

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: May 11, 2024

Boolean Expression Diagrams

Andersen, Henrik Reif; Hulgaard, Henrik

Published in:
Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland

Link to article, DOI:
10.1109/LICS.1997.614938

Publication date:
1997

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Andersen, H. R., & Hulgaard, H. (1997). Boolean Expression Diagrams. In Proceedings, Twelfth Annual IEEE
Symposium on Logic in Computer Science, Warsaw, Poland (pp. 88-98). IEEE Computer Society Press.
https://doi.org/10.1109/LICS.1997.614938

https://doi.org/10.1109/LICS.1997.614938
https://orbit.dtu.dk/en/publications/321a7099-9147-490e-b672-e1ee44649556
https://doi.org/10.1109/LICS.1997.614938

Boolean Expression Diagrams
(Extended Abstract)

Henrik Reif Andersen and Henrik Hulgaard

Department of Information Technology, Building 344
Technical University of Denmark

DK-2800 Lyngby, Denmark
e-mail: {hra, henrik}Qit . dtu . dk

Abstract

This paper presents a new data structure called
Boolean Expression Diagrams (BEDs) for represent-
ing and manipulating Boolean functions. BEDs are
a generalization of Binary Decision Diagrams (BDDs)
which can represent any Boolean circuit in linear space
and still maintain many of the desirable properties of
BDDs. Two algorithms are described for transforming
a BED into a reduced ordered BDD. One closely mim-
ics the BDD apply-operator while the other can exploit
the structural information of the Boolean expression.
The eficacy of the BED representation is demonstrated
b y verifying that the redundant and non-redundant ver-
sions of the ISCAS 85 benchmark circuits are identical.
I n particular, it is verified that the two 16-bit multi-
plication circuits (c6288 and c6288nr) implement the
same Boolean functions. Using BEDs, this verifica-
tion problem is solved in less than a second, while us-
ing standard BDD techniques this problem is infeasible.
BEDs are useful in applications where the end-result as
a reduced ordered BDD is small, for example for tau-
tology checking.

1. Introduction

Within the last decade Reduced Ordered Binary De-
cision Diagrams (ROBDDs) introduced by Bryant [4]
have become a successful data structure for represent-
ing and manipulating Boolean functions. This success
is due to the fact that ROBDDs are canonical (mak-
ing testing of functional properties such as satisfiabil-
ity and equivalence straightforward) and that they are
compact for many Boolean functions occurring in prac-
tice. However, the applicability of ROBDDs depends
heavily on the size of the representation and unfortu-

nately some (important) functions, e.g., the multiplica-
tion function, have no sub-exponential representation.

This paper presents an extension of BDDs, called
Boolean Expression Diagrams (BEDs). BEDs can rep-
resent any Boolean circuit [2] in linear space and still
maintain many of the desirable properties of ROBDDs.
This is obtained by extending the BDD representation
with operator vertices:

Definition 1 (Boolean Expression Diagram)
A Boolean Expression Diagram (BED) is a directed
acyclic graph with vertex set V and edge set E . The
vertex set V contains three types of vertices:

e A terminal vertex U has as attribute a value
value(u) E (0, l}.

e A variable vertex U has as attributes a variable
var(u), and two children low(u), high(u) E V .

e A n operator vertex U has as attributes a bi-
nary Boolean operator op(v) , and two children
low(u), high(v) E V .

The edge set E is defined by

E = {(U, low(u)) , (U, high(v)) I
U E v and v is not a terminal vertex }

We use 0 and 1 to denote the two terminal vertices.
Variable vertices correspond to the if-then-else opera-
tor x + fl , fo defined by

Operator vertices correspond to their respective
Boolean connectives, leading to the following corre-
spondence between BEDs and Boolean functions.

1043-6871/97 $10.00 0 1997 IEEE 88

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

Definition 2 A vertex v in a BED denotes a Boolean
function f v defined recursively as:

a If v is a terminal vertex, then f v = value(v).

a If v is a variable vertex, then f v is the function I

fo f l fl, f: fo fh fl fi
f v = V..(.> + f h i g h (v) , fZow(v) * Figure 2. The left and right BED are equivalent.

a If v is an operator vertex, then f v is the function

f v = f i o w (v) O P (4 fh igh(v) '

1.1. A simple example

Consider verifying that conjunction distributes over
disjunction, i.e., that the following is a tautology:

xi A ($2 V ~ 3) (x i A x2) V (x i A $ 3) - (1)

The BED for this expression is shown in figure 1. The
low-edges are drawn using dashed lines and all edges
are implicitly directed downwards. Notice that vertices
representing the same Boolean sub-function are shared.
A key operation on BEDS is the up operation which

Figure 1. The BED for equation 1.

moves a variable vertex up above an operator vertex.
Let op be an arbitrary binary Boolean operator] let x
be a Boolean variable, and let fi and fi) (i = 0 , l) be
arbitrary Boolean expressions. It is simple to verify
that

(x -+ f1,fo) OP (x -+ fLf3 =
x -+ (fl OP fill (fo OP fl9. (2)

This identity] illustrated in figure 2, is used to move the
variable x above the operator op and is the basis for
the up operation'. In cases where one of the children U

does not contain the variable x, a new variable vertex U,
with m r (u) = x and Zow(v) = high(u) = U , is inserted

'Equation (2) also holds if the operator vertex op is a variable
vertex. In that case, the up operation is identical to the level
exchange operation typically used in ROBDDs to dynamically
change the variable ordering [20].

below the operator vertex before performing the up-
step. In fact, this is the only way the size of the BED
can increase.

