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Entailment of Atomic Set Constraints is PSPACE-Complete

Joachim Niehren and Martin Muller Jean-Marc Talbot
Universitat des Saarlandes Max-Planck Institut Inforknat
Saarbrucken, Germany Saarbrucken, Germany
Abstract terms built from variabless and function symbolgf

)pf a given signature:. Atomic set constraints are in-
terpreted in the structure of sets of finite trees oMer
(often called ground terms). It is well-known that the

The complexity of set constraints has been extensivel
studied over the last years and was often found quite
high. At the lower end of expressiveness, there are‘~"=  ~<' . )
atomic set constraints which are conjunctions of incly- Satisfiability of an atomic set constraint can be tested
sionst; Ct» between first-order terms without set oper- 1 CubiC time (see the complete version of [22] for in-
ators. It is well-known that satisfiability of atomic set Stance).

constraints can be tested in cubic time. Also, entail- Entailment. Beyond satisfiability, entailment (the va-
ment of atomic set constraints has been claimed decid-lidity of implications ¢ = ¢') has raised much interest
able in polynomial time. We refute this claim. We show for various classes of constraints [4, 18, 26]. Entailment
that entailment between atomic set constraints can ex-is useful for constraint simplification [24], closely re-
press validity of quantified boolean formulas and is thus lated to the treatment of negation (see below), and fun-
PSPACE hard. For infinite signatures, we also present damental for models of concurrent constraint program-
a PSPACE-algorithm for solving atomic set constraints ming [25].

with negation. This proves that entailment of atomic Entailment of atomic set constraints is subsumed by
set constraints is PSPACE-complete for infinite signa- satisfiability of atomic set constraints with negation
tures. In case of finite signatures, this problem is even yhich is known decidable in NEXPTIME [6, 14]. The

DEXPTIME-hard. precise complexity of entailment of set constraints was
_ first investigated by Charatonik and Podelski. They
1 Introduction showed in [9] that entailment of set constraints with

Set constraints are logical formulas describing relations intersection (which subsume atomic set constraints) is
between sets of trees [2,5,6,13,16]. Set constraintsDEXPTIME-complete for an infinite signature. Beside
have received much attention in constraint-based typethis, they noted in the same paper with reference to [8]
inference and program analysis for different program- that entailment of atomic set constraints is decidable in
ming languages [3,12,15,17,21,28]. Other applica- Polynomial time — again for an infinite signature. We
tions of set constraints include order-sorted unification refute this claim and determine the correct complexity.
[29] and constraint logic programming [20]. The reductions in this paper that prove lower complex-

Expressiveness and Complexity Expressiveness and ity bounds are inspired by work of Rehof and Hen-

complexity have been widely studied for various class- gl€in’s on entailment of subtype constraints [18]. Fol-
es of set constraint [1,2,7,9,11,14,27]. The com- lowing their idea, one can indeed express satisfiability
plexity of their satisfiability problem was often found ©f Boolean formulas in conjunctive normal form by en-

to be very high é.g, NEXPTIME-complete [1,27] and  tailment of atomic set constraints (for any non-trivial

DEXPTIME-complete [9, 11]). At the lower end of the ~ Signature). Since this problem is coNP-complete, en-
expressiveness scale, there are atomic set constraintéilment of atomic set constraints is coNP-hard — in
[16] which are conjunctions of inclusiong Ct, be- contrast to the claim of Charatonik and Podelski.

tween first-order terms; , ¢, without set operators, i.e.



For a finite signatur&:, the situation is even worse: En- —in case of an infinite signature. Ines constraints have
tailment of atomic set constraints is DEXPTIME-hard the same syntax as atomic set constraints but are inter-
since it can express universality of tree automata which preted ovemon-empty setsf trees (rather than arbi-

is DEXPTIME-complete. The reduction is very simple. trary sets).

Its idea is to consider the set of transition rules of a tree |, this paper, we prove that the following 4 problems
automaton as an atomic set constraint. For instance, the; o PSPACE-complete for an infinite signature:
transitions of the automatod below corresponds to

the atomic set constraigt: 1. Entailment of Ines constraints.
A: flz,2) >z, flz,3) >z, flz,3) > 2 2. Satisfiability of Ines constraints with negation.
oa: flz,2) Cx A f(z,2) Cx A f(z,2) C2z 3. Satisfiability of atomic set constraints with nega-
tion.

