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Abstract

We give an axiomatic treatment of fixed-point operators
in categories. A notion of iteration operator is defined, em-
bodying the equational properties of iteration theories. We
prove a general completeness theorem for iteration opera-
tors, relying on a new, purely syntactic characterisation of
the free iteration theory.

We then show how iteration operators arise in axiomatic
domain theory. One result derives them from the existence
of sufficiently many bifree algebras (exploiting the universal
property Freyd introduced in his notion of algebraic com-
pactness). Another result shows that, in the presence of a
parameterized natural numbers object and an equational
lifting monad, any uniform fixed-point operator is neces-
sarily an iteration operator.

1. Introduction

Fixed points play a central rôle in domain theory. Tra-
ditionally, one works with a category such asCppo, the
category ofω-continuous functions betweenω-complete
pointed partial orders. This possesses a least-fixed-point
operator, whose properties are well understood. For exam-
ple, a theorem of Bekic̆ states that least simultaneous fixed
points can be found in sequence by a form of Gaussian elim-
ination, see e.g. [33]. More generally, the equational theory
between fixed-point terms (µ-terms), induced by the least-
fixed-point operator, has been axiomatized as the freeiter-
ation theoryof Bloom andÉsik [3]. (This theory is known
to be decidable.) Also, Eilenberg [6] and Plotkin [25] gave
an order-free characterisation of the least-fixed-point opera-
tor as the unique fixed-point operator satisfying a condition
known asuniformity, expressed with respect to the subcate-
goryCppo⊥ of strict maps inCppo, see e.g. [15].

Nowadays, one appreciates thatCppo is one of many
possible categories of “domain-like” structures, each with
∗Research supported by EPSRC grant GR/K06109.
†Research supported by EPSRC grant GR/M56333.

an associated fixed-point operator. Not only are there many
familiar order-theoretic variations on the notions of com-
plete partial order and continuous function, but there are
also many categories of “domains” based on somewhat dif-
ferent principles — for example, categories of games and
strategies [21], realizability-based categories [20] and cate-
gories of abstract geometric structures [12]. Thus one needs
generally applicable methods for establishing properties of
the associated fixed-point operators.

In this paper, we analyse the equational properties of
fixed-point operators in arbitrary categories of “domain-
like” structures. In Section 2, we consider the basic notions
of (parameterized) fixed-point operator, Conway operator
and iteration operator, developed from analogous notions
in Bloom andÉsik’s study of iteration theories [3]. Our defi-
nitions are straightforward adaptations of Bloom andÉsik’s
to the general setting of a category with finite products. In
particular, the notion ofiteration operatoris intended to
capture all desirable equational properties of a fixed-point
operator, as exemplified by the many completeness results
for the free iteration theory in [3].

As in the case of the fixed-point operator onCppo, we
also consider a notion of(parameterized) uniformityfor
(parameterized) fixed-point operators. We define this in
general assuming a suitable functorJ : S → D from a
categoryS of “strict” maps. In practice, (parameterized)
uniformity serves two purposes. First, it is often satisfied
by a unique (parameterized) fixed-point operator, and so
characterises that operator. Second, any parametrically uni-
form Conway operator is an iteration operator, so parame-
terized uniformity is a convenient tool for establishing that
the equations of an iteration operator are satisfied.

In Section 3, we examine the equational theory of itera-
tion operators. We use a syntax of multisorted fixed-point
terms (µ-terms), which can be interpreted in any category
with an iteration operator. In any such category, Bloom
and Ésik’s axioms for iteration theories [3] are sound.
Bloom andÉsik provide numerous completeness theorems,
demonstrating that the iteration theory axioms are also com-
plete for deriving the valid equations in many familiar cat-
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egories with iteration operators. The first main contribu-
tion of this paper is a precise characterisation of the circum-
stances in which the iteration theory axioms are complete
(Theorem 1). This result accounts for all the examples in
[3]. It shows that, in non-degenerate categories, the sound-
ness of the iteration theory axioms implies their complete-
ness. This explains the ubiquity of completeness results for
the free iteration theory.

Our completeness theorem follows from a new, purely
syntactic characterisation of the free iteration theory as
a maximal theory satisfying two properties:closed con-
sistencyand typical ambiguity(Theorem 2). This result,
which is of interest in its own right, was inspired by Stat-
man’s characterisation ofβη-equality in the simply-typed
λ-calculus [31].

The remainder of the paper is devoted to providing con-
ditions for establishing the existence (and uniqueness) of
parametrically uniform Conway operators (hence iteration
operators). In one common setting, which arises in ax-
iomatic domain theory [13, 10, 12], one has that the cate-
goryD of “domains” is obtained as the co-Kleisli category
of a comonad on the category of strict mapsS. (For exam-
ple,Cppo is the co-Kleisli category of the lifting comonad
on Cppo⊥.) In axiomatic domain theory,S satisfies a cu-
rious property, first identified by Freyd [13, 14]: a wide
class of endofunctors onS have initial algebras whose in-
verses are final coalgebras (in Freyd’s terminology,S is
algebraically compact). Following [7], we call such ini-
tial/final algebras/coalgebrasbifree algebras. (In the exam-
ple of Cppo⊥, everyCppo-enriched endofunctor has a
bifree algebra [10].)

In Section 5, we give a quick overview of initial algebras,
final coalgebras and bifree algebras, including a couple of
minor new propositions. Then, in Section 6, we show how
bifree algebras inS can induce properties of fixed-point op-
erators inD. This programme was begun by Freyd and oth-
ers [13, 5, 24, 28]. A further step was taken by Moggi, who,
in unpublished work, gave a direct verification of the Bekic̆
equality. Here, we give the complete story, showing how the
presence of sufficiently many bifree algebras determines a
unique parametrically uniform Conway operator (hence it-
eration operator).

In Section 7 we show how the Conway operator iden-
tities can be established without assuming the existence of
the bifree algebras used in Section 6. This is possible when
the categoryS of “strict” maps arises as the category of al-
gebras for a “lifting monad” on a suitable category of “pre-
domains”C. (For example,Cppo⊥ is the category of alge-
bras for the usual lifting monad on the categoryCpo of, not
necessarily pointed,ω-complete partial orders.) Axiomati-
cally, we assume thatC is a category with finite products, a
monad embodying the equational properties of partial map
classifiers (anequational lifting monad[4]), partial func-

tion spaces (Kleisli exponentials[22, 28]), and a (parameter-
ized) natural numbers object. These conditions are always
satisfied by the categories of predomains that arise in ax-
iomatic and synthetic domain theory [10, 12, 20, 11, 26, 30].
Theorem 4 states that such categories support at most one
uniform recursion operator (aT -fixed-point operator), and
moreover it determines a unique parametrically uniform
Conway operator on the associated category of domains.
Thus, in the presence of a lifting monad and a parameter-
ized natural numbers object, uniformity alone implies all
equational properties of fixed points.

2. Fixed-point operators

In this section we give an overview of the various no-
tions of fixed-point operator we shall be concerned with.
We work with a category,D, with distinguished finite prod-
ucts, to be thought of as a category of “domains”. We write
1 for the terminal object.

Definition 2.1 (Fixed-point operator) A fixed-point oper-
ator is a family of functions(·)∗ : D(A, A) → D(1, A)
such that, for anyf : A - A, f ◦ f∗ = f∗.

Definition 2.2 (Parameterized fixed-pt. op.)A parame-
terized fixed-point operatoris a family of functions
(·)† : D(X ×A,A) → D(X,A) satisfying:

1. (Naturality.)

For anyg : X - Y and f : Y × A - A,
f† ◦ g = (f ◦ (g × idA))† : X - A.

