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Abstract 

This paper presents a new data structure called 
Boolean Expression Diagrams (BEDs) for  represent- 
ing and manipulating Boolean functions. BEDs are 
a generalization of Binary Decision Diagrams (BDDs) 
which can represent any Boolean circuit in linear space 
and still maintain many of the desirable properties of 
BDDs. Two algorithms are described for transforming 
a BED into a reduced ordered BDD. One closely mim- 
ics the BDD apply-operator while the other can exploit 
the structural information of the Boolean expression. 
The eficacy of the BED representation is demonstrated 
b y  verifying that the redundant and non-redundant ver- 
sions of the ISCAS 85 benchmark circuits are identical. 
I n  particular, it is verified that the two 16-bit multi- 
plication circuits (c6288 and c6288nr) implement the 
same Boolean functions. Using BEDs, this verifica- 
tion problem is solved in less than a second, while us- 
ing standard BDD techniques this problem is infeasible. 
BEDs are useful in applications where the end-result as 
a reduced ordered BDD is small, for example for tau- 
tology checking. 

1. Introduction 

Within the last decade Reduced Ordered Binary De- 
cision Diagrams (ROBDDs) introduced by Bryant [4] 
have become a successful data structure for represent- 
ing and manipulating Boolean functions. This success 
is due to  the fact that ROBDDs are canonical (mak- 
ing testing of functional properties such as satisfiabil- 
ity and equivalence straightforward) and that they are 
compact for many Boolean functions occurring in prac- 
tice. However, the applicability of ROBDDs depends 
heavily on the size of the representation and unfortu- 

nately some (important) functions, e.g., the multiplica- 
tion function, have no sub-exponential representation. 

This paper presents an extension of BDDs, called 
Boolean Expression Diagrams (BEDs). BEDs can rep- 
resent any Boolean circuit [2] in linear space and still 
maintain many of the desirable properties of ROBDDs. 
This is obtained by extending the BDD representation 
with operator vertices: 

Definition 1 (Boolean Expression Diagram) 
A Boolean Expression Diagram (BED) is a directed 
acyclic graph with vertex set V and edge set E .  The 
vertex set V contains three types of vertices: 

e A terminal vertex U has as attribute a value 
value(u) E (0, l}. 

e A variable vertex U has as attributes a variable 
var(u),  and two children low(u),  high(u) E V .  

e A n  operator vertex U has as attributes a bi- 
nary Boolean operator op(v) ,  and two children 
low(u),  high(v) E V .  

The edge set E is defined by  

E = {(U, low(u)) ,  (U, high(v))  I 
U E v and v is not a terminal vertex } 

We use 0 and 1 to  denote the two terminal vertices. 
Variable vertices correspond to the if-then-else opera- 
tor x + fl , fo defined by 

Operator vertices correspond to  their respective 
Boolean connectives, leading to  the following corre- 
spondence between BEDs and Boolean functions. 
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Definition 2 A vertex v in a BED denotes a Boolean 
function f v  defined recursively as: 

a If v is a terminal vertex, then f v  = value(v). 

a If v is a variable vertex, then f v  is the function I 

fo f l  fl, f: fo fh fl fi 
f v  = V..(.> + f h i g h ( v ) ,  fZow(v) * Figure 2. The left and right BED are equivalent. 

a If v is an operator vertex, then f v  is the function 

f v  = f i o w ( v )  O P ( 4  fh igh(v )  ' 

1.1. A simple example 

Consider verifying that conjunction distributes over 
disjunction, i.e., that the following is a tautology: 

xi A ($2 V ~ 3 )  ( x i  A x2) V ( x i  A $ 3 ) -  (1) 

The BED for this expression is shown in figure 1. The 
low-edges are drawn using dashed lines and all edges 
are implicitly directed downwards. Notice that vertices 
representing the same Boolean sub-function are shared. 
A key operation on BEDS is the up operation which 

Figure 1. The BED for equation 1. 

moves a variable vertex up above an operator vertex. 
Let op be an arbitrary binary Boolean operator] let x 
be a Boolean variable, and let fi and fi) (i = 0 , l )  be 
arbitrary Boolean expressions. It is simple to verify 
that 

(x -+ f1,fo) OP (x -+ fLf3  = 
x -+ (fl OP fill (fo OP fl9. (2) 

This identity] illustrated in figure 2, is used to move the 
variable x above the operator op and is the basis for 
the up operation'. In cases where one of the children U 

does not contain the variable x, a new variable vertex U, 
with m r ( u )  = x and Zow(v) = high(u) = U ,  is inserted 

'Equation (2) also holds if the operator vertex op is a variable 
vertex. In that case, the up operation is identical to the level 
exchange operation typically used in ROBDDs to dynamically 
change the variable ordering [20]. 

below the operator vertex before performing the up- 
step. In fact, this is the only way the size of the BED 
can increase. 