Figure 3. Proving the distributive law. (a) 2 1 is
moved above the three conjunctions using three up-
steps. (b) Conjunctions with children that are con-
stant vertices are removed. (c) 2 1 is moved above
the disjunction to the right. (d) The disjunction with
both children equal to 0 is removed. (e-f) Identifying
equivalent vertices. At this point the two children of
the biimplication operator are identical and the BED
is reduced to 1, proving the tautology.

89

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

The u p operation moves operators closer to the ter-
minal vertices. If some of the expressions fi are ter-
minal vertices, the operators are evaluated and the
BED simplified. By repeatedly moving variable ver-
tices above operator vertices, all operator vertices are
eliminated and the BED is turned into a BDD.

Consider the example of proving the distributive
law (1). Figure 3 shows how the BED from figure 1
is transformed into the tautology 1 by moving x1 to-
wards the root. This example illustrates that it may
not be necessary to move all variable vertices to the
root in order to obtain a BDD. Notice that variables
x2 and 23 could have been replaced with arbitrary large
BEDs, and the tautology would have been proved with
exactly the same steps.

The example illustrates one way to convert a BED
to a BDD, moving the variables to the top one at a
time. This approach is called up-one and its main ad-
vantage is that it can exploit structural information in
the expression (as was the case in the example). The
efficiency of up-one is demonstrated in section 5 where
we verify that the redundant and non-redundant ver-
sions of the ISCAS 85 benchmark circuits implement
the same functionality.

An alternative way to construct a BDD is to move
all variables up simultaneously. This approach is called
up-all and it closely mimics the ROBDD apply oper-
ation. We show that the complexity of building an
ROBDD bottom up using apply (the standard way)
and building it from a BED using up-all is within a
constant factor. Thus, one can construct an ROBDD
from a BED as efficiently as constructing an ROBDD
from scratch.

1.2. Related work

Recently, a new way of constructing ROBDDs,
called MORE, was proposed [13, 141. MORE is based
on the observation that the BDD for f V g can be
constructed by introducing a new variable x and im-
plicitly existentially quantify x since 32.2 + f,g =
f V g. MORE constructs the BDD by moving x to-
wards the terminal vertices using the level exchange
operation [lo]. The method can be extended to any
Boolean connective since disjunction and negation are
functionally complete. BEDs can be seen as extend-
ing this idea to allow arbitrary operators and allowing
these operators to remain in the graph. Like MORE,
Extended BDDs [15] are also based on the idea of us-
ing existential quantification to represent disjunction,
although the quantification is annotated on the edges
of the graph. Extended BDDs are more succinct than
ROBDDs, but they are not capable of representing for

example multipliers efficiently.
ROBDDs have been extended in a number of other

ways, including using other types of decomposition
rules, relaxing the variable ordering restrictions, and
extending the domains. The Shannon decomposition
used in BDDs can be replaced with either the pos-
itive or the negative Davio decomposition, yielding
Ordered F’unctional BDDs [16]. If all three types of
decomposition are allowed in one diagram, one ob-
tains Ordered Kronecker Functional Decision Diagrams
(OKFDD) [9]. However, none of them are powerful
enough to represent all Boolean circuits in polynomial
space.

Another modification of the ROBDD representa-
tion is to relax the variable ordering restriction. Free
BDDs [12] (also called read-once branching programs)
only require that on any path from the root, a variable
is tested at most once. BEDs are exponentially more
succinct than Free BDDs since BEDs are as succinct as
branching programs which are exponentially more suc-
cinct than read-once branching programs [23]. Graph-
driven BDDs E211 are closely related to Free BDDs and
have similar properties.

Finally, BDDs have been extended to other domains
and/or codomains than Booleans. Examples include
*BMDs [5], MTBDDs [7] and ADDS [l]. These exten-
sions are orthogonal to the BDD extension presented
here and we believe similar extensions are possible for
BEDs.

1.3. Overview

The paper is organized as follows. Section 2 pre-
sents some basic complexity results relating BEDs to
Boolean circuits and ROBDDs. Section 3 describes the
basic representation and construction of BEDs. Sec-
tion 4 describes algorithms to efficiently manipulate
BEDs, including two ways to construct an ROBDD
from a BED, up-one and up-all. Section 5 presents an
application of BEDs, demonstrating efficient tautology
check for the circuits in the ISCAS 85 benchmarks. Fi-
nally, section 6 summarizes the contributions of this
paper.