If z is the only final state ofd then A is universal if-
foa AN TeCy = yCz holds in the structure of sets
of finite trees over.. The formula7yCy can be ex-
pressed b\ ;¢ f(y, - - -, ¥)Cy which is an atomic set
constraint but only i is finite.

4. Entailment of atomic set constraints.

Problems (1) and (2) are equivalent since Ines con-
straints have the independence property. Problem (3)
can be reduced to problem (2) in NP (and thus in
For an infinite signature, we have argued so far that PSPACE) since we can guess for all variablehether

the complexity of entailment of atomic set constraints . C @ orz ¢ @. Obviously, problem (4) can be re-
is between coNP and DEXPTIME. We show in this yyced to (3). All together, we see that problem (4) is

paper that this problem is indeed PSPACE-complete. ggsjer than (1) modulo PSPACE reductions.
We prove PSPACE-hardness by expressing validity of

guantified Boolean formula which is PSPACE com-
plete. The idea is to extend the coNP-hardness proof . .
(which follows [18]) by encoding quantifier prefixes in problems it remains to show that the hardest problem
addition. Note that the PSPACE hardness result of [19] (1) can be solved in PSPACE.

does not carry over to atomic set constraints. Deciding Entailment. In this paper, we present an
PSPACE algorithm that decides entailment of Ines con-
for treating negation sincé = \/”_, ¥ holds if and straint for an infini_te signature. Gi\{en a judgment
only if ) A AT, —ihs is unsatisfiabZ@ A constraint lan- ¢ = xCy, this algorithm checks the existence of a term
1= - H
guage has the independence property [10] if the unsat-that 1S both an upper bound mﬁn v a_nd alower bound
isfiability of 1 A A, —; is equivalent to thap = ¢, of y in . We |IIu§trate reasoning with lower gnd upper
holds for somel <Z*j < n. Thus, under the assump- bounds for proving the validity of the following judg-
tion of independence, deciding entailment is equivalent ment:
to solving conjunctions of positive and negative con-

The easiest problem (4) is PSPACE hard as we argued
above. In order to show PSPACE completeness for all

Independence and Negation Entailment can be used

1 Ay N3 = 2Cy

straints. in the structure of non-empty sets of trees, where:
The independence property does not hold for atomic set
.p ) P .p y 1 = x2Cf(x1,21) ANz1Cf(a,z) N x1Cz
constraints since a variable may denote the emptf).set v = aCf(z f(za))
For instance, let) be the atomic set constraintCa A 2T =SS T
v - Ya = Fy1.2)Cy A Flzm)Cy A Fla,a)Cun

yCa which requires that andy denote the empty sét
or the singleton{a}. Hencey |= 2Cy VyCuisvalid it note thawy, = zCf(z, f(a, 2)) holds, i.e. the
but neither) = xCy nor+) = yCa hold. term f(z, f(a,z)) is an upper bound aof in ;. The

As observed by Charatonik and Podelski [8, $he in- reader may notice that there are many more upper
dependence property does hold for Ines constraint [22]bounds forz in ¢4, for instancef(z1,z2), f(z,%1),

The independence property for Ines constraints (even withi on an incomplete algorithm for entailment and thus wrong. A
tersections) is proved in [9]. The earlier proof given in {8pased counter example can be found in the paper.



f(z,2), f(f(a,2),z1), f(f(a,2),z). The number of
upper bounds may grow exponentially in the size of the
constraint. In particular, multiple upper bounds can be
combined by “deep shuffle”; as for instance:

:ng(z, f(aa z))
A zCf(z f(z a))

This shows thaf (z, f(a,a)) is an upper bound of in

1 A 1. Furthermoregs = f(z, f(a,a))Cy holds,

i.e. f(z,f(a,a)) is alower bound ofy in 3. Thus,
with respect to; A 9 A 13 there exists a term that
is both an upper bound af and a lower bound of;

this proves the validity ofp1 A 9 A ¢35 = zCy.
Our example illustrates an incompleteness of the algo-
rithm from [8] which does not take “deep shuffle” into
account.

= 2Cf(2 f(a,a))

Plan of the Paper In Sections 2 and 3 we start with

preliminaries and recall results on Ines constraint. In
Section 4 we prove the PSPACE hardness for entail-
ment of atomic set constraints. In Sections 5 and 6 we
present a PSPACE algorithm for entailment of Ines con-

straints. Section 7 discusses the independence propert

of Ines constraints. For lack of space, many proofs are
omitted. They can be found in [23].