2. (Parameterized fixed-point property.)

For anyf : X ×A - A,
f ◦ 〈idX , f†〉 = f† : X - A.

Observe that a parameterized fixed-point operator corre-
sponds to a family of fixed-point operators(·)∗X in the co-
Kleisli categoriesDX×(−) of X × (−) comonads. In this
formulation, naturality states that, for anyg : X - Y ,
the induced functorHg : DY×(−) → DX×(−) preserves
the fixed-point operators in the sense that, for any endomor-
phism inDY×(−), given by a morphismf : Y ×A - A
in D, it holds thatHg(f∗Y ) = (Hgf)∗X .

In practice, well-behaved fixed-point operators satisfy
many other equations that do not follow from the fixed-point
property alone.

Definition 2.3 (Dinaturality) A fixed-point operator is
said to bedinatural if, for every f : A - B and
g : B - A, it holds that(f ◦ g)∗ = f ◦ (g ◦ f)∗.

Definition 2.4 (Conway operator) A Conway operatoris
a parameterized fixed-point operator that, in addition, satis-
fies:



3. (Parameterized dinaturality.)

For anyf : X ×B - A andg : X ×A - B,
f ◦ 〈idX , (g ◦ 〈π1, f〉)†〉 = (f ◦ 〈π1, g〉)† : X - A.

4. (Diagonal property.)

For anyf : X ×A×A - A, (f ◦ (idX ×∆))† =
(f†)† : X - A (where∆ : A - A × A is the
diagonal map).

It is easily seen that (parameterized) dinaturality implies the
(parameterized) fixed-point property, so 2 of Definition 2.2
is redundant in the axiomatization of Conway operators.

The reason for singling out dinaturality is that it is a con-
cept that makes sense for unparameterized fixed-point op-
erators. It is also a powerful property. In special circum-
stances, it alone characterises a unique well-behaved fixed-
point operator [29].

Mainly, however, we shall be interested in well behaved
parameterized fixed-point operators, and the notion of Con-
way operator is appropriate. Conway operators are so
named because their axioms correspond to those of theCon-
way theoriesof Bloom andÉsik [3]. They have also arisen
independently in work of M. Hasegawa [16] and Hyland,
who established a connection with Joyal, Street and Verity’s
notion of trace [18]. The definition of trace makes sense
in any braided monoidal category. Hasegawa and Hyland
showed that, in the special case that the monoidal product
is cartesian, traces are in one-to-one correspondence with
Conway operators.

There are many alternative axiomatizations for Conway
operators. The axioms for a trace provide one possibility.
Other options are discussed in [3, 16]. The following im-
portant property often appears in variant axiomatizations.

Proposition 2.5 (Bekĭc property) For any Conway opera-
tor, given〈f, g〉 : X × A × B - A × B, it holds that
〈f, g〉† = 〈h, (g ◦ (〈idX , h〉 × idB))†〉 : X - A × B,
whereh = (f ◦ 〈idX×A, g†〉)† : X - A.

In spite of such consequences, there are basic equalities
that Conway operators do not necessarily satisfy; for exam-
ple, it is not true in general thatf∗ = (f ◦ f)∗ for an en-
domorphismf . Thecommutative identitiesof Bloom and
Ésik [3] ensure that such “missing” equalities do hold.

Definition 2.6 (Iteration operator) An iteration operator
is a Conway operator that, in addition, satisfies:

5. (Commutative identities.)

Givenf : X ×Am - A and morphisms
ρ1, . . . , ρm : Am - Am such that eachρi =
〈pi1, . . . , pim〉 is a tuple of projections (i.e. eachpij is
one of them projectionsπ1, . . . , πm : Am - A),
it holds that

〈f ◦ (idX × ρ1), . . . , f ◦ (idX × ρm)〉† =
∆m ◦ (f ◦ (idX ×∆m))† : X - Am

(HereAm is them-fold powerA× . . .×A, and
∆m : A - Am is the diagonal.)1

The complex formulation of the commutative identities
means that they can be hard to establish in practice. One
way of reducing the complexity is to look for simpler
equational axiomatizations. For example,Ésik [9] has re-
cently proved that it suffices to consider certain instances
of the commutative identities generated, in an appropriate
sense, by finite groups. However, in many situations, it is
more convenient to derive the commutative identities from
(more easily established) non-equational properties that im-
ply them. Many examples of such properties are given by
Bloom andÉsik [3]. In this paper we shall be concerned
with one such property:(parameterized) uniformity.

To define (parameterized) uniformity, we suppose given
a categoryS with finite products and the same objects asD,
together with a functorJ : S → D that strictly preserves
finite products and is the identity on objects. We use the
symbol ◦ for maps inS, and we call morphisms inD
in the image ofJ strict. (We really just need the subcategory
ofD consisting of strict maps, but the functorial formulation
will be helpful in Section 6. Observe that morphisms given
purely by the finite product structure onD are strict.)

Definition 2.7 (Uniformity) A fixed-point operator is said
to beuniform(with respect toJ) if, for any f : A - A,
g : B - B andh : A ◦ B, Jh◦f = g ◦Jh implies
g∗ = Jh ◦ f∗.

Definition 2.8 (Parameterized uniformity) A parameter-
ized fixed-point operator is said to beparametrically uni-
form if, for any f : X × A - A, g : X × B - B
andh : A ◦ B, Jh ◦ f = g ◦ (idX × Jh) implies
g† = Jh ◦ f†.

Observe that parameterized uniformity is just the state-
ment that the fixed-point operator(·)∗X in each co-Kleisli
categoryDX×(−) is uniform with respect to the composite
functorS → D → DX×(−). Hasegawa gives an interesting
reformulation of parameterized uniformity directly in terms
of a trace [16]. IfS is defined to be the subcategory of
morphisms given purely by the finite product structure on
D, then parameterized uniformity is exactly thefunctorial
dagger implication for base morphismsof [3].

Proposition 2.9 Any parametrically uniform Conway op-
erator is an iteration operator.

The proof is an easy application of the strictness of all diag-
onals∆m : A - Am.

The converse to proposition 2.9 does not hold in general,
see [8].

1Strictly speaking, we consider only instances of the commutative iden-
tities of [3] in which their “surjective base morphism”ρ is a diagonal∆m.
The general commutative identities of [3] follow from such instances, us-
ing properties of Conway operators.



3. Completeness

In this section we introduce Bloom and́Esik’s iteration
theories[3], using a syntax of multisorted fixed-point terms
(µ-terms). We prove a very general completeness theorem
(Theorem 1) for the free iteration theory relative to interpre-
tations in categories with iteration operators. The complete-
ness theorem follows from a new syntactic characterisation
of the free iteration theory (Theorem 2).

