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Abstract an associated fixed-point operator. Not only are there many
familiar order-theoretic variations on the notions of com-
We give an axiomatic treatment of fixed-point operators plete partial order and continuous function, but there are
in categories. A notion of iteration operator is defined, em- also many categories of “domains” based on somewhat dif-
bodying the equational properties of iteration theories. We ferent principles — for example, categories of games and
prove a general completeness theorem for iteration opera- strategies [21], realizability-based categories [20] and cate-
tors, relying on a new, purely syntactic characterisation of gories of abstract geometric structures [12]. Thus one needs
the free iteration theory. generally applicable methods for establishing properties of
We then show how iteration operators arise in axiomatic the associated fixed-point operators.
domain theory. One result derives them from the existence In this paper, we ana|yse the equationa| properties of
of sufficiently many bifree algebras (exploiting the universal fixed-point operators in arbitrary categories of “domain-
property Freyd introduced in his notion of algebraic com- |ike” structures. In Section 2, we consider the basic notions
pactness). Another result shows that, in the presence of aof (parameterized) fixed-point operatd€onway operator
parameterized natural numbers object and an equational anditeration operator developed from analogous notions
lifting monad, any uniform fixed-point operator is neces- in Bloom andEsik’s study of iteration theories [3]. Our defi-
sarily an iteration operator. nitions are straightforward adaptations of Bloom &isik's
to the general setting of a category with finite products. In
particular, the notion ofteration operatoris intended to
1. Introduction capture all desirable equational properties of a fixed-point
operator, as exemplified by the many completeness results

Fixed points play a centrabfe in domain theory. Tra- for the free iteration theory in [3].
ditionally, one works with a category such @ppo, the As in the case of the fixed-point operator @ppo, we
category ofw-continuous functions between-complete also consider a notion dfparameterized) uniformitfor
pointed partial orders. This possesses a least-fixed-poin{parameterized) fixed-point operators. We define this in
operator, whose properties are well understood. For exam-general assuming a suitable functér: S — D from a
ple, a theorem of Bekistates that least simultaneous fixed categoryS of “strict” maps. In practice, (parameterized)
points can be found in sequence by a form of Gaussian elim-uniformity serves two purposes. First, it is often satisfied
ination, see e.g. [33]. More generally, the equational theory by a unique (parameterized) fixed-point operator, and so
between fixed-point terms.fterms), induced by the least- characterises that operator. Second, any parametrically uni-
fixed-point operator, has been axiomatized as theifeze form Conway operator is an iteration operator, so parame-
ation theoryof Bloom andEsik [3]. (This theory is known terized uniformity is a convenient tool for establishing that
to be decidable.) Also, Eilenberg [6] and Plotkin [25] gave the equations of an iteration operator are satisfied.
an order-free characterisation of the least-fixed-point opera-  In Section 3, we examine the equational theory of itera-
tor as the unique fixed-point operator satisfying a condition tion operators. We use a syntax of multisorted fixed-point
known asuniformity, expressed with respect to the subcate- terms -terms), which can be interpreted in any category
gory Cppo of strict maps inCppo, see e.g. [15]. with an iteration operator. In any such category, Bloom
Nowadays, one appreciates tf@ppo is one of many  and Esik’s axioms for iteration theories [3] are sound.
possible categories of “domain-like” structures, each with Bloom andEsik provide numerous completeness theorems,
*Research supported by EPSRC grant GR/K06109. demonstrating that the iteration theory axioms are also com-
tResearch supported by EPSRC grant GR/M56333. plete for deriving the valid equations in many familiar cat-
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egories with iteration operators. The first main contribu- tion spacesKleisli exponential§22, 28]), and a (parameter-
tion of this paper is a precise characterisation of the circum-ized) natural numbers object. These conditions are always
stances in which the iteration theory axioms are completesatisfied by the categories of predomains that arise in ax-
(Theorem 1). This result accounts for all the examples in iomatic and synthetic domain theory [10, 12, 20, 11, 26, 30].
[3]. It shows that, in non-degenerate categories, the sound-Theorem 4 states that such categories support at most one
ness of the iteration theory axioms implies their complete- uniform recursion operator (&-fixed-point operatdr, and
ness. This explains the ubiquity of completeness results formoreover it determines a unique parametrically uniform
the free iteration theory. Conway operator on the associated category of domains.