Figure 3. Proving the distributive law. (a) 2 1  is 
moved above the three conjunctions using three up- 
steps. (b) Conjunctions with children that are con- 
stant vertices are removed. (c) 2 1  is moved above 
the disjunction to the right. (d) The disjunction with 
both children equal to 0 is removed. (e-f) Identifying 
equivalent vertices. At this point the two children of 
the biimplication operator are identical and the BED 
is reduced to 1, proving the tautology. 
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The u p  operation moves operators closer to  the ter- 
minal vertices. If some of the expressions fi are ter- 
minal vertices, the operators are evaluated and the 
BED simplified. By repeatedly moving variable ver- 
tices above operator vertices, all operator vertices are 
eliminated and the BED is turned into a BDD. 

Consider the example of proving the distributive 
law (1). Figure 3 shows how the BED from figure 1 
is transformed into the tautology 1 by moving x1 to- 
wards the root. This example illustrates that it may 
not be necessary to move all variable vertices to  the 
root in order to obtain a BDD. Notice that variables 
x2 and 23 could have been replaced with arbitrary large 
BEDs, and the tautology would have been proved with 
exactly the same steps. 

The example illustrates one way to  convert a BED 
to a BDD, moving the variables to the top one at a 
time. This approach is called up-one and its main ad- 
vantage is that it can exploit structural information in 
the expression (as was the case in the example). The 
efficiency of up-one is demonstrated in section 5 where 
we verify that the redundant and non-redundant ver- 
sions of the ISCAS 85 benchmark circuits implement 
the same functionality. 

An alternative way to  construct a BDD is to  move 
all variables up simultaneously. This approach is called 
up-all and it closely mimics the ROBDD apply oper- 
ation. We show that the complexity of building an 
ROBDD bottom up using apply (the standard way) 
and building it from a BED using up-all is within a 
constant factor. Thus, one can construct an ROBDD 
from a BED as efficiently as constructing an ROBDD 
from scratch. 

1.2. Related work 

Recently, a new way of constructing ROBDDs, 
called MORE, was proposed [13, 141. MORE is based 
on the observation that the BDD for f V g can be 
constructed by introducing a new variable x and im- 
plicitly existentially quantify x since 32.2 + f,g = 
f V g. MORE constructs the BDD by moving x to- 
wards the terminal vertices using the level exchange 
operation [lo]. The method can be extended to any 
Boolean connective since disjunction and negation are 
functionally complete. BEDs can be seen as extend- 
ing this idea to allow arbitrary operators and allowing 
these operators to remain in the graph. Like MORE, 
Extended BDDs [15] are also based on the idea of us- 
ing existential quantification to represent disjunction, 
although the quantification is annotated on the edges 
of the graph. Extended BDDs are more succinct than 
ROBDDs, but they are not capable of representing for 

example multipliers efficiently. 
ROBDDs have been extended in a number of other 

ways, including using other types of decomposition 
rules, relaxing the variable ordering restrictions, and 
extending the domains. The Shannon decomposition 
used in BDDs can be replaced with either the pos- 
itive or the negative Davio decomposition, yielding 
Ordered F’unctional BDDs [16]. If all three types of 
decomposition are allowed in one diagram, one ob- 
tains Ordered Kronecker Functional Decision Diagrams 
(OKFDD) [9]. However, none of them are powerful 
enough to represent all Boolean circuits in polynomial 
space. 

Another modification of the ROBDD representa- 
tion is to relax the variable ordering restriction. Free 
BDDs [12] (also called read-once branching programs) 
only require that on any path from the root, a variable 
is tested at most once. BEDs are exponentially more 
succinct than Free BDDs since BEDs are as succinct as 
branching programs which are exponentially more suc- 
cinct than read-once branching programs [23]. Graph- 
driven BDDs E211 are closely related to  Free BDDs and 
have similar properties. 

Finally, BDDs have been extended to other domains 
and/or codomains than Booleans. Examples include 
*BMDs [5], MTBDDs [7] and ADDS [l]. These exten- 
sions are orthogonal to the BDD extension presented 
here and we believe similar extensions are possible for 
BEDs. 