We assume given a nonempty collection of base types
(or sorts), over whichα, β, . . . range. Typesσ, τ, . . . are
either base types or product typesσ1 × . . . × σn (for
n ≥ 0). We useσn as an abbreviation for then-fold
power σ × . . . × σ. We assume also a signature given
by a setΣ of function symbols, each with an associated
typing information of the form(α1, . . . , αn;β) (there is no
loss of generality in considering only base types here). We
loosely refer to both(α1, . . . , αn; β) andn as thearity of
the function symbol. Constants are considered as func-
tion symbols with arity0. We assume a countably infi-
nite set of variable symbolsx, y, . . . A variable is a pair,
written xσ, consisting of a variable symbol and a type (we
omit the type superscript when convenient). Terms and
their types are given by: each variablexσ is a term of
type σ; if t1, . . . , tn are terms of (base) typesα1, . . . , αn

and f is a function symbol of arity(α1, . . . , αn; β) then
f(t1, . . . , tn) is a term of (base) typeβ; if t1, . . . , tn are
terms of typesσ1, . . . , σn then〈t1, . . . , tn〉 is a term of type
σ1 × . . . × σn; if t is a term of typeσ1 × . . . × σn then
πit, where1 ≤ i ≤ n, is a term of typeσi; if t is a term
of type σ then µxσ. t is a term of typeσ. As usual, the
variablex is bound byµ in µx. t. We identify terms up to
α-equivalence, writingt ≡ t′ for the identity of terms. We
write t(xσ1

1 , . . . , xσk
k ) : τ for a term of typeτ all of whose

free variables are contained inxσ1
1 , . . . , xσk

k . We call a term
with no free variablesclosed. We write the substitution ofn
termst1, . . . , tn for n distinct free variablesx1, . . . , xn (of
the correct types) in a termt as t[t1, . . . , tn / x1, . . . , xn].
Given t(~y, xσ1

1 , . . . , xσn
n ) : σ1 × . . . × σn, we use the con-

venient notationµ〈xσ1
1 , . . . , xσn

n 〉. t to represent the term
µxσ1×...×σn . t[π1x, . . . , πnx /x1, . . . , xn].

A theory, T , is a typed congruence relation on terms that:
contains the product equations, i.e.T ` πi〈t1 . . . , tk〉 = ti
andT ` t = 〈π1t, . . . , πkt〉 (for t : σ1 × . . . × σk); and is
closed under substitution (i.e. ifT ` t = t′ ands : σ then
T ` t[s/xσ] = t′[s/xσ]). For any theory,T ` t = t′ if and
only if T ` (t = t′)[〈x1

σ1 , . . . , xn
σn〉/xσ1×...×σn ] where

x1, . . . , xn are fresh variables. Thus a theory is determined
by its equations between terms whose only free variables
are of base type. We say thatT is consistentif there are two
termst, t′ of the same type such thatT 6` t = t′. We say
thatT is closed-consistentif there are two such terms that
are closed.

We now axiomatizeConway theories, in whichµ corre-
sponds to a Conway operator, anditeration theories, identi-
fying the equational properties of an iteration operator.

Definition 3.1 (Conway theory) A theoryT is said to be a
Conway theoryif it satisfies two axioms:

1. (Dinaturality.)

For anyt(~z, yτ ) : σ andt′(~z, xσ) : τ ,
T ` µx. t[t′/y] = t[µy. t′[t/x]/y] : σ.

2. (Diagonal property.)

For t(~z, xσ, yσ) : σ, T ` µx. t[x/y] = µx. µy. t : σ.

These axioms are just the multisorted version of the axiom-
atization given by Corollary 6.2.5 of [3], where dinaturality
and the diagonal property are called thecomposition iden-
tity and thedouble dagger identityrespectively.

Definition 3.2 (Iteration theory) We say that a Conway
theoryT is an iteration theoryif it satisfies the following
axiom schema.

3. (Amalgamation.)

For any termst1, . . . , tn(~z, xσ
1 , . . . , xσ

n) : σ and
s(~z, yσ) : σ, supposeti[y, . . . , y / x1, . . . , xn] ≡ s,
for all i with 1 ≤ i ≤ n, then it follows thatT `
µ〈x1, . . . , xn〉. 〈t1, . . . , tn〉 = 〈µy. s, . . . , µy. s〉 : σn.

Amalgamation is very close to the commutative identities
of [3] (as in Definition 2.6). An alternative formulation is
employed in [17], whosealphabetic identification identity
is equivalent to amalgamation.

We writeF for the smallest Conway theory (generated
by the given base types and signature), andI for the small-
est iteration theory. As is shown in [3],I completely cap-
tures the valid identities in a wide class of models, includ-
ing Cppo. We writeI∗ for the smallest iteration theory
in which all closed terms (with identical types) are equated.
AlthoughI∗ is not a closed-consistent theory, it is nonethe-
less consistent. In fact,I∗ exactly captures the valid identi-
ties inCppo⊥. Our aim in this section is to prove a general
completeness theorem, accounting for all such complete-
ness results forI andI∗.

First, we consider the interpretation ofµ-terms in any
categoryD with finite products and a family of functions
(·)† : D(X × A, A) → D(X, A) satisfying the naturality
property of Definition 2.2. Aninterpretationis determined
by a function[[·]] from base types to objects ofD, together
with a function mapping each function symbolf , of arity
(α1, . . . , αk;β), to a map[[f ]] : [[α1]]× . . .× [[αk]] - [[β]].
The first function extends (using products) to one from ar-
bitrary types to objects ofD, and the second extends to
one mapping any termt(xσ1

1 , . . . , xσk
k ) : τ to a morphism



[[t]] : [[σ1]] × . . . × [[σk]] - [[τ ]]. Such an interpretation
determines a theoryT[[·]] defined byT[[·]] ` t(~x) = t′(~x) iff
[[t]] = [[t′]]. We have no reason to favour one interpretation
in D over another, so we shall be more interested in the the-
ory determined by the category itself. This theory,TD, is
defined byTD ` t(~x) = t′(~x) iff, for all interpretations[[·]]
in D, it holds that[[t]] = [[t′]].

It is immediate from the definitions that if(·)† is a Con-
way operator thenTD is a Conway theory (i.e.F ⊆ TD). It
is also straightforward (although not quite immediate) that
if (·)† is an iteration operator thenTD is an iteration the-
ory (i.e. I ⊆ TD). Further, if every hom-setD(1, X) is a
singleton2 (i.e. if 1 is a zero object inD) thenI∗ ⊆ TD.

Theorem 1 (Completeness)If (·)† onD is an iteration op-
erator then:

1. If there exists a hom-setD(1, X) containing at at least
two distinct morphisms thenTD = I.

2. If 1 is a zero object and there exists a hom-setD(X,Y )
containing two distinct morphisms thenTD = I∗.

The only examples not captured by one of the conditions
above are categoriesD equivalent to the terminal category,
in which caseTD is the inconsistent theory.

We prove the theorem by obtaining a syntactic charac-
terisation of the free iteration theory. Suppose that(·)∗ is
any function from base types to types. Suppose also that
θ is a function mapping each function symbolf of arity
(α1, . . . , αn; β) to a termfθ(zα∗1

1 , . . . , zα∗n
n ) : β∗. Then

(·)∗ extends (by substitution) to an endofunction on types.
Similarly, θ extends to a function on terms, mapping each
t(xσ1

1 , . . . , xσk
k ) : τ to a termtθ(xσ∗1

1 , . . . , xσ∗k
k ) : τ∗, de-

fined inductively on the structure oft by:

xσθ = xσ∗

f(t1, . . . , tn)θ = fθ[t1θ, . . . , tnθ / z1, . . . , zn]
(µxσ. t)θ = µxσ∗ . (tθ)
〈t1, . . . , tn〉θ = 〈t1θ, . . . , tnθ〉
(πit)θ = πi(tθ).

We say thatT is typically ambiguousif T ` t = t′ : σ
implies, for all(·)∗ andθ as above,T ` tθ = t′θ : σ∗. In
the terminology of [9],T is typically ambiguous iff it con-
tains thevector formsof all its equations.F , I andI∗ are
all examples of typically ambiguous theories. In each case,
one proves thatt = t′ impliestθ = t′θ by a straightforward
induction on the derivation oft = t′.

Theorem 2

1. The only consistent typically ambiguous iteration the-
ories areI andI∗.

2Note that the existence of(·)† implies thatD(1, X) is always
nonempty.