2 Preliminaries

We assume a sét of variablesranged over byz, y, =
and a signatur& that defines an infinite set &inction
symbolsf, g and their respective arity,. > 0. Con-
stants i.e., function symbols of arity0, are denoted
with a, b. We assume that contains at least one con-
stant and one function symbol of arity 2.

A first-order termt is a variablexz or an expression
f(t1, ..., t,) wheren is the arity of f. A ground term
(afinite treg 7 is a first-order term without variables.
The set of all finite trees ovex is denoted by/s. Gi-
ven a setS, the powerset of is denoted byP(.S) and
the set of all non-empty subsets 8fby P*(S). We
freely consider the set®(7x) and P+ (7x) as mod-
el theoretic structures where a function symljadf 3
is interpreted as an element-wise tree constructer,
for some sets of finite trees,, ..., oy, f(o1,...,00)
={f(r,...,m) | 7 €o;foralll <i<n}, and the
relation symbolC as the subset relation.

A pathr is a word of natural numbers. Thenpty path

is denoted by and the free-monoid concatenation of
pathsm andrn’ as7n’. We haveswt = e = 7. A path

7' is called aprefix ofr if # = «'x” for some path
7. A tree domainis a non-empty prefix closed set of
paths. We define the arity of a variable toeA first-
order termt can be characterized by a paib;, L)
consisting of a tree domaif; and a (total) labeling
functionL; : D; — X UV such that for allr € D, it
holds thatri € Dy iff 1 < i < n, wheren is the arity
of Ly (71')

Logical Notation. We consider several first-order lan-
guagesL over our signatureX of function symbols
extended with some relation symbols. For a formula
® € L, we denote the set dfee variablesin ® with
V(®) and the set of function symbols @ with 3(®).
Given a model theoretic structuré over the signature
3} of L, asolutionof ® € L overA is a variable assign-
menta : V — A which rendersx(®) true. A formula
® € L is satisfiableover A if there exists a solution of
® over A; it is valid over A if all variable assignments
a VY — A are solutions ofd. We say thatd en-

>t,ails @' if the implication® — @' is valid overA, and

write & =4 @’ in this case, or simplyp = @’ if the

structure of interest is fixed by the context. Téwdisfi-
ability problem ofL relative to some structurgl is the
problem whether a formulé € L is satisfiable oveA.

The entailment problem of. relative to A is the prob-
lem whether an entailment judgemeht=_4 @' holds
for two given formulas®, ®’' € L. The satisfiability

problem of L with negationrelative to.A is whether a
conjunctionA\;; ®; A ATL; =@’ of positive and nega
tive formula inL is satisfiable over. It is well known

that the entailment problem di over A is less gen-
eral than its satisfiability problem with negation, since
® =4 @' ifand only if ® A =@’ is unsatisfiable oved.

3

An inclusion constraint) is a conjunction of inclusions
between first-order terms:

(2

The sizeof an inclusion constraint is the number of its
symbols (variables and function symbols).

Ines and Atomic Set Constraints

t1Cty | P A

An atomic set constraintl6] is an inclusion constraint
interpreted in the structure of sets of finite tré@Ty, ).



An Ines constraint[22] is an inclusion constraint in-
terpreted in the structur® (7yx) of non-empty sets of

finite trees. In this paper, we do not consider the casesolvesz[r|Cf if g(x)[n] C f(Ts,..

of infinite trees.

In the formal parts of this paper, we use a flat syntax
for inclusion constraints which restricts the nesting of
terms. Aflat inclusion constrainty is defined by the
following abstract syntax where is the arity of f:

¢ =f(y1,---.yn) | 2Cy | pAY
Proposition 3.1 For both modelsP™ (7x) and P(Tx)
it is linearly equivalent to decide judgements of the

form ¥ = ¥’ or ¢ = zCy.

Satisfiability. We now recall a result on satisfiability
of Ines constraints given in [22]. The analogue result
holds for satisfiability of atomic set constraints but this
is not needed for the purpose of this paper.

Proposition 3.2 The satisfiability problem of Ines con-
straint can be decided in cubic time.