1.3. Overview 

The paper is organized as follows. Section 2 pre- 
sents some basic complexity results relating BEDs to 
Boolean circuits and ROBDDs. Section 3 describes the 
basic representation and construction of BEDs. Sec- 
tion 4 describes algorithms to  efficiently manipulate 
BEDs, including two ways to construct an ROBDD 
from a BED, up-one and up-all. Section 5 presents an 
application of BEDs, demonstrating efficient tautology 
check for the circuits in the ISCAS 85 benchmarks. Fi- 
nally, section 6 summarizes the contributions of this 
paper. 

2. Complexity results 

BEDs are closely related to combinational circuits. 
Any circuit can be transformed to a BED by replacing 
each input x with the BED representing 5 (a variable 
vertex w with var(w) = 2, low(w) = 0, and high(w) = 
1) and replace each k-input gate by a tree of k - 1 
operator vertices encoding the Boolean function of the 
gate. This translation is clearly linear in size. Similarly, 
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any BED can be converted to a circuit. Each variable 
occurring in the BED is an input to  the circuit. An 
operator vertex is replaced by the corresponding gate, 
and a variable vertex v with the sub-circuit (-x A 1) V 
(x A h), where x = var(v) ,  1 = low(v) ,  h = high(v). 
This translation is also linear. 

Using this relationship we can transfer results on 
circuits to  BEDs. For instance, it follows immediately 
from the results on CIRCUIT-SAT that determining SAT- 
ISFIABILITY of a BED is NP-complete and determining 
TAUTOLOGY is co-NP-complete [ll]. As another conse- 
quence, we observe that  BEDs are exponentially more 
succinct than ROBDDs. An example of this is the 
multiplier function. Bryant [4] showed that for all vari- 
able orderings, the multiplier function requires BDDs 
of exponential size. However, since there are combi- 
national circuits implementing this function using only 
a quadratic number of gates [8] (and even less), there 
exists a BED of this size representing it. 

Despite the exponential succinctness over BDDs, it 
is still the case that most functions require exponen- 
tially sized BEDs. Recall that there are 22” Boolean 
functions over n variables. It follows from a counting 
argument that a polynomially sized BED can represent 
almost none of these functions: 

Theorem 3 (Lower bound on size) Let # n ( s )  be 
the number of different BEDs over n variables with at 
most s vertices. Then for any polynomial p ( n ) ,  

# n ( ~ ( ~ ) )  + 0 for n + co. 
Proof: A straightforward application of Theorem 2.4 
in [2, p.7631. 0 
Fortunately, functions with exponentially sized BEDs 
do not seem to be of much interest in practice. Even 
complicated Boolean functions, representing for in- 
stance floating-point division, have polynomially sized 
circuits. This is also witnessed by the fact that it is 
very difficult to construct explicit examples of func- 
tions that provably require exponentially many gates. 
(The authors have been unable to find any examples in 
the literature.) 

3. Representation of BEDs 

22” 

Inspired by ROBDDs we shall define certain restric- 
tions on BEDs. These restrictions will not generally 
make BEDs canonical but they will entail some useful 
properties. First, we define restrictions on the occur- 
rences of variable vertices: 
Definition 4 A BED G is free if on all paths through 
G each variable occurs at most once; it is ordered if on 
all paths the variables respect a given total order. 

Secondly, we shall forbid the existence of redundant 
vertices, i.e., two vertices representing isomorphic sub- 
BEDs and vertices that are unnecessary for obvious 
reasons. For readability, we use a(.) to denote the 
“tag” op(v)  or var(v)  on non-terminal vertices. 

Definition 5 A BED is reduced if it contains at most 
two different terminal vertices and for all non-terminal 
vertices, U and U: 

and for all operator vertices U: 

(3) low(v) and high(v) are non-terminals. 

We shall assume that BEDs are always reduced. If 
the BED is also ordered, we refer to it by “ROBED.” 
The first condition of definition 5 is fulfilled by proper 
reuse of vertices. This is conveniently taken care of 
during construction of a BED by testing, whenever a 
new vertex is to be created, whether another vertex 
with the same variable/operator, low- and high-edge 
exists. If this is the case, that vertex is reused otherwise 
a new vertex is created. Similarly, the second and third 
conditions are fulfilled by never constructing vertices 
that violate them. For variable vertices, it is clear that 
if the low- and high-edges coincide, either one of them 
can be used instead of creating a new variable vertex. 
For operator vertices, one should observe that if the two 
arguments are identical, or one of them is a terminal 
vertex, all the sixteen Boolean connectives reduce to 
one of the following six: KO, K1 (constant O / l ) ,  T I ,  