2. If T is a closed-consistent typically ambiguous Con-
way theory thenT ⊆ I.

3. If T is a consistent typically ambiguous Conway the-
ory thenT ⊆ I∗.

The proof is outlined in the next section.
The theorem characterisesI∗ as the greatest element in

the partially ordered set of consistent typically ambiguous
Conway theories (ordered by inclusion). Also, whenΣ is
nonempty,I is the maximum closed-consistent typically
ambiguous Conway theory. (IfΣ is empty thenI is not
closed-consistent, indeedI = I∗.) For countableΣ, there
are2ℵ0 typically ambiguous Conway theories (this follows
from the analysis of the group identities in [9]).

Theorem 1 follows easily from Theorem 2. First observe
that for anyD and(·)† (natural inX), the theoryTD is al-
ways typically ambiguous (because any(·)∗ and θ deter-
mine a mapping between interpretations). AlsoTD is con-
sistent if and only ifD is non-trivial (i.e. not equivalent
to the terminal category); and it is closed-consistent if and
only if Σ is nonempty and there exists a hom-setD(1, X)
with at least two distinct elements. With these observations,
Theorem 1 is immediate.

4. Proof of Theorem 2

The first part of the proof follows the standard proof of
the completeness of the free iteration theory relative to an
interpretation in regular trees, see, in particular, Sections 5.4
and 6.4–5 of [3] (see also the recent [17]). We outline the
main steps, because the associated notion of normal form
and its properties are needed for Lemma 4.3.

The notion of normal form is defined for terms
s(xα1

1 , . . . , xαk
k ) : σ (with only free variables of base type),

by induction on the structure ofσ. For base typesβ, the
normal forms are termsπ1(µ〈yβ1

1 , . . . , yβm
m 〉.〈u1, . . . , um〉)

whereβ1 is β such that, for eachi with 1 ≤ i ≤ m, one of
three possibilities holds forui: (i) ui is yi (note it cannot be
yj for j 6= i); (ii) ui is a free variable fromx1, . . . , xk; (iii)
ui is of the formfi(ypi(1), . . . , ypi(ai)) for some function
symbolfi (with arity ai) and functionpi : {1, . . . , ai} →
{1, . . . , m}. For product typesσ1 × . . . × σn the normal
forms are terms〈s1, . . . , sn〉 where eachsi is in normal
form. The restriction to free variables of base type is just a
syntactic convenience to avoid considering additional sub-
terms (such as projections on variables of product type).

Lemma 4.1 For any termt(xα1
1 , . . . , xαk

k ) : σ, there exists
a terms in normal form such thatF ` t = s : σ.

We next define two interpretations of normal forms
of base type as (regular) trees. Consider a term
u(xα1

1 , . . . , xαk
k ) : β1 × . . . × βm of the form



µ〈y1, . . . , ym〉. 〈u1, . . . , um〉 subject to the restrictions im-
posed in the definition of normal form. For mnemonic ben-
efit, we henceforth useyi (where1 ≤ i ≤ m) to represent
the termπi(u). To each such termyi we assign trees,[[yi]]
and [[yi]]∗, whose nodes are labelled by elements from the
setΣ+ = Σ ∪ {⊥β1 , . . . ,⊥βm} ∪ {xα1

1 , . . . , xαk
k }.

Formally, such a tree,t, is a partial function fromN∗ (fi-
nite sequences of natural numbers) toΣ+ whose domain of
definition is nonempty, closed under prefixes and satisfies:
for anyw ∈ N∗, t(wn) is defined if and only ift(w) ∈ Σ,
1 ≤ n ≤ arity(t(w)) and the result type oft(wn) is the
n-th argument type oft(w). Given such a tree,t, and an
elementw ∈ N∗ such thatt(w) is defined, we writet@w
for the subtreew′ 7→ t(ww′). We say thatt is regular if the
set of all its subtrees,{t@w | t(w) is defined}, is finite.

To define[[yi]], we first define a partial functionρi from
N∗ to{1, . . . , m}. On the empty sequence,ε, defineρi(ε) =
i. On a nonempty sequencewn, ρi(wn) is defined iffρi(w)
is defined,uρi(w) is fj(ypj(1), . . . , ypj(aj)) and1 ≤ n ≤
aj ; in which caseρi(wn) = pj(n). Finally, we define a
functionλ : {1, . . . ,m} → Σ+ by: if ui is yi thenλ(i) =
⊥βi ; if ui is a free variablex thenλ(i) = x; and if ui is
fi(ypi(1), . . . , ypi(ai)) thenλ(i) = fi. The desired tree[[yi]]
is defined as the composition[[yi]] = λ ◦ ρi.

We define[[yi]]∗ from [[yi]] as follows. Say thatw is
open in [[yi]] if there existsw′ such that[[yi]](ww′) ∈
{xα1

1 , . . . , xαk
k }. Say thatw is closedin [[yi]] if [[yi]](w) is

defined andw is not open. Say thatw is minimally closedif
it is closed, but no proper prefix is. Then[[yi]]∗(w) is defined
if and only ifw is either open in[[yi]] or minimally closed. In
the case thatw is open, define[[yi]]∗(w) = [[yi]](w). In the
case thatw is minimally closed, define[[yi]]∗(w) = ⊥βρi(w) .

Given a normal form of base type,s(xα1
1 , . . . , xαk

k ) : β,
we have thats ≡ π1(u) for someu of the form above. Ac-
cordingly, we have trees[[s]] = [[y1]] and[[s]]∗ = [[y1]]∗ asso-
ciated tos itself.

Lemma 4.2 For normal formss, s′(x1
α1 , . . . , xk

αk) : β:

1. If [[s]] = [[s′]] thenI ` s = s′.

2. If [[s]]∗ = [[s′]]∗ thenI∗ ` s = s′.

The lemma is proved by defining, for every regular treet,
a canonical normal formtt. One then proves that, for ev-
ery normal forms, I ` s = t[[s]] andI∗ ` s = t[[s]]∗ .
This requires various consequences of amalgamation. Sim-
ilar arguments can be found in Sections 5.4 and 6.4–5 of [3]
and also in [17]. The lemma follows.

The argument thus far has established the known com-
pleteness of the iteration theory axioms relative to regular
trees. To prove Theorem 2, we show that distinct regular
trees can never be identified in a typically ambiguous way
without losing (closed) consistency. The proof adapts the
“Böhm-out” method from theλ-calculus [1].

Lemma 4.3 SupposeT is a typically-ambiguous Conway
Theory,s, s′(x1

α1 , . . . , xk
αk) : β are normal forms and

T ` s = s′.

1. If T is closed-consistent then[[s]] = [[s′]].

2. If T is consistent then[[s]]∗ = [[s′]]∗.

PROOF For statement 1, suppose[[s]] 6= [[s′]]. Let r : σ
be any closed term. We show thatT ` r = µyσ. y. ThusT
is not closed-consistent.

Let w ∈ N∗ be a sequence of minimum length such
that [[s]](w) 6= [[s′]](w) (both [[s]](w) and[[s′]](w) are there-
fore defined). Without loss of generality, we assume that
[[s]](w) 6= ⊥. We shall define a suitable(·)∗ andθ (as in
the definition of typical ambiguity) allowing us to bring the
disagreement between[[s]] and[[s′]] up to the top level.

We write w as n1 . . . nd (whered ≥ 0), and wi for
its prefix n1 . . . ni (where0 ≤ i ≤ d). For each base
type α, defineα∗ = σd+1, whereσ is the type of the
closed termr. For each function symbolf , of arity
(α1, . . . , αn;β′), we definefθ(z1

σd+1
, . . . , zn

σd+1
) : σd+1

by fθ = 〈uf
1 , . . . , uf

d+1〉 where:

uf
i =







πi+1(zni) if 1 ≤ i ≤ d and[[s]](wi−1) = f
r if i = d + 1 and[[s]](w) = f
µyσ. y otherwise.