2. Complexity results

BEDs are closely related to combinational circuits.
Any circuit can be transformed to a BED by replacing
each input x with the BED representing 5 (a variable
vertex w with var(w) = 2, low(w) = 0, and high(w) =
1) and replace each k-input gate by a tree of k - 1
operator vertices encoding the Boolean function of the
gate. This translation is clearly linear in size. Similarly,

90

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

any BED can be converted to a circuit. Each variable
occurring in the BED is an input to the circuit. An
operator vertex is replaced by the corresponding gate,
and a variable vertex v with the sub-circuit (-x A 1) V
(x A h), where x = var(v) , 1 = low(v) , h = high(v).
This translation is also linear.

Using this relationship we can transfer results on
circuits to BEDs. For instance, it follows immediately
from the results on CIRCUIT-SAT that determining SAT-
ISFIABILITY of a BED is NP-complete and determining
TAUTOLOGY is co-NP-complete [ll]. As another conse-
quence, we observe that BEDs are exponentially more
succinct than ROBDDs. An example of this is the
multiplier function. Bryant [4] showed that for all vari-
able orderings, the multiplier function requires BDDs
of exponential size. However, since there are combi-
national circuits implementing this function using only
a quadratic number of gates [8] (and even less), there
exists a BED of this size representing it.

Despite the exponential succinctness over BDDs, it
is still the case that most functions require exponen-
tially sized BEDs. Recall that there are 22” Boolean
functions over n variables. It follows from a counting
argument that a polynomially sized BED can represent
almost none of these functions:

Theorem 3 (Lower bound on size) Let # n (s) be
the number of different BEDs over n variables with at
most s vertices. Then for any polynomial p (n) ,

n (~ (~)) + 0 for n + co.
Proof: A straightforward application of Theorem 2.4
in [2, p.7631. 0
Fortunately, functions with exponentially sized BEDs
do not seem to be of much interest in practice. Even
complicated Boolean functions, representing for in-
stance floating-point division, have polynomially sized
circuits. This is also witnessed by the fact that it is
very difficult to construct explicit examples of func-
tions that provably require exponentially many gates.
(The authors have been unable to find any examples in
the literature.)

3. Representation of BEDs

22”

Inspired by ROBDDs we shall define certain restric-
tions on BEDs. These restrictions will not generally
make BEDs canonical but they will entail some useful
properties. First, we define restrictions on the occur-
rences of variable vertices:
Definition 4 A BED G is free if on all paths through
G each variable occurs at most once; it is ordered if on
all paths the variables respect a given total order.

Secondly, we shall forbid the existence of redundant
vertices, i.e., two vertices representing isomorphic sub-
BEDs and vertices that are unnecessary for obvious
reasons. For readability, we use a(.) to denote the
“tag” op(v) or var(v) on non-terminal vertices.

Definition 5 A BED is reduced if it contains at most
two different terminal vertices and for all non-terminal
vertices, U and U:

and for all operator vertices U:

(3) low(v) and high(v) are non-terminals.

We shall assume that BEDs are always reduced. If
the BED is also ordered, we refer to it by “ROBED.”
The first condition of definition 5 is fulfilled by proper
reuse of vertices. This is conveniently taken care of
during construction of a BED by testing, whenever a
new vertex is to be created, whether another vertex
with the same variable/operator, low- and high-edge
exists. If this is the case, that vertex is reused otherwise
a new vertex is created. Similarly, the second and third
conditions are fulfilled by never constructing vertices
that violate them. For variable vertices, it is clear that
if the low- and high-edges coincide, either one of them
can be used instead of creating a new variable vertex.
For operator vertices, one should observe that if the two
arguments are identical, or one of them is a terminal
vertex, all the sixteen Boolean connectives reduce to
one of the following six: KO, K1 (constant O / l) , T I ,

~2 (projection onto first or second argument), iil, 7i2

(the negation of the first or second argument). In the
first two cases, one of the terminal vertices is used.
The projections are avoided by using the proper low-
or high-edge instead. The negations require creation
of a negating vertex, i.e., an operator vertex with the
operator 31. Such a vertex can easily be constructed
so that it fulfills (2) and (3) by taking the redundant
second argument to be any non-terminal vertex. We
shall assume the presence of a function

that performs all the checks above and returns the iden-
tity of the resulting vertex, equivalent to a vertex U

with Q (U) = Q, low(u) = 1 , high(u) = h. Using mk as
the only means for constructing a BED ensures that it
is reduced.

91

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

3.1. Operator reductions

For operator vertices it is tempting to add more
checks in order to reuse vertices, thereby reducing the
size of the BED. An immediate optimization is to ex-
tend mlc to look for operator vertices that differ from
the one wanted only by exchanging low and high, by a
negation, or by a combination of both.

Going a step further, considering two vertices at a
time, we eliminate all negations below binary operators
since for all binary operators op there exists another
operator op‘ with op’(z,y) = o p (- ~ , y) .