Without loss of generality we can assume that a flat
constrainty is closed under reflexivity, transitivity, and
decomposition in that it satisfies the properties B1-B3
below (we writez andy for sequences of variables and
ZCy for a conjunction of inclusions):

Bl
B2
B3

2zCx € pif 2 € V(p)
2Cz € pif zCy AyCz €
TCY € pif 2=f(T) N2C2' N2'=f(7) €

From a B1-B3 closed constraint one can read of its con-

sequences more easily by syntactic reasoning.

Path Constraints. Given a treer and a pathr we
write as7[r| the subtree of at pathr if it exists. Gi-
ven a set of trees and a path, we defines[r] as the
m-projection ofo:

o[n] = {7[n] | T € o and7[n] exists;

Note thato[r] is always defined but possibly empty.
We need a new class of formulas that we galth con-
straints These are of the form[7]Cy andz[x|C f for

paths, variablesxz, y and constructorg. A variable
assignment3 solvesz[n|Cy iff (z)[r] C B(y). It
S Ts).

We also need a notion sf/ntactic supportor path con-
straints. We define F z[x]Cy andy + z[r]Cf as
follows.

o F ze]Cy if zCy € ¢
ptalklCyr  fr=f(y, .., uk,-Un) €9
o b z[rr'|Cy ifexistsz: p - x[r]Cz
andy - z[r'|Cy
pFa[nCf ifexistyy,...,yn, 2z ¢ x[n]Cz
andz = f(y1,...,yn) €9

This definition of syntactic support is correct for both
structuresP(Tx) and P*(Tx). If ¢ F z[r]Cy then
¢ = zlr]Cy and ifp - z[]C f theny |= z[r] C f.

4 Entailment is PSPACE-hard

We now show that the entailment of atomic set con-
straints is PSPACE hard since it can express validity of
guantified Boolean formulas.

We denote the Booleans with and T and assume
an infinite set of Boolean variables ranged overiy
A literal is either a variable: or a negated variable
—u. A CB-formulaC is a finite set of literals that we
write as a conjunction. The empty conjunctive formu-
la is denoted bytrue. A DB-formula D is a finite set
of conjunctive formulas that we write as a disjunction
C1 V...V Cp. The empty DB-formula is denoted by
false. Letuy,...,u, be a sequence of pairwise distinct
variables and for all < i < n let Q; be one of the
guantifiers3u; or Vu;. A QB-formulais a closed for-
mula of the following form withm,n > 0:

Q1...Qn (C1V ...V Cp)

We callm, n and the sequence,, ..., u, theparame-
ters of the above QB-formula. We denote a quantifier
prefixes likeQ; ... Q, with P.

Definition 4.1 QBF is the validity problem of QB-
formulas in the structure of Booleans.

We call a CB-formulaC normalizedif there is no vari-
able v such thatu € C and—-u € C. Trivially, a
normalized CB-formula is satisfiable. We call a QB-
formulaP Cy Vv ...V C,, normalizedif m > 1 and



if all C;’s are normalized. Note that a normalized DB- the formulaDBF, (D) in Figure 1 which satisfies for
formula is satisfiable since it contains at least one CB- all z, z:

formula and all its CB-formulas are satisfiable. _
The idea for encoding Boolean formulas stems from B =DBF::(D) it Uprix-py(B(z), 5(2))
[18]. Itis based on the fact that a binary tree of depth g, encoding a quantifier prefix in a QBF-formula,
allows to represent the set of solutions of a Boolean for- ;o express another predicate which concerns lower
mula withn variables, say, . .., u,. We identify the bounds. Given > 0 and sets of pathH,...,TI; C
Booleansr and T with the integerdl and2 respective- {1,2)}" we defineCy, . C Pr x P such that

. . . ) 1yl p = ) )
ly. We identify a pathr = by ...b, € {1,2}" with a L,y (o1, 02) holds if and only ifsIl U. . .Usli C

variable assignment into Booleans {u, ..., un} — 1. For certain sets of sets, this predicate can be ex-