Then, as in the definition of typical ambiguity,θ determines
termssθ, s′θ(x1

σd+1
, . . . , xk

σd+1
) of typeσd+1. By typical

ambiguity,T ` sθ = s′θ. Define termst1, . . . , tk : σd+1

by: ti is 〈µyσ. y, . . . , µyσ. y〉 if [[s]](w) 6= xi, and ti is
〈r, . . . , r〉 if [[s]](w) = xi (only the last component of
these tuples is important). We write[~t/~x] for the sub-
stitution [t1, . . . , tk/x1

σd+1
, . . . , xk

σd+1
]. By the substitu-

tion property of theories,T ` sθ[~t/~x] = s′θ[~t/~x]. How-
ever, we prove below thatF ` π1(sθ[~t/~x]) = r and
F ` π1(s′θ[~t/~x]) = µyσ. y. Thus indeedT ` r = µyσ. y.

For the proof thatF ` π1(sθ[~t/~x]) = r, sup-
pose s is π1(u) where u is a term of the form
µ〈y1, . . . , ym〉. 〈u1, . . . , um〉. As earlier, we writeyi for
the termπi(u). We writeρ for the partial functionρ1 from
N∗ to {1, . . . ,m} used in the definition of[[s]]. By working
from i = d + 1 down toi = 1, one calculates that, for anyi
with 1 ≤ i ≤ d + 1, it holds that

F ` πi(yρ(wi−1)θ[~t/~x]) = r.

The desired equality is just the special casei = 1.
The proof thatF ` π1(s′θ[~t/~x]) = µyσ. y is very simi-

lar, again proving an equality fori = d+1 which propagates
down to the desired case fori = 1, using the normal form
expansion ofs′. The crucial fact required in the argument
is that[[s′]](wi−1) = [[s]](wi−1) if and only if i ≤ d, which
follows from the choice ofw.



For statement 2, suppose[[s]]∗ 6= [[s′]]∗. Let xσ be any
variable. We show thatT ` xσ = µyσ. y. ThusT is not
consistent.

Let w ∈ N∗ be a sequence such that: (i)
[[s]]∗(w) ∈ {xα1

1 , . . . , xαk
k }; and (ii) [[s′]]∗(w) is undefined

or [[s′]]∗(w) 6= [[s]]∗(w). (Such a sequencew can always be
found, by swappings ands′ if necessary.)

As before, writew asn1 . . . nd (whered ≥ 0), andwi
for n1 . . . ni (where0 ≤ i ≤ d). For each base typeα,
defineα∗ = σd+1. For each function symbolf , of arity
(α1, . . . , αn;β′), we definefθ(z1

σd+1
, . . . , zn

σd+1
) : σd+1

by fθ = 〈uf
1 , . . . , uf

d+1〉 where:

uf
i =

{

πi+1(zni) if [[s]]∗(wi−1) = f
µyσ. y otherwise.

θ determines termssθ, s′θ(x1
σd+1

, . . . , xk
σd+1

) : σd+1. By
typical ambiguity,T ` sθ = s′θ. Definet1, . . . , tk : σd+1

by: ti is 〈µyσ. y, . . . , µyσ. y〉 if [[s]]∗(w) 6= xi, and ti is
〈µyσ. y, . . . , µyσ. y, xσ〉 if [[s]]∗(w) = xi. By substitu-
tion, T ` sθ[~t/~x] = s′θ[~t/~x]. Then, much as above,
F ` π1(sθ[~t/~x]) = xσ andF ` π1(s′θ[~t/~x]) = µyσ. y.
ThusT ` xσ = µyσ. y as required. �

We now complete the proof of Theorem 2. We have
already seen thatI andI∗ are typically ambiguous Con-
way theories. Consistency can be shown easily by giving a
non-trivial semantics. To show thatI contains any closed-
consistent typically-ambiguous Conway theory, letT be
any such theory. We must show thatT ` t = t′ implies
I ` t = t′. As T is determined by its equations between
terms whose only free variables are of base type, it suffices
to show the implication for such termst, t′. Suppose then
that T ` t = t′ : σ. By Lemma 4.1, there exist normal
forms s, s′ such thatF ` t = s andF ` t′ = s′, so also
T ` s = s′. One shows, by induction onσ, thatI ` s = s′

henceI ` t = t′. If σ is a base type then this follows from
Lemmas 4.3 and 4.2. For product types, the induction step
is easy. The maximality ofI∗ amongst consistent typically-
ambiguous Conway theories is established similarly.

5. Initial and bifree algebras

In the remainder of the paper, we show that parametri-
cally uniform Conway operators arise from universal prop-
erties in axiomatic approaches to semantics. A principal
tool we use is the notion ofbifree algebra, embodying the
fundamental universal property introduced by Freyd in his
work on algebraic compactness [13], which combines the
properties of initial algebras and final coalgebras. In this
section, we briefly review the relevant concepts.

Given an endofunctorF on a categoryC, anF -algebra
is a morphisma : FA - A. An F -algebra homomor-

phismfrom a : FA - A to b : FB - B is a mor-
phismf : A - B such thatf ◦ a = b ◦ Ff . An initial
F -algebrais an initial object in the category ofF -algebras
and homomorphisms.

The results below summarise some properties of initial
algebras. Propositions 5.3 and 5.4 appear to be new.

Proposition 5.1 (Lambek) If a : FA - A is an initial
F -algebra thena is an isomorphism.

Proposition 5.2 (Freyd [13]) If F 2 has an initial algebra
thenF has an initial algebra,a : FA - A say, and
a ◦ Fa is an initial F 2-algebra. Conversely, ifC has binary
products andF has an initial algebra then so doesF 2.

Proposition 5.3 For functorsF : C → D andG : D → C
between any two categoriesC andD, if a : GFA - A
is an initial GF -algebra in C then Fa is an initial FG-
algebra inD.

Proposition 5.4 Suppose idempotents inC split, F is a re-
tract of G in the category of endofunctors onC, andG has
an initial algebrab : GB - B. ThenF also has an
initial algebraa : FA - A whereA is a retract ofB.

An F -coalgebrais a morphisma′ : A - FA, and
a final F -coalgebra is a terminal object in the evident cate-
gory of F -coalgebras and homomorphisms. Abifreealge-
bra forF is a morphisma : FA - A such thata is an
initial F -algebra anda−1 is a finalF -coalgebra (a is an iso-
morphism by Lambek’s result above). All the propositions
above have evident analogues applying to final coalgebras
and bifree algebras.

One word of warning, in addition to algebras and coal-
gebras for endofunctors (as discussed above), we shall also
make considerable use of algebras for monads and coalge-
bras for comonads. To avoid ambiguity, we shall always
refer to such (co)algebras as (co)monad (co)algebras.

6. Fixed points from bifree algebras

In this section we show how parametrically uniform
Conway operators arise in axiomatic domain theory. We
work in a very general setting in which the categoryD of
“domains” arises as the co-Kleisli category of a comonad
on the categoryS of “strict maps”.

Suppose then thatS is a category with finite products,
and (L, ε, δ) is a comonad onS. We writeD for the co-
Kleisli category of the comonad,J : S → D for the functor
which is the right-adjoint part of the pair of adjoint func-
tors determined by (and determining) the comonad, and
K : D → S for the left-adjoint part. ThenJ is the identity
on objects and, as it is a right adjoint,D has finite products
andJ preserves them. Thus we are in a situation to apply



the concepts introduced in Section 2. As there, we use the
symbol ◦ for morphisms inS. We shall find condi-
tions onS andL such thatD has a parametrically uniform
Conway operator, indeed a unique one.