Finally, taking the identity of vertices into account
allows us to exploit equivalences like the absorption
laws, e.g., z V (x A y) = x. There are 16” combinations
of n binary Boolean operators, thus it is feasible to tab-
ulate them all for n up to three or four. Choosing n = 3
seems like a natural choice since such a table would in-
clude equivalences such as the distributive laws.

3.2. Updating vertices

As described in the introduction, the key operation
on BEDs, called up, exchanges variables with other
variables or operators, see figure 4. This transforma-
tion pulls a variable up one level. The vertices in the

Figure 4. Performing an up-step on the vertex U .

new sub-tree (to the right in figure 4) are created by
calling mk with the appropriate parameters. In order
for ail references to U to benefit from the up-step, and
thus avoid redoing it for each reference, the referring
vertices need to refer to the new vertex T instead of
U. One way of doing this is to make them point di-
rectly to r. However, in order to do this efficiently we
would need to store in each vertex all vertices referring
to it, and this is impractical due to the high memory
overhead.

Another way to make the references to U benefit from
the up-step is to simply overwrite U with the contents of
r . In order to maintain the reducedness property (l),
we would need to eliminate the vertex r returned by
mk. However, this does not work if there are other
vertices referring to r , which is the case if r was not a
newly created vertex but an existing vertex found by
mk.

Figure 5. Updating by linking (to the left) or by
indirecting (to the right). In both cases the vertex r
is the “result” of the update.

Instead of copying r to U , we need to make v refer
to T. There are two obvious choices for doing this, as
illustrated in figure 5.

Linking adds a reference from vertex w to the (equiv-
alent) vertex T. The referenced vertex T is assumed to
be somehow simpler, so the link is directed. Any access
to the linked vertex w should follow the link in order
to obtain a simpler representation of the vertex. Sec-
tion 4.2 shows an application of this where the vertex
T is a fully canonical ROBDD. In such an application,
links are never nested.

Indirecting simply overwrites the vertex v with a
projection operator with the simpler vertex T as ar-
gument. At first sight it seems plausible that both
solutions are equally good. Both share the property
that any existing references into v will benefit from the
update: when these references are followed r will be
found. However, linking allows for even more reuse of
updates. If later in the BED transformation a new ver-
tex, equivalent to U, is to be created, mk will ensure
(due to reducedness condition (1)) that the identity
U is returned, and the link will allow new references
to benefit from the previous update. This is not the
case for indirections which looses the information of the
original contents of the vertex. Linking offers a very
direct way of memorizing results of earlier transforma-
tions which, for some transformations, ensure polyno-
mial rather than exponential running time. Section 4.2
gives an example of such a transformation.

3.3. Implementational aspects

Surprisingly, although BEDs are an extension of
BDDs, the data structures for representing BEDS,
shown in figure 6, are simpler than those for BDDs.
The underlying graph of the BED is stored in a table
G which to each vertex U associates a tag a (w) (special
tags are used for the terminal vertices), Z O W (U) , and
high(v). G contains two additional fields, link(v) and
nerct(v). The field Zznk(v) is of course used for linking,
explained above. The field nezt(v) is used to imple-
ment chaining for resolving collisions in a hash table H .
This hash table maps triples of (a (u) , low(v), high(v))

92

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

to v and thus implements an inverse of G used by mk.
Finally, the mark field is used to mark visited vertices
when traversing the graph. This is used in the up-one
and up-all algorithms presented in the next section and
can also be used in mark-scan garbage collection algo-
rithms. The total memory requirements are six words
per vertex when using linking and five words when us-
ing indirection. Using these data structures, it is not
difficult to implement mk as a constant time operation.

G: M low high next link mark
I I I I I I I I I
I t J I I I I I1

H:

I I I1

7 1 \ I I1

V T I T
I

I / I I I1

Figure 6. The data structures used to represent a
BED.

4. Operations on BEDs

The basic operation for constructing ROBDDs,
called apply, takes two ROBDDs, 1 and h, and a
Boolean connective op and constructs a new ROBDD
representing the Boolean expression fi op fh. For
BEDs, this operation is simply a constant time call
to mk(op, 1 , h). However, other operations, like tau-
tology and satisfiability, are easy for ROBDDs. Thus,
an approach for showing these properties for BEDs is
to convert them into ROBDDs. It is easily seen that
an (RO)BDD is simply an (RO)BED without opera-
tors. This suggests a strategy for converting BEDs into
ROBDDs: gradually eliminate the operators, keeping
all the intermediate BEDs functionally equivalent. We
shall show two very different ways of elimination.