~2 (projection onto first or second argument), iil, 7i2 

(the negation of the first or second argument). In the 
first two cases, one of the terminal vertices is used. 
The projections are avoided by using the proper low- 
or high-edge instead. The negations require creation 
of a negating vertex, i.e., an operator vertex with the 
operator 31. Such a vertex can easily be constructed 
so that it fulfills (2) and (3) by taking the redundant 
second argument to be any non-terminal vertex. We 
shall assume the presence of a function 

that performs all the checks above and returns the iden- 
tity of the resulting vertex, equivalent to a vertex U 

with Q ( U )  = Q, low(u) = 1 ,  high(u) = h. Using mk as 
the only means for constructing a BED ensures that it 
is reduced. 
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3.1. Operator reductions 

For operator vertices it is tempting to add more 
checks in order to reuse vertices, thereby reducing the 
size of the BED. An immediate optimization is to  ex- 
tend mlc to look for operator vertices that differ from 
the one wanted only by exchanging low and high, by a 
negation, or by a combination of both. 

Going a step further, considering two vertices at  a 
time, we eliminate all negations below binary operators 
since for all binary operators op there exists another 
operator op‘ with op’(z,y) = o p ( - ~ , y ) .  

Finally, taking the identity of vertices into account 
allows us to exploit equivalences like the absorption 
laws, e.g., z V (x A y) = x. There are 16” combinations 
of n binary Boolean operators, thus it is feasible to tab- 
ulate them all for n up to three or four. Choosing n = 3 
seems like a natural choice since such a table would in- 
clude equivalences such as the distributive laws. 

3.2. Updating vertices 

As described in the introduction, the key operation 
on BEDs, called up, exchanges variables with other 
variables or operators, see figure 4. This transforma- 
tion pulls a variable up one level. The vertices in the 

Figure 4. Performing an up-step on the vertex U .  

new sub-tree (to the right in figure 4) are created by 
calling mk with the appropriate parameters. In order 
for ail references to U to benefit from the up-step, and 
thus avoid redoing it for each reference, the referring 
vertices need to refer to the new vertex T instead of 
U. One way of doing this is to make them point di- 
rectly to r.  However, in order to  do this efficiently we 
would need to store in each vertex all vertices referring 
to it, and this is impractical due to the high memory 
overhead. 

Another way to make the references to U benefit from 
the up-step is to simply overwrite U with the contents of 
r .  In order to maintain the reducedness property (l), 
we would need to eliminate the vertex r returned by 
mk.  However, this does not work if there are other 
vertices referring to r ,  which is the case if r was not a 
newly created vertex but an existing vertex found by 
mk. 

Figure 5. Updating by linking (to the left) or by 
indirecting (to the right). In both cases the vertex r 
is the “result” of the update. 

Instead of copying r to  U ,  we need to make v refer 
to T. There are two obvious choices for doing this, as 
illustrated in figure 5.  

Linking adds a reference from vertex w to the (equiv- 
alent) vertex T. The referenced vertex T is assumed to 
be somehow simpler, so the link is directed. Any access 
to the linked vertex w should follow the link in order 
to obtain a simpler representation of the vertex. Sec- 
tion 4.2 shows an application of this where the vertex 
T is a fully canonical ROBDD. In such an application, 
links are never nested. 

Indirecting simply overwrites the vertex v with a 
projection operator with the simpler vertex T as ar- 
gument. At first sight it seems plausible that both 
solutions are equally good. Both share the property 
that any existing references into v will benefit from the 
update: when these references are followed r will be 
found. However, linking allows for even more reuse of 
updates. If later in the BED transformation a new ver- 
tex, equivalent to U, is to be created, mk will ensure 
(due to reducedness condition (1)) that the identity 
U is returned, and the link will allow new references 
to benefit from the previous update. This is not the 
case for indirections which looses the information of the 
original contents of the vertex. Linking offers a very 
direct way of memorizing results of earlier transforma- 
tions which, for some transformations, ensure polyno- 
mial rather than exponential running time. Section 4.2 
gives an example of such a transformation. 

3.3. Implementational aspects 

Surprisingly, although BEDs are an extension of 
BDDs, the data structures for representing BEDS, 
shown in figure 6, are simpler than those for BDDs. 
The underlying graph of the BED is stored in a table 
G which to each vertex U associates a tag a ( w )  (special 
tags are used for the terminal vertices), Z O W ( U ) ,  and 
high(v). G contains two additional fields, link(v) and 
nerct(v). The field Zznk(v) is of course used for linking, 
explained above. The field nezt(v) is used to imple- 
ment chaining for resolving collisions in a hash table H .  
This hash table maps triples of ( a ( u ) ,  low(v), high(v)) 
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to v and thus implements an inverse of G used by mk. 
Finally, the mark field is used to  mark visited vertices 
when traversing the graph. This is used in the up-one 
and up-all algorithms presented in the next section and 
can also be used in mark-scan garbage collection algo- 
rithms. The total memory requirements are six words 
per vertex when using linking and five words when us- 
ing indirection. Using these data structures, it is not 
difficult to implement mk as a constant time operation. 