{1,2} such thatr (u;) = b; for all 1 né r<n. Nowwe  yossed by the formullref, . (P) with variabley, z in
can represent every subset.{df, 2} _by a *?'”ary tree Figure 1. For instanceg = Pref, ,(Vu; ... Vu,) iff
of depthn whose tree domain contains this subset. For 7 oy» , ’

gz SOW), 18y Lig1,23y(B(y), B(2))-

n = 2 for instance:
We next define that a set of patlisC {1, 2}" supports
(11,21,12} N 1 L/\2 a quantifier prefixP notedll - P: for existential quan-
Ly 1/N\2 tifier it holds thatIl - JuP if existsb € {1,2} with
{m|bm € II} I P; for universal quantifiefl - VuP is
Rather than considering a set of paths as a tree, wevalid if for all b € {1, 2} it holds that{=|br € IT} + P;
represent it by a set of trees. We fix a binary symbol the empty quantifier prefix is supported Ky}, i.e.,
f € ¥ and a constani € ¥. Forall7 € {1,2}" and {e} I €. Given this definition it holds that:
o € P(Tg) we define a set of treeg € P(Tx):

. i C :
Cfang tee srprnry W { ST
si=1 f(sT,0)no ifr=1x
flo,s¥)Yno if m=2x The complete encoding of a normalized QBF-formula
) PD with parametersy > 0, m > 1, anduy,...,u,
The set forr = 21 and somer can be depicted by: is given ir? Figure 1: it is the formul®BF,, .(PD)
fNo which conjoins DBF, .(D) and Pref,.(P). Be-
91 / N\ side of z,y, z the fresh variablesL{,...,g:nmJrl and
foo = 7 /fQU Y1, . ..,yns1 are used (but only of local interest).
aNo o

Proposition 4.2 Let D be normalized. A QB-formula
PD is valid iff the judgmenQBF, , .(PD) = 2Cy
for atomic set constraints holds whetey, z are fresh
variables.

A set of pathslT C {1,2}" can be represented by a
binary predicateddn C Pz, x P, between sets of
trees. For all set8l C {1,2}" let s = N, cns?. The
predicatelr (o1, 02) holds iff o1 C s(f,g. For instance,

U11,21,12 (01, 02) holds in the following situation: o .
The proof is given in the long version of the paper. We

next illustrate the encoding at an example. We consider

U/lc‘f% the QB-formulaP D with parameters. = 2, m = 2,
fCos f . Coo and sequence, us:

N -
06'2 Coy a"Co a Coy Cl = Uy, D = Cl V CQa

Cy = uy A usg, P = FuVus

We encode a BF-formul® by expressing the predicate It is not difficult to see thatPD is valid sinceD eva-
Upxr=py With atomic set constraints. This is done by luates totrue if one chooses;; = T anduy arbitrarily.



QBFI,y,Z(PD)
DBF,.(C1 V...V Cp)
Pref, .(Q1...Qn)

CFZ(I,O) = /\?:1 Litz(iaoa U’j)
. ;:f(zamz-H)
Lit, (i, C, u;) = =@, 2)
=20, 40)
_ ) fyj+1y541)Cyy
u =

Figure 1: Encoding a normalized QB-formula with parametets 0, m > 1, andu., . ..

We fix variablesz, z, z1, ..., 22 andy, y1, y2,y3. The
encodingDBF, (D) is the following constraint which
up to some minor simplifications and variable renam-
ings was also considered in the introduction:

DBF, .(D)

zCxl A 2C2? A xl=a A 22=a A
xégz A zggz A zégz A asggz A
CF,(1,Cy) A CF,(2,C5)

CFz(la Cl) x%:f(as%,:xé) A ZE%:f(fEé,Z)
CFZ(2v 02) ? f(z,ac%) N l‘%:f(z,l%)

1=
The set of all upper bounds ferin DBF, (D) can be
depicted by the following tre&. Each node ofl" is
labeled by a set oP (X U V') such that for alk, 7 if ¢
is an upper bound of at 7 then the label off” at path
7 contains the root symbol df i.e, Ly () is the set
{L(e) | DBF; (D) F z[n]Ct}.

1 2
faxaxlaxlaz
fa$27$27z
/

1

1
fa:EQaz
~
! a,T3,2

a,r3,2
Notice that the set of path satisfyingDBF, (D) +
z[r]Ca is equal to{11,21,22} and thus corresponds
exactly to the set of solutions @. Next, we consider
the translation oQBF, , .(PD):

QBF, y..(D) DBF,.(D) A Pref, .(P)

Pref, .(P) fy2,2)Cy1 A f(2,92)Cyr A

f(y3,y3)Cy2 A aCys A y1Cy

Hence, the subset of lower boundsyofvith variables
in DBF,_,(D) is the following set of trees:

{f(z, f(a,a)), f(f(a,a), 2)}

z a,13, 2

DBF,..(D) A Pref, .(P)
A2 (zCzi A CF, (i, Ci) Azl 1=a A /\2221 aszgz)

aCyni1 A Nj=1 QU-(Q;) A y1Cy

if u;inC
if —u;inC
otherwise

if Q =Vu;
if Q = Hu]'

s Un -

This reflects that{ {11, 12}, {21,22}} F Ju;Vus and
proves thaQBF, , .(PD) entailszC f(z, f(a,a))Cy.