We begin with a fundamental proposition relating bifree
algebras and fixed-point operators.

Proposition 6.1 If L : S → S has a bifree algebra then
D has a unique uniform fixed-point operator. IfL2 has a
bifree algebra then this fixed-point operator is dinatural.

Although a similar result is proved in [13], here, in stat-
ing the proposition with respect to an arbitrary comonad on
S, we are placing the result in what we believe to be its
natural general setting. The possibilities this provides are
thoroughly exploited in the proofs of Proposition 6.5 and
Theorem 3 below. That said, the proof of Proposition 6.1,
outlined below, is essentially due to Freyd [13].

Let s : LΦ ◦ Φ be the bifree algebra forL onS. The
L-algebras : LΦ ◦ Φ corresponds to an endomorphism
s : Φ - Φ in D. The next two lemmas give the critical
properties ofs in D.

Lemma 6.2 For any f : A - A there exists a unique
uf : Φ ◦ A such thatf ◦ Juf = Juf ◦ s.

Lemma 6.3 There exists a unique map∞ : 1 - Φ such
thats ◦∞ = ∞.

The proof thatD has a unique uniform fixed-point operator
follows swiftly from Lemmas 6.2 and 6.3. The argument is
carried out directly inD. Define(·)∗ : D(A,A) → D(1, A)
by f∗ = Juf ◦ ∞ . Then(·)∗ is a fixed-point operator by:
f ◦ f∗ = f ◦ Juf ◦ ∞ = Juf ◦ s ◦ ∞ = Juf ◦ ∞ = f∗.
For uniformity, suppose we haveh, g with Jh◦f = g ◦Jh,
as in Definition 2.7 ThenJ(h ◦ uf ) ◦ s = Jh ◦ f ◦ Juf =
g◦J(h◦uf ), soh◦uf = ug (by the uniqueness ofug). Thus
indeedJh ◦ f∗ = Jh ◦ Juf ◦ ∞ = Jug ◦ ∞ = g∗. For
uniqueness, suppose(·)∗′ is any fixed-point operator. Then
s∗
′
= ∞ by the uniqueness part of Lemma 6.3. If, further,

(·)∗′ is uniform then, becausef ◦ Juf = Juf ◦ s, we have
f∗

′
= Juf ◦ s∗

′
= Juf ◦∞ = f∗.

It remains to prove the dinaturality claim of Proposition
6.1. Suppose thatL2 has a bifree algebra. (By Proposition
5.2, this itself implies thatL has a bifree algebra.) Again,
the argument follows Freyd [13].

Lemma 6.4 For any f : A - A in D, it holds that
f∗ = (f ◦ f)∗.

The lemma is first proved fors : Φ - Φ, using the fact
thats ◦ Ls : L2Φ ◦ Φ is a bifreeL2-algebra, as given
by Proposition 5.2. It follows for arbitraryf by uniformity.

Dinaturality is an easy consequence of the lemma. Given
f : A - B andg : B - A, consider the mapq =

c ◦ (f × g) : A×B - A×B, wherec is the symmetry
map for product. Thenq∗ = (q ◦ q)∗ = 〈(g ◦ f)∗, (f ◦ g)∗〉,
where the last equality is obtained by uniformity. It follows
thatq ◦ 〈(g ◦ f)∗, (f ◦ g)∗〉 = 〈(g ◦ f)∗, (f ◦ g)∗〉, which
implies the desired equality.

In the remainder of the section, we obtain conditions that
imply thatD has a parametrically uniform Conway opera-
tor. The main strategy is to instantiate Proposition 6.1 by
varying the comonad. This will allow us to derive all the
properties of Conway operators by assuming the existence
of enough bifree algebras. The first example of such an ap-
plication is to obtain a parameterized fixed-point operator.

Proposition 6.5 If every endofunctorL(X×(−)) onS has
a bifree algebra thenD has a unique parametrically uni-
form parameterized fixed-point operator.

The proof is by instantiating Proposition 6.1 using the end-
ofunctorsL(X × (−)) as comonads. The comonad struc-
ture is most easily seen by considering the composite func-
tor S - D - DX×(−), which has a left adjoint,
thereby exhibitingDX×(−) as the co-Kleisli category of
the composite comonad onS. Indeed, by the remarks af-
ter Definitions 2.2 and 2.8, the parameterized fixed-point
property, parameterized uniformity, and uniqueness all fol-
low directly from Proposition 6.1 when interpreted in the
appropriate co-Kleisli categories. It only remains to verify
the naturality of the induced(·)† operator in its parameter.

A comonad morphismν : (L1, ε1, δ1) ⇒ (L2, ε2, δ2),
between two comonads onS, is a natural transformation
ν : L1 ⇒ L2 that preserves the counit and comultiplica-
tion in the evident way (see [2,§3.6] for the dual notion
of monad morphism). Any such comonad morphism in-
duces a functorH : D2 → D1 between the associated co-
Kleisli categories (it is the identity on objects, and a mor-
phism fromA to B in D2, given byf : L2A ◦ B in S,
gets mapped to the morphism fromA to B in D1 given by
f ◦ νA : L1A ◦ B in S).

Lemma 6.6 Supposeν : (L1, ε1, δ1) ⇒ (L2, ε2, δ2) is a
comonad morphism, where bothL1 andL2 have bifree al-
gebras inS. LetD1 andD2 be the associated co-Kleisli
categories, letH : D2 → D1 be theν-induced functor, and
let (·)∗1 and(·)∗2 be the unique uniform fixed-point opera-
tors inD1 andD2. Then, for anyf : A - A in D2, it
holds thatH(f∗2) = (Hf)∗1 .

The proof, which uses the construction of the uniform fixed-
point operators given after Lemmas 6.2 and 6.3, is routine.

To derive the naturality of(·)† from lemma 6.6, consider
anyg : X - Y in D (the co-Kleisli category ofL) as in
Definition 2.2. Then(g × (−)) : X × (−) ⇒ Y × (−)
is a comonad morphism between comonads onD, and
K(g × J(−)) : L(X × (−)) ⇒ L(Y × (−)) is a cor-
responding comonad morphism, between comonads onS,



that induces the functorHg : DY×(−) → DX×(−) between
its co-Kleisli categories. Thus, by the discussion after Defi-
nition 2.2, Lemma 6.6 does indeed imply naturality.

In order to obtain that the unique parametrically uni-
form (·)† is also a Conway operator, we require yet more
bifree algebras. We say thatS hassufficiently many bifree
algebras if all endofunctorsL(X × L(X × (−))) and
L(X × (−)× (−)) onS have bifree algebras.

Theorem 3 If S has sufficiently many bifree algebras then
D has a unique parametrically uniform parameterized
fixed-point operator, and it is a Conway operator.

To prove the theorem, suppose thatS has sufficiently
many bifree algebras. By Proposition 5.2, all endofunctors
L(X × (−)) on S have bifree algebras. So by Proposi-
tion 6.5,D has a unique parametrically uniform parameter-
ized fixed-point operator. Moreover, parameterized dinatu-
rality follows from ordinary dinaturality given by Proposi-
tion 6.1, when the comonad is instantiated toL(X × (−)).