G: M low high next link mark 
I I I I I I I I I  
I t J I  I I I I1 

H: 

I I I1 

7 1 \  I I1 

V T I T  
I 

I / I  I I1 

Figure 6. The data structures used to represent a 
BED. 

4. Operations on BEDs 

The basic operation for constructing ROBDDs, 
called apply,  takes two ROBDDs, 1 and h, and a 
Boolean connective op and constructs a new ROBDD 
representing the Boolean expression fi op fh. For 
BEDs, this operation is simply a constant time call 
to mk(op, 1 ,  h). However, other operations, like tau- 
tology and satisfiability, are easy for ROBDDs. Thus, 
an approach for showing these properties for BEDs is 
to convert them into ROBDDs. It is easily seen that 
an (RO)BDD is simply an (RO)BED without opera- 
tors. This suggests a strategy for converting BEDs into 
ROBDDs: gradually eliminate the operators, keeping 
all the intermediate BEDs functionally equivalent. We 
shall show two very different ways of elimination. 

4.1. Construction of ROBDDs with up-one 

The first elimination algorithm, up-one, pulls a sin- 
gle variable up to the root using a sequence of up-steps. 
Repeating this, we can move all variables up past the 
operators, which makes the operators disappear (by re- 
quirement (3) of reducedness). The algorithm is given 
in figure 7. Basically, up-one performs a depth-first 
traversal of the BED using traditional marking of the 
vertices to avoid visiting the same vertex twice. Hav- 
ing finished the recursive calls on the low- and high- 
edges of a vertex, it makes an up-step and performs 

up-one(z, U )  = 
if U is marked or U is terminal then 

else if .(U) is variable z then 

else 

return follow ( U )  

mark U and return U 

( I ,  h)  t (up-one(x, low(u)), up-one(z, high(u))) 
if a(I) and a(h) are both variable z then 

T t mk(z, mk(a(u), low( l ) ,  Iow(h)), 
4 4 U ) ,  high(% h W h ) ) )  

mk(4.1, higW), h ) )  

mk(a(u),  1 ,  high(h))) 

else if a(1) is variable z then 
T t mk(z, mk(a(u),  low(Z), h) ,  

else if a(h)  is variable z then 
T c mk(x, mk(a(u),  Z,low(h)), 

else 

update U to r and mark U 

return T 

Figure 7. The up-one-operation. Up-one takes any 
free BED U as argument and returns an equivalent 
BED with z occurring at most at the root. The oper- 
ation fol low(u)  follows any links or indirections of U 

and returns the result. If none is associated with U ,  U 

is returned. Up-one is easily extended to unrestricted 
BEDs by changing the terminal case where U is the 
variable vertex z to perform recursive calls on l ow(u )  
and high(u) and afterwards eliminate redundant z’s. 

r t mk(a(u), 1 ,  h )  

an updating of the root. Up-one works well with both 
indirections and links. It has linear running time: 

Theorem 6 (Up-one) If U is a vertex in an ordered 
(free) BED G then the sub-BED v = up-one(x,u) is 
also ordered (free) and x appears at most in vertex v 
and nowhere else in the sub-BED rooted b y  U .  The 
running time of up-one(x,u) is O(n)  where n is the 
number of vertices in the sub-BED rooted b y  U .  The 
number of vertices in the sub-BED rooted at U is at 
most 2n. 

Proof: (Sketch) Observe that due to the marking, 
up-one is called at  most once per vertex, and each call 
allocates at  most one more vertex than it visits. Cl  

The introductory example was in fact a use of 
up-one. Up-one has some distinct properties. As the 
example shows, in fortunate cases a BED is converted 
into an ROBDD after moving just a few variables up 
(in the example, one variable was sufficient). In this 
process, identical sub-BEDS, potentially containing op- 
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aPPlY(oP, 4 h) = 
if (1,  h) in M then return M(1, h) 
else if 1 and h are terminals then 

r t op(vaZue(Z), vaZue(h)) 
else if var(l)  = var(h) then 

r t mk(var( l ) ,  appZy(op, Zow(Z), Zow(h)), 
aPPlY(oP, h igW) ,  high(h))) 

r +- mk(var( l ) ,  aPPlY(oP, low(%h),  
aPPlY(oP, high(% h))  

