration is that the j’th cell in the configuration, for
1 ≤ j ≤ s(n), is labeled γj, the reading head points at cell i, and T is in state
q. For example, the initial configuration of T is #(q0, b)b . . . b (with s(n) − 1
occurrences of b’s) where b stands for an empty cell. A configuration c′ is a
successor of configuration c if c′ is a left or a right successor of c. We can

23

now encode a computation of T by a tree whose branches describe sequences
of configurations of T . The computation is legal if a configuration and its
successors satisfy the transition relation.

Note that though T has an existential (thus nondeterministic) mode, there is a
single computation tree that describes all the possible choices of T . Each run of
T corresponds to a pruning of the computation tree in which all the universal
configurations have both successors and all the existential configurations have
at least one successor. The run is accepting if all the branches in the pruned
tree reach an accepting configuration.

Given an alternating linear-space Turing machine T as above, we construct
an NBT U of size linear in T , such that U accepts an input tree iff the tree is
not the (single) computation tree of T on the empty tape, or if it is the com-
putation tree, but it cannot be pruned legally to a tree in which all branches
are accepting. The construction is similar to the one described in [Sei90] for
automata that run on finite trees and is given here in detail, adapted to Büchi
automata.

We now state the condition above formally. For that, we first settle a techni-
cal difficulty, namely, the fact that while the computation tree of T branches
only at the end of configurations, the input tree to U branches everywhere.
For example, the computation tree of T starts with an encoding of the initial
configuration and the first branching occurs only at level s(n) + 1, where the
tree branches to two nodes labeled #, which starts the encoding of the left
and right successors of the initial configuration. On the other hand, the input
tree to U , which represents this computation tree, branches everywhere, and
the encoding of the initial configuration is repeated 2s(n)+1 times, along all the
branches that reach the 2s(n)+1 nodes at level s(n) + 1. Then, all these copies
reach their first “real” branching, where they all branch to the left and right
successors of the initial configuration. The fact that there is a single compu-
tation tree that describes all the possible choices of T makes the handling
the fact that the input tree branches everywhere easy, as branching within a
configuration leads to equivalent successors. So, we distinguish between two
types of branching in the input tree. Branching at the end of a configuration is
referred to as real branching, and branching within a configuration is referred
to as virtual branching. Only in real branching, there may be a difference be-
tween the left and right successors. Checking whether the input tree represents
the full computation tree of T refers to all branches of the input tree. On the
other hand, checking whether the computation tree can be pruned as required
considers only pruning in real branching.

Let Σ = {#}∪Γ∪ (Q×Γ) and let #σ1 . . . σs(n)#σ
l
1 . . . σ

l
s(n) be a configuration

of T and its left successor. We also set σ0, σ
l
0, and σs(n)+1 to #. For each

triple 〈σi−1, σi, σi+1〉 with 1 ≤ i ≤ s(n), we know, by the transition relation

24

of T , what σl
i should be. In addition, the letter # should repeat exactly every

s(n)+ 1 letters. Let nextl(〈σi−1, σi, σi+1〉) denote our expectation for σl
i. That

is,

• nextl(〈γi−1, γi, γi+1〉) = nextl(〈#, γi, γi+1〉) = nextl(〈γi−1, γi,#〉) = γi.
• nextl(〈(q, γi−1), γi, γi+1〉) = nextl(〈(q, γi−1), γi,#〉) =











γi If (q, γi−1) →
l (q′, γ′i−1, L)

(q′, γi) If (q, γi−1) →
l (q′, γ′i−1, R)

• nextl(〈γi−1, (q, γi), γi+1〉) = nextl(〈#, (q, γi), γi+1〉) =
nextl(〈γi−1, (q, γi),#〉) = γ′i where (q, γi) →

l (q′, γ′i,∆) 5 .
• nextl(〈γi−1, γi, (q, γi+1)〉) = nextl(〈#, γi, (q, γi+1)〉) =











γi If (q, γi+1) → (q′, γ′i+1, R)

(q′, γi) If (q, γi+1) → (q′, γ′i, L)

• nextl(〈σs(n),#, σ
l
1〉) = #.

The expectation nextr(〈σi−1, σi, σi+1〉) for the letter σr
i , which is the i’th letter

in the right successor of the configuration is defined analogously. Consistency
with nextl and nextr now gives us a necessary condition for a sequence in Σω

to encode a branch in the computation tree of T . In addition, the computation
should start with the initial configuration and should eventually reach a final
(accepting or rejecting) configuration. So far, we discussed when a sequence
in Σω can be a branch in the computation tree of T . In addition, it should be
possible to prune the computation tree legally (that is, leave both successors
of universal configurations and at least one successor of each existential con-
figuration) and stay only with branches that reach an accepting configuration
(or equivalently, branches that do not reach a rejecting configuration).

Recall that the automaton U accepts an input tree iff one of the following
holds.

(1) The tree is not the computation tree of T on the empty tape, or
(2) The tree is the computation tree of T on the empty tape, but it cannot

be pruned legally to a tree in which all branches are accepting.

In oder to check the first condition, U searches for inconsistency with nextl
or nextr, inconsistency with the initial configuration, or searches for a branch
in which a final configuration is not reached. In order to check inconsistency
with nextl or nextr, the automaton U can use its nondeterminism and guesses
a place where there is a violation of one of them. Thus, U guesses a direction,

5 We assume that the reading head of T does not “fall” from the right or the
left boundaries of the tape. Thus, the case where (i = 1) and (q, γi) →l (q′, γ′

i, L)
and the dual case where (i = s(n)) and (q, γi) →l (q′, γ′

i, R) are not possible, and
analogously for the right successors.

25

say left, guesses a triple 〈σi−1, σi, σi+1〉 ∈ Σ3, guesses a node in the tree, checks
whether the three letters to be read starting this node (in some direction) are
σi−1, σi, and σi+1, and checks whether nextl(〈σi−1, σi, σi+1〉) is not the letter
to come s(n) + 1 letters later, in some left direction (that is by proceeding
over virtual branches and one left branch). Once U sees such a violation, it
goes to an accepting sink. In order to check that the first configuration is not
the initial configuration, U simply compares the first s(n) + 1 letters (in some
direction it guesses) with #(q0, b)b . . . b. Finally, in order to check that a final
configuration is not reached, U starts in an accepting state, guesses a branch
and moves to a rejecting sink only when it sees a final configuration.

In order to check the second condition, U proceeds as follows. A final rejecting
configuration (one with q ∈ Frej) is bad. An existential configuration is bad
if both its successors are bad. A universal configuration is bad if one of its
successors is bad. The computation tree of T cannot be legally pruned to a
tree in which all branches are accepting iff the initial configuration is bad.
Accordingly, whenever U reaches real branching (that is, whenever U reads
#), it either guesses a successor to continue with (in case the branching is
from a universal configuration), or continues with both successors (in case
the branching is from an existential configuration). When U reaches a final
rejecting configuration, it moves to an accepting sink, and when it reaches a
final accepting configuration, to moves to an accepting sink.

26