4.1. Construction of ROBDDs with up-one

The first elimination algorithm, up-one, pulls a sin-
gle variable up to the root using a sequence of up-steps.
Repeating this, we can move all variables up past the
operators, which makes the operators disappear (by re-
quirement (3) of reducedness). The algorithm is given
in figure 7. Basically, up-one performs a depth-first
traversal of the BED using traditional marking of the
vertices to avoid visiting the same vertex twice. Hav-
ing finished the recursive calls on the low- and high-
edges of a vertex, it makes an up-step and performs

up-one(z, U) =
if U is marked or U is terminal then

else if .(U) is variable z then

else

return follow (U)

mark U and return U

(I , h) t (up-one(x, low(u)), up-one(z, high(u)))
if a(I) and a(h) are both variable z then

T t mk(z, mk(a(u), low(l) , Iow(h)),
4 4 U) , high(% h W h)))

mk(4.1, higW), h))

mk(a(u), 1 , high(h)))

else if a(1) is variable z then
T t mk(z, mk(a(u), low(Z), h) ,

else if a(h) is variable z then
T c mk(x, mk(a(u), Z,low(h)),

else

update U to r and mark U

return T

Figure 7. The up-one-operation. Up-one takes any
free BED U as argument and returns an equivalent
BED with z occurring at most at the root. The oper-
ation fol low(u) follows any links or indirections of U

and returns the result. If none is associated with U , U

is returned. Up-one is easily extended to unrestricted
BEDs by changing the terminal case where U is the
variable vertex z to perform recursive calls on l ow(u)
and high(u) and afterwards eliminate redundant z’s.

r t mk(a(u), 1 , h)

an updating of the root. Up-one works well with both
indirections and links. It has linear running time:

Theorem 6 (Up-one) If U is a vertex in an ordered
(free) BED G then the sub-BED v = up-one(x,u) is
also ordered (free) and x appears at most in vertex v
and nowhere else in the sub-BED rooted b y U . The
running time of up-one(x,u) is O(n) where n is the
number of vertices in the sub-BED rooted b y U . The
number of vertices in the sub-BED rooted at U is at
most 2n.

Proof: (Sketch) Observe that due to the marking,
up-one is called at most once per vertex, and each call
allocates at most one more vertex than it visits. Cl

The introductory example was in fact a use of
up-one. Up-one has some distinct properties. As the
example shows, in fortunate cases a BED is converted
into an ROBDD after moving just a few variables up
(in the example, one variable was sufficient). In this
process, identical sub-BEDS, potentially containing op-

93

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

aPPlY(oP, 4 h) =
if (1, h) in M then return M(1, h)
else if 1 and h are terminals then

r t op(vaZue(Z), vaZue(h))
else if var(l) = var(h) then

r t mk(var(l) , appZy(op, Zow(Z), Zow(h)),
aPPlY(oP, h igW) , high(h)))

r +- mk(var(l) , aPPlY(oP, low(%h),
aPPlY(oP, high(% h))

?- +- mk(var(h), aPPlY(oP,l, W h)) ,
aPPlY(oP, 1 , high(h)))

else if var(l) < var(h) then

else var(l) > var(h) :

insert ((I , h) , r) in M
return r

Figure 8. The upply-operation. Assumes 1 and h are
ROBDDs. The imposed total order on the variable
vertices is denoted <. In the code it is assumed that
terminal vertices are included at the end of this order
when comparing war(Z) and war(h). The memoriza-
tion table A4 must be initialized to empty prior to the
first call.

erator vertices, are identified. This is quite unlike tra-
ditional ROBDD construction where an order of the
variables must be selected and all operators are con-
verted in depth-first order into ROBDDs. In particular,
an ROBDD is constructed for each sub-expression. If
the result is small and the intermediate ROBDDs are
large, up-one could be an attractive alternative. As
our experiments show (see section 5) this is not purely
speculation.

4.2. Construction of ROBDDs with up-all

The second elimination algorithm, up-all, is a gener-
alization of Bryant’s apply-operator, shown in figure 8.
Construction of ROBDDs from a Boolean expression
using recursive calls of apply suggests a bottom up
conversion of ROBEDs into ROBDDs. The up-all al-
gorithm does that by moving all variables up as a block
past the operator vertices.

As when building
an ROBDD using apply, up-all requires that a to-
tal ordering of the variables is selected prior to the
ROBDD construction. Based on the ordering up-all
converts any BED into an ROBDD, i.e., upp_aZ1(u) is
an ROBDD. Furthermore, u p - a l l (~) is not linked, i.e.,
f o l l o w (z y - a l l (u)) = up-aZl(u). If U is known to be “a
DAG of operator vertices on top of ROBDDs,” ‘the
lines marked with (*) are superfluous and the state-
ment just after them should simply return U . The

Up-all is shown in figure 9.

up-al l (u) =
if U is marked or U is terminal then

return follow (U)

else U is non-terminal:
if a(.) is variable z then

(*)
(*)

r t mk(z, u p - a l Z (l o w (~)) , up-aZl(high(u)))
update U to r and mark U

return r
else a(.) is operator op :

(+) (1, h) t (u p - d l (Z o w (u)) , up-a l l (h igh(u)))
if 1 and h are terminal vertices then

T t op(value(l) , va lue(h))
else if var(l) = var(h) then

r t mk(var(E), u p - a l l (m k (o p , low(l) , l ow(h))) ,
up-all(mk(op , high(l), high(h))))

r t mk(var(l) , u p - a l l (m k (o p , low(l) , h)) ,
u p - a l l (m k (o p , h igh(l) , h)))

r t mk(var(h), u p - a l l (m k (o p , l , l o w (h))) ,
up-all(mk (o p , 1, high (h))))

else if var(l) < var(h) then

else var(l) > var(h) :

update U to r and mark U

return r

Figure 9. The up-all-operation. The total order <
is defined as for upply (see figure 8).

line (+) extends up-all to work on not only vertices
U where l o w (u) and high(u) are ROBDDs but on all
BEDS. If low(u) and high(u) are in fact ROBDDs then
1 = l o w (u) , h = high(u) . The relationship between
apply and up-all is:

for any ROBDDs I and h. This makes it clear how
the four cases of up-all correspond to the four cases of
apply.