It remains to prove the diagonal property. To this end,
observe that on any categoryC with finite products, the end-
ofunctor(−) × (−) can be endowed with the structure of
a comonad; in fact this can be done in two inequivalent
ways. In both cases the counit isπ1 : A × A - A.
The two possible comultiplications are〈π1, π2, π2, π1〉 and
〈π1, π2, π2, π2〉 : A×A - A×A×A×A. (In the first
case the coalgebras of the comonad are involutions inC, in
the second case the coalgebras are idempotents.) Strangely,
the proof below works equally well with either choice of
comultiplication.

Consider the comonad(−) × (−) on the category
DX×(−), and writeDdX for its co-Kleisli category. The
chain of right adjointsS → D → DX×(−) → DdX shows
that DdX arises as the co-Kleisli category of a comonad
with underlying functorL(X × (−)× (−)) onS. Because
L(X× (−)× (−)) has a bifree algebra, Proposition 6.1 rel-
ativizes to give thatDdX has a unique uniform fixed-point
operator. In terms ofD this says that there exists a unique
family (·)‡ : D(X ×A×A,A) → D(X, A) satisfying:

1. For anyf : X ×A×A - A,
f ◦ 〈idX , f‡, f‡〉 = f‡ : X - A.

2. For anyf : X×A×A - A, g : X×B×B - B
andh : A ◦ B, h ◦ f = g ◦ (idX × Jh × Jh)
impliesg‡ = Jh ◦ f‡.

The diagonal property is proved by showing that the two
operations, mappingf : X × A × A - A to (f†)†

and(f ◦ (idX × ∆))† : X - A respectively (defined
using the parametrically uniform parameterized fixed-point
operator onD), both satisfy the characterising properties of
(·)‡ above. Therefore the two operations are equal, hence
(f ◦ (idX ×∆))† = (f†)†.

We end this section by observing that it is a simple ap-
plication of Proposition 5.3 to show that the requirement
of the existence of sufficiently many bifree algebras inS is
equivalent to requiring the existence of bifree algebras inD.
We writeT : D → D for the induced monad (given by the
compositeJK) onD.

Proposition 6.7 S has sufficiently many bifree algebras if
and only if all endofunctors of the formT (X×T (X×(−)))
andT (X × (−)× (−)) onD have bifree algebras.

In spite of the above reformulation, we believe that it is
usually more appropriate to consider the bifree algebras as
living in S. A common application of the results in this
section will involve using a categoryS that isalgebraically
compact[13, 14], in which case the existence of sufficiently
many bifree algebras inS is guaranteed. The canonical ex-
ample of this situation is whenS is Cppo⊥, which is al-
gebraically compact with respect toCppo-enriched endo-
functors [10]. The results in this section thus apply to the
co-Kleisli category of any comonad onCppo⊥ whose un-
derlying functor isCppo-enriched, not just to the lifting
comonad. A degenerate case is the identity comonad, show-
ing that it is also possible forD itself to be algebraically
compact (although this implies that1 is a zero object inD).

7. Fixed points and lifting monads

In Section 6, we took a category of “strict” maps as basic,
and derived the relevant properties of fixed points in a cat-
egory of “domains” determined as the co-Kleisli category
of a comonad onS. In many examples, however, the cat-
egoryS is itself obtained as the category of algebras for a
“lifting” monad on a category of “predomains”. In this sec-
tion, we investigate such situations in general. Surprisingly,
the strong properties of a lifting monad allow all assump-
tions about the existence of bifree algebras to be dropped.
Instead, the mere existence of uniform non-parameterized
fixed-points suffices to determine a unique parametrically
uniform Conway operator.

Let C be a category with finite products and a strong
monad(T, η, µ, t) (see e.g. [22, 23]). We writeK for the
Kleisli category of the monad, and we writeI : C → K
for the associated (left-adjoint) functor. We assume that
C hasKleisli exponentials, i.e. that, for everyX in C the
functor I(X × (−)) : C → K has a right adjoint (see e.g.
[22, 28]). These assumptions give the structure required to
model Moggi’scomputationalλ-calculus[22].

We wish to consider a notion of fixed-point inC suit-
able for adding a recursion operator to the computationalλ-
calculus. Because of the existence of Kleisli exponentials,
it suffices to consider a non-parameterized notion.

Definition 7.1 (Uniform T -fixed-pt. op.) A uniform T -
fixed-point operatoris a a family of functions



(·)∗ : C(TA, TA) → C(1, TA) such that:

1. For anyf : TA - TA, f ◦ f∗ = f∗.

2. For anyf : TA - TA, g : TA - TA and
h : TA - TB, if h ◦µ = µ ◦Th andg ◦h = h ◦ f
theng∗ = h ◦ f∗.

One familiar setting in which a (unique) uniformT -fixed-
point operator exists is whenC has afixpoint objectin the
sense of Crole and Pitts [5], see [24, 28]. In this paper, we
take the weaker notion of uniformT -fixed-point operator
as primitive. However, we shall see circumstances below in
which the two notions are equivalent.

In this section, our aim is to show howT -fixed-point
operators give rise to fixed-point operators as considered
earlier in the paper. To this end, we writeS for the cate-
gory of algebras of the monadT (the Eilenberg-Moore cat-
egory) andL for the comonad onS induced by the adjunc-
tion with C. Let D be the co-Kleisli category ofL, and
let J : S → D be the induced functor (as in Section 6).
ConcretelyD can be described as the category whose ob-
jects are Eilenberg-Moore algebras forT , with hom-sets:

D(TA
a- A, TB

b- B) = C(A,B).

Proposition 7.2 There is a one-to-one correspondence be-
tween uniformT -fixed-point operators onC and parametri-
cally uniform parameterized fixed-point operators onD.

Our aim is to show that, under suitable conditions, there is a
unique uniformT -fixed-point operator, and that the unique
parametrically uniform parameterized fixed-point operator
determined is a Conway operator.

One condition is thatC have aparameterized natural

numbers object1
0- N

s- N (see [19, p. 71, Ex-
ercise 4] — this is the appropriate notion of natural num-
bers object for non-cartesian-closed categories). The other
assumption is one on the monad.

Definition 7.3 (Equational lifting monad [4]) A strong
monad (T, η, µ, t) is said to be anequational lifting
monadif it is commutative and also satisfies the equation
t ◦∆ = T 〈η, idX〉 : TX - T (TX ×X).

In [4], it is shown that equational lifting monads exactly
capture the equational properties of partial map classifiers.

Theorem 4 SupposeC has a parameterized natural num-
bers object andT is an equational lifting monad. ThenC
has at most one uniformT -fixed-point operator. Moreover,
if such an operator exists then the associated unique param-
eterized fixed-point operator onD is a Conway operator.

The bulk of the work in the proof of Theorem 4 goes into
proving the proposition below.

Proposition 7.4 Under the conditions of Theorem 4, if all
idempotents inC split andC has a uniformT -fixed-point
operator thenS has sufficiently many bifree algebras.

The proof is outlined in Section 8.
To derive Theorem 4 from Proposition 7.4, one first

shows that all the structure onC (parameterized natural
number object, equational lifting monad, Kleisli exponen-
tials) extends to itsKaroubi envelope, Split(C), (see [19,
p. 100, Exercise 2]). Moreover, ifC has a uniformT -
fixed-point operator then so doesSplit(C). By definition,
all idempotents split inSplit(C). Thus, by Proposition 7.4,
Split(S) has sufficiently many bifree algebras (Split(S) is
indeed the category of algebras for the monad onSplit(C)).
Hence, by Theorem 3,Split(D) has a unique parametri-
cally uniform parameterized fixed-point operator, and it is
a Conway operator. However, it is easily shown that para-
metrically uniform parameterized fixed-point operators and
Conway operators onD and onSplit(D) are in one-to-one
correspondence. Theorem 4 follows by Proposition 7.2.