Theorem 4.3 For all signatures with a least one con-
stant and one binary function symbol, the entailment
problem of atomic set constraints is PSPACE hard.

This follows immediately from Proposition 4.2 since
the validity problem of quantified boolean formulas
(QBF) is PSPACE complete and the size of the encod-
ing is clearly polynomial with respect to the size of the
guantified Boolean formula.

5 Characterization of Entailment

We now give a syntactic characterization of entailment

for Ines constraints (see Proposition 5.5) on which our

decision procedure in Section 6 is based. We note that
the characterization is complete for satisfiable B1-B3

closed constraints only.

Singletons Entailment can depend on the fact that
some term has to denote a singletba, a set with ex-
actly one element. For example, notice that the follow-
ing entailment is valid for Ines:

(1)

For every solutiors of the left hand sidej(u)N3(a) #
¢ holds. And since: denotes the singletofu}, it en-
tails aCu. Of course, there are other ways to constrain
a variable (or a term) to denote a singleton. Our gen-
eral idea for the recognition of singletons is to test for

£Cf(a,v") N xCf(u,u') Fp+(y) aCu



ground upper bounds of variables. For completeness,Definition 5.3 (Upper Bounds) Let ¢ be a constraint
we must respect the “deep shuffling” of upper bounds, andV' C V(p). If ¢ - com(V') then we define the set
as illustrated in the following example. U,(V') of upper bound oft” in ¢ to be the set of all
termst which satisfy for allr € D;:
zCf(g(a,v),v')

A 2Cf(g(u,a).u) Eper) 2Cf(9(aa),a)  (2) 1. existsv € V with ¢ F v[n]CL(7), or

A aCf(w,a) 2. existsZ C V(y) such thatLy(r) € Z, ¢ +
We introduce a predicate symbedm(V') of arity 0 com(Z), andu(Z) NUF(D(V, 7)) # 0.
for every finite non-empty set’ of variables: a vari-
able assignmeng solvescom(V) if ,cy B(v)# 0, The definition oft/, (V') is correct: for all terms €
i.e. if there exists a common tree in the denotations of U,(V) it holds thaty =p+(5,) Nyey <t In par-
all variables inV'. ticular, for a singleton{z}, t € U,({z}) implies

¢ Ep+ (1) TCt. Notice that/gd ({z}) = U, ({z}) N
Definition 5.1 Lety be a constraintand” C V(p) be  Tx holds for allz andp.

a non-empty set of variables. Then Also note that our notion of upper bounds respects deep

existsz € V(y) andx such that

less straightforward part of definition 5.3 is case 2. Let
forallv e V: ¢ z[n]Co

@ Fcom(V) if {
us illustrate this case on the constrajnt

This definition is correct in that i - com(V'), then w3 : 2Cg
¢ Ep+(7y) com(V). 2Cg

Definition 5.2 (Ground Upper Bounds) Let ¢ be a yCh
constraint andV C V(p). If ¢ = com(V) then we yCh
define the seitlgrd(V) of ground upper bounds df in _
10 be the set of all trees € D, such that there exists ~ We next argue fokps that g(z) is a an upper bound
z € Vwithy F z[r|]CL, (7). for z, that isg(z) € Uy,({z}) and thusps =p+ (7,

2Cg(z). We apply Definition 5.3 withV = {z}
Note thatZ, () is a function symbol and not a variable 2nd Verify condition 2 for the path. Note first that
sincer is a tree (which do not contain variables in con- P({z}:1) is equal to{z1,2,} and thatf(a,a) is a
trast to terms). The definition 61&™(V') is correct in ground upper bound fofz;,z,} and also forZ =
that if 7 € U&4(V) then for all solutiong of ¢ over {2, 71, 22}. Note also thaps - com(Z) holds.

shuffle for satisfiable B1-B3 closed constraints. The

P+ (Ts) it holds that,., B(z) C {r}. In particular,  Next, we define the set of lower bounds that a constraint

for a singleton{z}, 7 € ugfd({x}) implies the validity ¢ provides for a variablez. We use a kind of tree au-

of \:w(TE) zCr. Hence, for every satisfiable const- tomaton that uses ground upper bounds in its complex

raint and sef” # § with ¢ - com(V) there exists at ~ start condition.
most one ground upper bound f@rin .