Contrary to up-one, up-all requires the use of link-
ing in updates in order to efficiently reuse vertices. The
linking corresponds to the memorization in apply (the
table M) . Although up-all is more general than apply,
the running time of up-all is within a constant fac-
tor of apply, and due to the increased sharing of sub-
expressions and memorization of results, it could even
create fewer vertices.

Theorem 7 (Upall) For any vertex U of an
R O B E D , up-a l l (u) i s the root of an R O B D D equiv-
alent to the ROBED rooted ut U . If 1 and h are
R O B D D s then

appZy(op , l ,h) = u p - a Z l (m k (o p , Z , h)) .

94

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

The number of calls to mk on variables generated
dy up-all(mk(op,l,'h)) is exactly the same as for
dpply(op,l,h), and the number of calls to mk on
operators is the same as the number of calls to

Up-one and up-all are significantly different strate-
gies for building an ROBDD. Figure 10 illustrates how
the operator vertices are converted into variable ver-
tices by the two algorithms.

dPPlY (O P , 1, h) .

Figure 10. Converting a BED to an ROBDD. To the
left, using up-one repeatedly, to the right, during an
up-all call. Grey areas represent variables and white
areas represent operators.

4~.3. Further BED operations

Two commonly used Boolean operations are sub-
stitution and existential quantification. Substitution
replaces all occurrences of a variable x with a Boolean
fdrmula p. The simplest way to perform substitution
09 a BED rooted at U is the following. First perform a
cqll to up-one:

w t up-one(x,u) .

Ftom theorem 6 we know that low(w) and high(w) do
nbt contain any occurrences of variable x. If w is not
tde variable z, then z is not in the BED rooted at w
arid the result is w. Otherwise, var(w) = x and the
result is the BED for

(U A high(w)) V (-U A ~ow(w))

where U is the root of the BED representing cp. This
expression follows immediately from the definition of a
vqriable vertex.

~ Existential quantification of the variable z can also
bd implemented using up-one. Again we call up-one
odtaining w and if w does not contain x the result is w.
Otherwise, the result is Zow(w) V high(w) since 32.2 -+
f,g = f V g. For both operations, the complexity is
determined by up-one which is linear in the size of the
BED.

X:= K U
l h 1 u h

(4

1 h

Figure 11. (a) Elimination of substitution operator
vertex. (b) Elimination of existential quantification
operator vertex.

An alternative way to implement substitution and
existential quantification is to consider them special
operator vertices in the BED, see figure 11. The up-
step from figure 2 is exactly the same for these new
operator vertices, except in the case where the variable
below the operator is the variable IC. In those cases, the
special operator vertex is replaced with the sub-BED
shown in figure 11. These eliminations can easily be
performed by adding reduction rules to mk. The sub-
stitution and existential quantification operators can
be eliminated like any other operator in the BED by
pulling the variables up past the operators. An opera-
tor is eliminated either when it meets a corresponding
variable or when it reaches terminal vertices.

One need not immediately eliminate these newly
added operator vertices. Keeping them in the BED
allows efficient reuse of sub-expressions. Consider the
BED in figure 12. If the vertices U and U' are identified

U U U'

Figure 12. A BED containing substitution opera-
tors. The low-edge points to the expression in which
x is to be substituted with cp, pointed to by the high-
edge.

95

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

at some point in the manipulations, the biimplication
is proven immediately, without actually performing the
substitution.

Other standard BDD operations include restriction
z := b, where b is a Boolean constant. Clearly, restric-
tion is a special case of substitution with cp equal to
either 0 or 1. Notice that all the operations described
in this section have linear running times which is bet-
ter than the corresponding ROBDD operations. Other
operations, like satisfy-one, can be performed by con-
structing an ROBDD using up-all and perform the op-
eration on the ROBDD. Since up-all never has worse
running time than apply, the total running time for
these operations is no worse than if they are performed
directly on an ROBDD.