?- +- mk(var(h), aPPlY(oP,l, W h ) ) ,  
aPPlY(oP, 1 ,  high(h))) 

else if var(l)  < var(h) then 

else var(l)  > var(h) : 

insert ( ( I ,  h)  , r )  in M 
return r 

Figure 8.  The upply-operation. Assumes 1 and h are 
ROBDDs. The imposed total order on the variable 
vertices is denoted <. In the code it is assumed that 
terminal vertices are included at the end of this order 
when comparing war(Z) and war(h). The memoriza- 
tion table A4 must be initialized to empty prior to the 
first call. 

erator vertices, are identified. This is quite unlike tra- 
ditional ROBDD construction where an order of the 
variables must be selected and all operators are con- 
verted in depth-first order into ROBDDs. In particular, 
an ROBDD is constructed for each sub-expression. If 
the result is small and the intermediate ROBDDs are 
large, up-one could be an attractive alternative. As 
our experiments show (see section 5) this is not purely 
speculation. 

4.2. Construction of ROBDDs with up-all 

The second elimination algorithm, up-all, is a gener- 
alization of Bryant’s apply-operator, shown in figure 8. 
Construction of ROBDDs from a Boolean expression 
using recursive calls of apply suggests a bottom up 
conversion of ROBEDs into ROBDDs. The up-all al- 
gorithm does that by moving all variables up as a block 
past the operator vertices. 

As when building 
an ROBDD using apply, up-all requires that a to- 
tal ordering of the variables is selected prior to the 
ROBDD construction. Based on the ordering up-all 
converts any BED into an ROBDD, i.e., upp_aZ1(u) is 
an ROBDD. Furthermore, u p - a l l ( ~ )  is not linked, i.e., 
f o l l o w ( z y - a l l ( u ) )  = up-aZl(u). If U is known to be “a 
DAG of operator vertices on top of ROBDDs,” ‘the 
lines marked with (*) are superfluous and the state- 
ment just after them should simply return U .  The 

Up-all is shown in figure 9. 

up-al l (u)  = 
if U is marked or U is terminal then 

return follow ( U )  

else U is non-terminal: 
if a(.) is variable z then 

(*) 
(*) 

r t mk(z, u p - a l Z ( l o w ( ~ ) ) ,  up-aZl(high(u)))  
update U to r and mark U 

return r 
else a(.) is operator op : 

(+) (1,  h) t ( u p - d l ( Z o w ( u ) ) ,  up-a l l (h igh(u) ) )  
if 1 and h are terminal vertices then 

T t op(value( l ) ,  va lue(h) )  
else if var(l) = var(h) then 

r t mk(var(E), u p - a l l ( m k ( o p ,  low( l ) ,  l ow(h ) ) ) ,  
up-all( mk( op ,  high(l), high(h)))) 

r t mk(var( l ) ,  u p - a l l ( m k ( o p ,  low( l ) ,  h ) ) ,  
u p - a l l ( m k ( o p ,  h igh( l ) ,  h ) ) )  

r t mk(var(h), u p - a l l ( m k ( o p ,  l , l o w ( h ) ) ) ,  
up-all( mk ( o p ,  1, high (h ) ) ) )  

else if var(l)  < var(h) then 

else var(l)  > var(h) : 

update U to  r and mark U 

return r 

Figure 9. The up-all-operation. The total order < 
is defined as for upply (see figure 8). 

line (+) extends up-all to  work on not only vertices 
U where l o w ( u )  and high(u) are ROBDDs but on all 
BEDS. If low(u)  and high(u) are in fact ROBDDs then 
1 = l o w ( u ) ,  h = high(u) .  The relationship between 
apply and up-all is: 

for any ROBDDs I and h. This makes it clear how 
the four cases of up-all correspond to the four cases of 
apply. 

Contrary to up-one,  up-all requires the use of link- 
ing in updates in order to efficiently reuse vertices. The 
linking corresponds to the memorization in apply (the 
table M ) .  Although up-all is more general than apply, 
the running time of up-all is within a constant fac- 
tor of apply, and due to the increased sharing of sub- 
expressions and memorization of results, it could even 
create fewer vertices. 

Theorem 7 (Upall) For any vertex U of an 
R O B E D ,  up-a l l (u)  i s  the  root of an R O B D D  equiv- 
alent to  the ROBED rooted ut  U .  If 1 and h are 
R O B D D s  then  

appZy(op , l ,h )  = u p - a Z l ( m k ( o p , Z , h ) ) .  
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The number of calls to mk on variables generated 
dy  up-all(mk(op,l,'h)) is exactly the same as for 
dpply(op,l,h), and the number of calls to mk on 
operators is the same as the number of calls to 

Up-one and up-all are significantly different strate- 
gies for building an ROBDD. Figure 10 illustrates how 
the operator vertices are converted into variable ver- 
tices by the two algorithms. 

dPPlY ( O P  , 1, h) . 