One other consequence of Proposition 7.4 is that, by
Proposition 5.3, the existence of a bifreeL-algebra onS
is equivalent to the existence of a bifreeT -algebra onC.
Freyd observed that any bifreeT -algebra is afixpoint ob-
ject [5]. We have already mentioned that any fixpoint ob-
ject determines a uniformT -fixed-point operator. Thus, in
the circumstances of Proposition 7.4, the existence of aT -
fixed-point operator is equivalent to that of a fixpoint object.

8. Proof of Proposition 7.4

We have a categoryC, with finite products, parameter-
ized natural numbers object, equational lifting monad and
Kleisli exponentials, in which every idempotent splits. One
consequence of idempotents splitting is that, for everyY in
C, the functorF (Y × (−)) : C → S (whereF : C → S
is the standard “free algebra” functor) has a right adjoint
(−)Y : S → C. Essentially this means that for any object
X of C that lies in the image of the forgetfulU : S → C
(we henceforth call such objectsalgebra carrying), and ev-
ery objectY of C, the exponentialXY exists inC (the ob-
jectXY is constructed as a retract of the Kleisli exponential
TXY ). It also implies thatD is cartesian closed.

Lemma 8.1 For every algebra-carryingX, the endofunc-
tors X × (−) : C → C andX × (−) × (−) : C → C have
final coalgebras.

Lemma 8.2 For every objectX of S, the endofunctors
X × (−) : S → S andX × (−)× (−) : S → S have final
coalgebras.

Lemma 8.3 L is a retract of(L1)× (−) in the category of
endofunctors onS.



Lemma 8.4 All endofunctorsL(X × L(X × (−))) and
L(X × (−)× (−)) have final coalgebras inS.

Briefly, the final coalgebras of Lemma 8.1 both have carrier
XN, which is used to encode infinite sequences and full bi-
nary trees. Lemma 8.2 follows by proving that the forgetful
from the category of coalgebras forX × (−) on S to the
category of coalgebras forX × (−) onC is monadic and so
creates the terminal object (similarly forX × (−) × (−)).
For Lemma 8.3, the retraction is given by the pair of mor-
phisms〈T !, a〉 : TA - (T1) × A and (Tπ2) ◦ t′ :
(T1)×A - TA in C (wheret′ : T1×A - T (1×A)
is the “costrength”ofT ). The verification that this pair has
the required properties is the only place in which the equa-
tional lifting monad equation (Definition 7.3) is used. Fi-
nally, Lemma 8.4 follows from Lemmas 8.2, 8.3 and Propo-
sition 5.4.

Now that final coalgebras for the desired functors have
been constructed inS, it remains to show that they are
bifree. We achieve this by some more manœuvring between
categories, using Proposition 5.3 to transfer universal prop-
erties from one place to another. In fact, we shall exploit
properties of the Kleisli categoryK.

As T is a commutative strong monad,K is a symmet-
ric monoidal category andI : C → K is monoidal (where
cartesian product is taken as the monoidal product onC).
We write⊗ for the monoidal product onK, andL′ for the
underlying functor of the comonad onK induced byT .

Proposition 8.5

1. K can be construed as aD-enriched category.

2. ⊗ andL′ can be construed asD-functors onK.

3. For anyD-enriched endofunctorF onK, an isomor-
phisma : FA - A in K is an initial F -algebra if
and only ifa−1 is a finalF -coalgebra.

The proof is given in [28]. In outline, 1 is proved using
Kleisli exponentials, and 2 is then routine. For 3, the idea is
to use the uniform fixed-point operator inD to establish that
the property of being an initialF -algebras is equivalent to a
self dual property (calledspecialF -invariance), and hence
equivalent to the property of being a finalF -coalgebra; see
Theorem 5.2 of [28].

To finish the proof of Proposition 7.4, consider, for ex-
ample, the functorL(X×L(X× (−))) : S → S. We write
K : K → S for the “comparison” functor from Kleisli cat-
egory to Eilenberg-Moore category. We writeH : S → S
for the composite:

S X×(−)- S U- C I- K

ThenL(X × L(X × (−))) = KHKH : S → S. By
Lemma 8.4,KHKH has a final coalgebra inS. Thus,

by Proposition 5.3,HKHK has a final coalgebra inK.
By Proposition 8.5.2,HKHK is D-enriched. Hence, by
Proposition 8.5.3,K has a bifreeHKHK-algebra. Thus,
again by Proposition 5.3,S has a bifreeKHKH-algebra,
i.e. there is a bifree algebra forL(X × L(X × (−))). The
argument forL(X × (−)× (−)) is similar. This completes
the proof of Proposition 7.4.

9. Discussion

Theorem 4 has applications to an axiomatic approach
to denotational semantics. The conditions onC are ex-
actly suited to modelling a call-by-value version,PCFv, of
PCF with product types (as considered in e.g. [33]). The
monad and Kleisli exponentials interpret Moggi’s compu-
tationalλ-calculus [22], which is the core ofPCFv. The
natural numbers object is used to interpret the arithmetic
operations. Intuitively, the assumption of an equational lift-
ing monad expresses that nontermination is the only com-
putational effect inPCFv. We suggest that a uniformT -
fixed-point operator is the natural structure for interpreting
recursion. By Theorem 4, there is at most one such oper-
ator, and so the interpretation of recursion is uniquely de-
termined. Moreover, the interpretation of recursion satisfies
all desirable equational properties.

An interesting aspect of the proposed notion of model
is that all ingredients in the model correspond to syntac-
tic features of the language. Thus the free category with the
identified structure corresponds to a term model constructed
out of PCFv programs quotiented by the equivalence in-
duced by the categorical structure. Then the interpretation
of PCFv terms in an arbitrary model is given by the unique
structure preserving functor from the free model. Thus the
denotational semantics ofPCFv is recast in the framework
of Lawvere’s functorial semantics.

The categorical structure of the models determines a
rudimentary equational logic for proving operational equal-
ities betweenPCFv programs. On the one hand, this logic
supports a “denotational” form of reasoning, using cate-
gorical universal properties. On the other, by interpreting
the equalities in the free model, any argument has a direct
“operational” reading as following a chain of equalities be-
tweenPCFv programs. Thus one might argue that the no-
tion of model provides a denotational framework for direct
operational reasoning. One wonders how powerful the in-
duced proof principles are.

Another question of power is how far our approach of
deriving equational properties of recursion from categorical
universal properties can be extended to derive properties of
higher-order recursion. A natural syntax for higher-order
recursion is given by the simply-typedλ-calculus extended
with a typed fixed-point combinator. It can be shown that
the desired equational theory between such terms is that in-



duced by a suitable notion ofη-expanded typed B̈ohm trees,
that this theory is co-r.e. and satisfies a characterisation as a
maximally-consistent typically ambiguous theory (cf. [31]
and our Theorem 2). A major open question is whether the
theory is decidable. The restricted case of equalities be-
tween so-calledrecursion schemashas recently been settled
in the positive by the long awaited proof of the decidability
of language equivalence for DPDAs [27]. It would be re-
markable if the proof rules in Stirling’s tableau approach to
decidability [32] could be derived from category-theoretic
universal properties.

Another interesting (and less ambitious!) direction for
research is to investigate the equational theory induced by
Hasegawa’s notion ofuniform trace [16], which gener-
alises parametrically uniform Conway operators to symmet-
ric monoidal categories. In particular, Hasegawa considers
tracedcartesian-centermonoidal categories as models of
cyclic sharing graphs. Perhaps there is a completeness the-
orem for uniform traces with respect to an equational theory
induced by suitable unfoldings of such graphs.
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