5 . An application of BEDS

Tautology checking of a BED is an application where
the end-result as an ROBDD is known to be small (the
terminal vertex 1) if the BED indeed is a tautology.
Thus, to demonstrate the efficiency of BEDS, we con-
sider the combinational logic-level verification problem
which is to determine whether two given combinational
circuits implement the same Boolean function. The IS-
CAS 85 benchmark suite2 contains a number of com-
binational circuits, nine of which exist both in a re-
dundant and a non-redundant version. We consider
the problem of determining whether these two versions
implement the same functionality, corresponding to a
tautology check for each pair of outputs. The results3
are shown in table 1. It is observed that except for the
c3540, all circuits are verified in only a few CPU sec-
ond and using at most half a million BED nodes, which
is less than 12 MB of main memory. These results are
up to several orders of magnitude faster than those re-
ported in [3, 17, 181. The circuit c6288 is particularly
interesting because it implements a 16-bits multiplier
and multipliers are notoriously difficult to verify using
ROBDDs [4]. Due to the exponential growth of the
size of the ROBDD representation (in the number of
operand bits), the straightforward approach of build-
ing and comparing the ROBDD for the two circuits
c6288 and c6288nr is not feasible. The ROBDD rep-
resentation of a 15-bit multiplier uses more than 12
million vertices [19] and this number is approximately
2.7 times larger for each additional bit in the operands.
This demonstrates the effectiveness of up-one.

2Can be obtained from http://www.cbl.ncsu.edu
3The C source code for a small BED package and the bench-

mark circuits with scripts to verify them can be obtained from
http:/ /www.it .dtu.dk/Nhenrik/bed/ .

Table 1. Experimental results for the ISCAS 85
benchmark. Ntotal is the total number of BED nodes
for the verification. The CPU times are in seconds on
a Sun Ultra-SPARC 1.

c432, c432nr
c499, c499nr
c499, cl355
c1355, c1355nr
c1908, cl908nr
c2670, c2670nr
c3540, c3540nr
c5315, c5315nr
c6288, c6288nr
c7552. c7552nr

In Out Gates

36 7 316
41 32 403
41 32 748
41 32 1091
33 25 1757

233 140 2153
50 22 3288

178 123 4604
32 32 4814

207 108 6908

Ntotal CPU
28259 0.5

234103 2.7
467823 6.3
492741 5.6
429422 4.8
26011 0.7

427323' 127.0
45138 1.5
8759 0.7

329717 6.3
+Garbage collection is used in this example, making
this number the maximum number rather than the
total number of BED vertices.

Several other methods exploit the structural similar-
ities between the two circuits [3, 18, 221 thereby achiev-
ing an efficiency comparable to the BED-based tech-
nique. However, these techniques are specifically tai-
lored to solve the combinational logic-level verification
problem for two circuits which have similar structure,
making them unsuitable for general Boolean function
manipulations.

6. Conclusion

We have presented a new data structure called Bool-
ean Expression Diagrams for representing and manip-
ulating Boolean expressions. BEDS are as succinct
as Boolean circuits, yet they have many of the desir-
able properties of BDDs. Properties like TAUTOLOGY
and SATISFIABILITY are determined by transforming
the BED representation into a reduced ordered BDD.
This can be done efficiently by using for example one
of the two algorithms up-one or up-all. As shown in
theorem 7, the cost of constructing an ROBDD from
scratch using apply and the cost of building a BED and
transform it into an ROBDD using up-all are within a
constant factor. In fact, recent research [14] has shown
that up-all is a highly efficient approach to build an
ROBDD; it uses considerably less memory and no more
time than when the ROBDD is constructed with apply.

Up-one is a new way to construct an ROBDD
which can exploit structural similarities between sub-
expressions. For some applications up-one is highly
efficient, for example as demonstrated by proving the
identity of two 16-bits multipliers (c6288 and c6288nr

96

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

http://www.cbl.ncsu.edu
http://www.it.dtu.dk/Nhenrik/bed

f om the ISCAS 85 benchmarks) in less than a sec-

eiristential quantification and substitution, making the
rhnning times of these operation linear in the size of
tbe BED.

' BEDS are particularly useful when the end-result
id expected to have a small ROBDD representation,
e.g., for tautology checks. Another area that may ben-
eht from using the BED representation is in symbolic

ode1 checking. Several researchers have observed that 3 hen performing fixed-points iterations using ROB-
~ D s , the intermediate results are often much larger
t an the final result. Clearly, the succinctness of BEDS
cgmpared to BDDs can alleviate this problem. This is
possible because all operations used in performing the
fiqred-point computation can be performed directly on
t?pe BED without first expanding it t o an ROBDD. In
f ct, many of the tricks researchers have used to make

OBDDs more efficient are embodied in BEDs. For ex-
a ple, Burch, Clarke, and Long [6] demonstrated that
t e complexity of BDD-based symbolic verification is
d :: astically reduced by using a partitioned transition
relation where the transition relation is represented as
ah implicit conjunction of ROBDDs. This corresponds
tb representing the transition relation as a BED with
ctnjunction vertices at the top level and only lifting
t+e variables up to just under these vertices.