Also note that the definition of ground upper bounds Definition 5.4 (Lower Bounds) Given a constraintp
can deal with “deep shuffling” for satisfiable B1-B3 We define the set () of lower bounds of variables
closed constraints. For example in (2), the term In ¢ recursively as follows:

f(g(a,a),a) is a ground upper bound of the det} in

a B1-B3 closure of a flattened version of the left hand
side of (2). For the following definitions we introduce
the auxiliary notation:

T € Ly(x) if existsX C V(p) :z € X
and84(X) = {r}

z € Ly(x) if € V(p)

te Ly(x) if yCx € ¢, andt € L,(y)

D(V,n) = {w] existsv € V : ¢ F v[r]Cw} f(t) € Ly(z) if z=f(Z) epandte L,(T)



In the last line, we denote by a sequence of terms 2. existsY C V(y) such thaty € Y and

t1,...,tn, Dy T a sequence of variables,,...,z,, USY(D(V,e)) NUE(Y) # 0
and byt € L£,(z) the conditionst; € L e )

Y o) ! ol1) 3. existsv € V, ¢, f andyi,...,y, such that
tn € Ly(2n).

F v[e]Cf, y'Cyinp, y'= e in o,
The definition of £, (z) is correct in that for allt, z an(p F[ LYfD(%J/;)yyi)f‘lO?dS {o(ryélll <%ni n.w
if t € L,(z) theny =pi (5, tCx holds. The first Y -

statement reflects the fact that ground upper bounds al
so define lower bounds (sinaeC_r implies 7Cx). As

an illustration, for the previously given constraipt,

we prove thatps =p+(7;,) f(a,a)Cr. We have al-
ready mentioned that(a, a) is a ground upper bound
for the set{x,z1,z2}. Hence, this allows us to con-
clude thatf (a, a) is a lower bound for.

"Proof. can be found in [23]. O

Lemma 6.4 (Complexity) Let ¢ be a satisfiable B1-
B3 closed constrainty” be non-empty set of variables
such thaty ~ com(V) and y a variable. Deciding
whetherp - A(V, y) holds is in PSPACE.

Testing whethep — A(V,y) holds can done by recur-
Proposition 5.5 (Characterization) If ¢ is satisfiable sively checking the properties of Lemma 6.3.
and B1-B3 closed and,y € V(p), theny =p+ (7))

. Property 1 is equivalent to that € D(V,¢) holds
2 Cy iff Uy({2}) N Ly (y) # 0. perty 1 is eq g € D(V,e)

and this can be checked (by computiigV, ¢)) in
polynomial time in the size op. Property 2 is equi-
ally from the correctness of the definitions of upper and yariable v in D(V,¢) and a variables’ such ¢

lower bounds. The inverse direction is technically in- y[7]Cy/, there existf andw € D(Y,e) such that

volved and can be found in [23]. = ¢ F v[r]Cf andy F w[x]Cf. Clearly, for a fixed
Y this property is in coNP. Thus for variablg the
6 Entailmentisin PSPACE property is inX§, thus in PSPACE. For testing Prop-

) o ) ~erty 3 one chooses non-deterministically a constraint
Theorem 6.1 Given an infinite signature, the entail- y'=f(y1,...,yn) in @ such thaty'Cyin ¢ and then

ment problem of Ines constraints is decidable in ;oq; recursively thap + A(D(V,i),y;) holds for all
PSPACE. 1<i<n.