Figure 10. Converting a BED to an ROBDD. To the 
left, using up-one repeatedly, to the right, during an 
up-all call. Grey areas represent variables and white 
areas represent operators. 

4~.3. Further BED operations 

Two commonly used Boolean operations are sub- 
stitution and existential quantification. Substitution 
replaces all occurrences of a variable x with a Boolean 
fdrmula p. The simplest way to  perform substitution 
09 a BED rooted at U is the following. First perform a 
cqll to  up-one: 

w t up-one(x,u) . 

Ftom theorem 6 we know that low(w) and high(w) do 
nbt contain any occurrences of variable x. If w is not 
tde variable z, then z is not in the BED rooted at w 
arid the result is w. Otherwise, var(w) = x and the 
result is the BED for 

(U A high(w)) V (-U A ~ow(w)) 

where U is the root of the BED representing cp. This 
expression follows immediately from the definition of a 
vqriable vertex. 

~ Existential quantification of the variable z can also 
bd implemented using up-one. Again we call up-one 
odtaining w and if w does not contain x the result is w. 
Otherwise, the result is Zow(w) V high(w) since 32.2 -+ 
f,g = f V g.  For both operations, the complexity is 
determined by up-one which is linear in the size of the 
BED. 

X:= K U 
l h  1 u h  

(4 

1 h  

Figure 11. (a) Elimination of substitution operator 
vertex. (b) Elimination of existential quantification 
operator vertex. 

An alternative way to  implement substitution and 
existential quantification is to consider them special 
operator vertices in the BED, see figure 11. The up- 
step from figure 2 is exactly the same for these new 
operator vertices, except in the case where the variable 
below the operator is the variable IC. In those cases, the 
special operator vertex is replaced with the sub-BED 
shown in figure 11. These eliminations can easily be 
performed by adding reduction rules to mk. The sub- 
stitution and existential quantification operators can 
be eliminated like any other operator in the BED by 
pulling the variables up past the operators. An opera- 
tor is eliminated either when it meets a corresponding 
variable or when it reaches terminal vertices. 

One need not immediately eliminate these newly 
added operator vertices. Keeping them in the BED 
allows efficient reuse of sub-expressions. Consider the 
BED in figure 12. If the vertices U and U' are identified 

U U U' 

Figure 12. A BED containing substitution opera- 
tors. The low-edge points to the expression in which 
x is to be substituted with cp, pointed to by the high- 
edge. 
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at some point in the manipulations, the biimplication 
is proven immediately, without actually performing the 
substitution. 

Other standard BDD operations include restriction 
z := b, where b is a Boolean constant. Clearly, restric- 
tion is a special case of substitution with cp equal to 
either 0 or 1. Notice that all the operations described 
in this section have linear running times which is bet- 
ter than the corresponding ROBDD operations. Other 
operations, like satisfy-one, can be performed by con- 
structing an ROBDD using up-all and perform the op- 
eration on the ROBDD. Since up-all never has worse 
running time than apply,  the total running time for 
these operations is no worse than if they are performed 
directly on an ROBDD. 

5 .  An application of BEDS 

Tautology checking of a BED is an application where 
the end-result as an ROBDD is known to  be small (the 
terminal vertex 1) if the BED indeed is a tautology. 
Thus, to demonstrate the efficiency of BEDS, we con- 
sider the combinational logic-level verification problem 
which is to determine whether two given combinational 
circuits implement the same Boolean function. The IS- 
CAS 85 benchmark suite2 contains a number of com- 
binational circuits, nine of which exist both in a re- 
dundant and a non-redundant version. We consider 
the problem of determining whether these two versions 
implement the same functionality, corresponding to a 
tautology check for each pair of outputs. The results3 
are shown in table 1. It is observed that except for the 
c3540, all circuits are verified in only a few CPU sec- 
ond and using at most half a million BED nodes, which 
is less than 12 MB of main memory. These results are 
up to  several orders of magnitude faster than those re- 
ported in [3, 17, 181. The circuit c6288 is particularly 
interesting because it implements a 16-bits multiplier 
and multipliers are notoriously difficult to  verify using 
ROBDDs [4]. Due to the exponential growth of the 
size of the ROBDD representation (in the number of 
operand bits), the straightforward approach of build- 
ing and comparing the ROBDD for the two circuits 
c6288 and c6288nr is not feasible. The ROBDD rep- 
resentation of a 15-bit multiplier uses more than 12 
million vertices [19] and this number is approximately 
2.7 times larger for each additional bit in the operands. 
This demonstrates the effectiveness of up-one. 