' BEDS can be seen as an intermediate form between
crcuits 1 and the highly structured ROBDDs. In this
p per we have focussed on ways t o obtain an ROBDD
f om the BED description. However, there seems to
b a huge unexploited potential for manipulating the

EDs directly, without necessarily converting them to
OBDDs. For example, it seems plausible that ideas

f om logic can be transferred to BEDs; the reduction
o i operator vertices described in section 3.1 is a first
sdep in this direction.

o x d. Up-one is also the basis for other operations like

4

Acknowledgments

~ The authors would like to thank Bernd Becker and
Folf Drechsler from the Institute of Computer Science,
Albert-Ludwigs-University, for introducing us to the
MORE approach for building ROBDDs.

heferences

~[l] R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hac-
~

tel, E. Macii, A. Pardo, and F. Somenzi. Algebraic
1 decision diagrams and their applications. In Proc. In-
~ ternational Conf. Computer-Aided Design (ICCAD), 1 pages 188-191, 1993.

R. B. Boppana and M. Sipser. The complexity of fi-
nite functions. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume A: Algorithms
and Complexity, pages 758-804. Elsevier Science Pub-
lisher, 1990.
D. Brand. Verification of large synthesized designs.
In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 534-537, 1993.
R. E. Bryant. Graph-based algorithms for Boolean
function manipulation. IEEE nansactions on Com-
puters, 35(8):677-691, Aug. 1986.
R. E. Bryant and Y.-A. Chen. Verification of
arithmetic functions with binary moment diagrams.
In Proc. ACM/IEEE Design Automation Conference
(DAC), pages 535-541, 1995.
J. R. Burch, E. Clarke, and D. E. Long. Representing
circuits more efficiently in symbolic model checking.
In Proc. ACM/IEEE Design Automation Conference
(DAC), pages 403-407, 1991.
E. M. Clarke, K. McMillan, X. Zhao, M. Fujita, and
J. Yang. Spectral transforms for large Boolean func-
tions with application to technology mapping. In Proc.
ACM/IEEE Design Automation Conference (DAC),
pages 54-60, 1993.
T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. MIT Press, 1990.
R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and
M. Perkowski. Efficient representation and manipuh
tion of switching functions based on ordered Kronecker
functional decision diagrams. In Proc. ACM/IEEE
Design Automation Conference (DAC), pages 415-
419, 1994.
M. Fujita, Y. Matsunga, and T. Kakuda. On variable
ordering of binary decision diagrams for the applica-
tion of multi-level synthesis. In Proc. European Con-
ference on Design Automation (EDAC), pages 50-54,
1991.
M. R. Garey and D. S. Johnson. Computers
and Intractability-A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, 1979.
J. Gergov and C. Meinel. Efficient Boolean manipula-
tion with OBDD's can be extended to FBDD's. IEEE
'Dansactions on Computers, 43(10):1197-1209, Oct.
1994.
A. Hett, R. Drechsler, and B. Becker. MORE: Al-
ternative implementation of BDD-pakages by multi-
operand synthesis. In European Design Conference,
1996.
A. Hett, R. Drechsler, and B. Becker. Fast and efficient
construction of BDDs by reordering based synthesis.
In IEEE European Design & Test Conference, 1997.
S.-W. Jeong, B. Plessier, G. Hactel, and F. Somenzi.
Extended BDD's: Trading off canonicity for struc-
ture in verification algorithms. In Proc. International
Conf. Computer-Aided Design (ICCAD), pages 464-
467, 1991.
U. Kebschull, E. Schubert, and W. Rosenstiel. Multi-
level logic synthesis based on functional decision dia-
grams. In Proc. European Conference on Design Au-
tomation (EDAC). Dages 43-47, 1992.

97

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

[17] W. Kunz. HANNIBAL: An efficient tool for logic veri-
fication based on recursive learning. In Proc. Interna-
tional Conf. Computer-Aided Design (ICCAD), pages

Recursive learning:
A new implication technique for efficient solutions
to CAD problems - test, verification, and optimiza-
tion. IEEE Transactions on Computer Aided Design,
13(9):1143-1158, Sept. 1994.

[19] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first
manipulation of very large binary-decision diagrams.
In Proc. International Conf. Computer-Aided Design
(ICCAD), pages 48-55, 1993.

[20] R. Rudell. Dynamic variable ordering for ordered bi-
nary decision diagrams. In Proc. International Conf.
Computer-Aided Design (ICCAD), pages 42-47, 1993.

[21] D. Sieling and I. Wegener. Graph driven BDDs - a
new data structure for Boolean functions. Theoretical
Computer Science, 141(1-2):283-310, 1995.

[22] C. van Eijk and G. L. J. M. Janssen. Exploiting struc-
tural similarities in a BDD-based verification method.
In Theorem Provers in Circuit Design, number 901 in
Lecture Notes in Computer Science, pages 110-125.
Springer-Verlag, 1994.

[23] I. Wegener. On the complexity of branching programs
and decision trees for clique functions. Journal of the
AGM, 35(2):461-471, Apr. 1988.

538-543, 1993.
[18] W. Kunz and D. K. Pradhan.

98

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on April 13,2010 at 08:01:07 UTC from IEEE Xplore. Restrictions apply.