_ _ _ , The complete computation for testing - A(V,y)
By the characterization described in Section 5, an en- (whereV’ U {y} C V(¢)) can be described by an and-
tailment judgementy =p+(7,) #Cy holds for a sat- g ree whose root is labeled with(V, ). Up to a re-

isfiable B1-B3 closed Ines copstraiqzotif and_ qnly if_ ordering of edges the tree fgr - A(V,y) is uniquely
Uy({x}) N Ly (y) # 0 holds. Slightly generalizing this  yatermined bye, V andy.

roperty forz, y we define a predicata(V, z) for V, y. .
Propery fore. y P V.2) Y The and-or tree for testing + A(W, z) has the fol-

lowing form: there are three kinds of nodes, or-nodes,
and-nodes and leaves. The root of the tree is an or-
node labeled by (W, z). Its leaves are either labeled
with T or F. An or-node is labeled with a term of
the form A(V,y) for someV andy. We now define
Lemma 6.3 (Correctness)For all ¢,V,y such that the set of sons of an or-nod¥ with label A(V,y):

Definition 6.2 ¢ = A(V,y) holds forV, y, ¢ if and on-
ly if both ¢ = com(V) andU,(V) N L,(y) # 0 are
valid.

¢ F com(V) holds, the statemert - A(V,y) is equi- if Properties 1 or 2 hold foy and V' then N has a
valent to the disjunction of the following three proper- unique son, a leaf labeled Bly. Otherwise, we con-
ties: sider the setM which contains all terms of the form

VCf(yi,...,yn) such thatn > 1 and there exists
1. existsv € V such thaty F v[e]Cy y' satisfyingy'=f(y1,...,yn) in p andy'Cy in ¢. If



A({z}.y)

o

{z}Cf(y2,2)

~ —~—
A({w%,lz},yg) A({x;,|x§},z)
{xé,xg}gf(yg,yg) F
VAN
A({x%i},ys) A({zl},y3>
T F

{ﬁ}gf(Z,yQ)

— ~N
A({wélz}z) A({wéf%}yz)
F {23, 23}C f(ys,93)
~ N
A({xé,lz},yiﬂ’) A({xgalz}ayS)
T T

Figure 2: The And-Or Tree proving. - A({z},y)

wCai A xi=f(y,25) A
ANxi=f(zi,2) Azi=a A

xCai Aai=f(z,23) A yh=1 (y3,y3) A yyCya A
A x22=f(2,23) Axi=a A ys=a A

ANy1=f(y2,2) N y1Cy A
ANyi=Ff(z,y2) N y/Cy A

TiCz A ziCz AxdCz A
x%gz A xggz A xggz

Figure 3: The Constraing,

M = () then the unique son dV is a leaf labeled by
F. If M # ( then the set of sons a¥ is the set of
and-nodes built from the labels . The sons of an
and-node with labeV C f (y1, ..., y,) are the or-nodes
built from the labelsA(D(V,1),y;) wherel <i <mn.

7 Ines versus Atomic Set Constraints

It may seem difficult to show that the entailment prob-

lems of atomic set constraints and of Ines constraints
are of the same complexity. Under the assumption of an
infinite signature, however, the problem can be settled

To illustrate this construction, we consider the const- due to the independence property of Ines constraints

raint ¢, given in Figure 3 which up to flattening is

essentially the same as considered in Section 4. TheTheorem 7.1 (Independence)nes constraints have

constrainty, is B1-B3 closed up to trivial constraints
that do not matter here.
e F A({x},y) is given in Figure 2.

Since ¢ is satisfiable, it guarantees for all pairs of

or-nodes on the same branch with labdl§/, y) and
A(V'y') thatV N V' = () holds. So, the length of a

The computation tree for ture. For all ¢, ¢, ..

the independence property in case of an infinite signa-
o On

n

P Ep+(7y) Vi iff3l<ji<n:g =p+(Ty) @
i=1

Corollary 7.2 For an infinite signature, the following

branch in the and-or-tree is lineary bounded in the size 4 problems are PSPACE complete: 1) Entailment of In-

of .

es constraints. 2) Satisfiability of Ines constraints with

As usuaL an and-or-tree can be evaluated to a Boo|earﬂegati0n. 3) Sat|Sf|a.b|I|ty of atomic set constraints with

value. For a satisfiable B1-B3 closed constraiats
and V, z the tree forp + A(V,z) evaluates tor if
and only ifo - A(V,z) holds. Note that the tree for
w. - A({z},y) evaluates tdl since its right subtree
does.

For constructing and evaluating a computation tree on
the fly, it is sufficient to memorize the information a-
long a single branch only. Hence, it follows that entail-

ment of Ines constraints is in PSPACE.

negation. 4) Entailment of atomic set constraints.

Proof. From Theorems 4.3, 6.1, and 7.1 O
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