2Can be obtained from http://www.cbl.ncsu.edu 
3The C source code for a small BED package and the bench- 

mark circuits with scripts to verify them can be obtained from 
http:/ /www.it .dtu.dk/Nhenrik/bed/ .  

Table 1. Experimental results for the ISCAS 85 
benchmark. Ntotal is the total number of BED nodes 
for the verification. The CPU times are in seconds on 
a Sun Ultra-SPARC 1. 

c432, c432nr 
c499, c499nr 
c499, cl355 
c1355, c1355nr 
c1908, cl908nr 
c2670, c2670nr 
c3540, c3540nr 
c5315, c5315nr 
c6288, c6288nr 
c7552. c7552nr 

In Out Gates 

36 7 316 
41 32 403 
41 32 748 
41 32 1091 
33 25 1757 

233 140 2153 
50 22 3288 

178 123 4604 
32 32 4814 

207 108 6908 

Ntotal CPU 
28259 0.5 

234103 2.7 
467823 6.3 
492741 5.6 
429422 4.8 
26011 0.7 

427323' 127.0 
45138 1.5 
8759 0.7 

329717 6.3 
+Garbage collection is used in this example, making 
this number the maximum number rather than the 
total number of BED vertices. 

Several other methods exploit the structural similar- 
ities between the two circuits [3, 18, 221 thereby achiev- 
ing an efficiency comparable to the BED-based tech- 
nique. However, these techniques are specifically tai- 
lored to solve the combinational logic-level verification 
problem for two circuits which have similar structure, 
making them unsuitable for general Boolean function 
manipulations. 

6. Conclusion 

We have presented a new data structure called Bool- 
ean Expression Diagrams for representing and manip- 
ulating Boolean expressions. BEDS are as succinct 
as Boolean circuits, yet they have many of the desir- 
able properties of BDDs. Properties like TAUTOLOGY 
and SATISFIABILITY are determined by transforming 
the BED representation into a reduced ordered BDD. 
This can be done efficiently by using for example one 
of the two algorithms up-one or up-all. As shown in 
theorem 7, the cost of constructing an ROBDD from 
scratch using apply and the cost of building a BED and 
transform it into an ROBDD using up-all are within a 
constant factor. In fact, recent research [14] has shown 
that up-all is a highly efficient approach to build an 
ROBDD; it uses considerably less memory and no more 
time than when the ROBDD is constructed with apply. 

Up-one is a new way to  construct an ROBDD 
which can exploit structural similarities between sub- 
expressions. For some applications up-one is highly 
efficient, for example as demonstrated by proving the 
identity of two 16-bits multipliers (c6288 and c6288nr 
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f om the ISCAS 85 benchmarks) in less than a sec- 

eiristential quantification and substitution, making the 
rhnning times of these operation linear in the size of 
tbe BED. 

' BEDS are particularly useful when the end-result 
id expected to  have a small ROBDD representation, 
e.g., for tautology checks. Another area that may ben- 
eht from using the BED representation is in symbolic 

ode1 checking. Several researchers have observed that 3 hen performing fixed-points iterations using ROB- 
~ D s ,  the intermediate results are often much larger 
t an the final result. Clearly, the succinctness of BEDS 
cgmpared to  BDDs can alleviate this problem. This is 
possible because all operations used in performing the 
fiqred-point computation can be performed directly on 
t?pe BED without first expanding it t o  an ROBDD. In 
f ct, many of the tricks researchers have used to  make 

OBDDs more efficient are embodied in BEDs. For ex- 
a ple, Burch, Clarke, and Long [6] demonstrated that 
t e complexity of BDD-based symbolic verification is 
d :: astically reduced by using a partitioned transition 
relation where the transition relation is represented as 
ah implicit conjunction of ROBDDs. This corresponds 
tb representing the transition relation as a BED with 
ctnjunction vertices at the top level and only lifting 
t+e variables up to just under these vertices. 

' BEDS can be seen as an intermediate form between 
crcuits 1 and the highly structured ROBDDs. In this 
p per we have focussed on ways t o  obtain an ROBDD 
f om the BED description. However, there seems to 
b a huge unexploited potential for manipulating the 

EDs directly, without necessarily converting them to 
OBDDs. For example, it seems plausible that ideas 

f om logic can be transferred to BEDs; the reduction 
o i operator vertices described in section 3.1 is a first 
sdep in this direction. 

o x d. Up-one is also the basis for other operations like 

4 
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