Our completeness theorem follows from a new, purely Thus, in the presence of a lifting monad and a parameter-
syntactic characterisation of the free iteration theory asized natural numbers object, uniformity alone implies all
a maximal theory satisfying two propertiesiosed con-  equational properties of fixed points.
sistencyand typical ambiguity(Theorem 2). This result,
which is of interest in its own right, was inspired by Stat- 2. Fixed-point operators
man’s characterisation gfn-equality in the simply-typed

A-calculus [31]. In this section we give an overview of the various no-
The remainder of the paper is devoted to providing con- tions of fixed-point operator we shall be concerned with.
ditions for establishing the existence (and uniqueness) of\we work with a categoryD, with distinguished finite prod-
parametrically uniform Conway operators (hence iteration ucts, to be thought of as a category of “domains”. We write
operators). In one common setting, which arises in ax- 1 for the terminal object.
iomatic domain theory [13, 10, 12], one has that the cate-
gory D of “domains” is obtained as the co-Kleisli category Definition 2.1 (Fixed-point operator) A fixed-point oper-
of a comonad on the category of strict maps(For exam-  ator is a family of functions(-)* : D(4,4) — D(1, A)
ple, Cppo is the co-Kleisli category of the lifting comonad ~such that, forany’ : A — A, fo f* = f*.
on Cppo, .) In axiomatic domain theorys satisfies a cu-
rious property, first identified b.y'l':reyd [13, 14]: a W.Ide terized fixed-point operatads a family of functions
class of endofunctors ofi have initial algebras whose in- ()1 : DIX x A, A) — D(X, A) satisfying:
verses are final coalgebras (in Freyd’s terminolo§yis ' ’ ’ ’
algebraically compagt Following [7], we call such ini- 1. (Naturality.)
tial/final algebras/coalgebrwreg algebras(In the exam- For anyg : X Yandf:Y x A A
ple of Cppo_, every Cppo-enriched endofunctor has a Flog=(fol(gxida)): X — A.
bifree algebra [10].)
In Section 5, we give a quick overview of initial algebras, 2. (Parameterized fixed-point property.)
final coalgebras and bifree algebras, including a couple of Foranyf: X x A — A,
minor new propositions. Then, in Section 6, we show how foldy, fHy=/ft: X — A
bifree algebras i can induce properties of fixed-point op-
erators inD. This programme was begun by Freyd and oth- Observe that a parameterized fixed-point operator corre-
ers [13, 5, 24, 28]. A further step was taken by Moggi, who, sponds to a family of fixed-point operatarg*~ in the co-
in unpublished work, gave a direct verification of the Beki  Kleisli categoriesDy,(_y of X x (—) comonads. In this
equality. Here, we give the complete story, showing how the formulation, naturality states that, for agy: X — Y,
presence of sufficiently many bifree algebras determines athe induced functo#, : Dy, (_y — Dx(_) preserves
unique parametrically uniform Conway operator (hence it- the fixed-point operators in the sense that, for any endomor-
eration operator). phism inDy-, (_y, given by a morphisnf : ¥ x A — A
In Section 7 we show how the Conway operator iden- in D, it holds thattf, (f**) = (H, f)™. _
tities can be established without assuming the existence of N practice, well-behaved fixed-point operators satisfy
the bifree algebras used in Section 6. This is possible whenMany other equations that do not follow from the fixed-point
the categons of “strict” maps arises as the category of al- Property alone.

gebras for a "lifting monad” on a suitable category of “pre- pefinjtion 2.3 (Dinaturality) A fixed-point operator is
domains™C. (For e>.<a.mpIeCppoL is the category of alge-  gaid to bedinatural if, for every f : A B and
bras for the usual lifting monad on the categ@ipoof,not /. p . 4 itholds that(f o g)* = fo (go f)*.
necessarily pointed,-complete partial orders.) Axiomati-

cally, we assume thdtis a category with finite products, a Definition 2.4 (Conway operator) A Conway operatois
monad embodying the equational properties of partial mapa parameterized fixed-point operator that, in addition, satis-
classifiers (arequational lifting monad4]), partial func- fies:

Definition 2.2 (Parameterized fixed-pt. op.)A parame-



3. (Parameterized dinaturality.) (Here A™ is them-fold powerA x ... x A, and
Foranyf: X x B— Aandg: X x A — B, Ap : A — A™ is the diagonal’)

folidx, (go(m, f))T) = (folm,g)T: X —= A. The complex formulation of the commutative identities
means that they can be hard to establish in practice. One
way of reducing the complexity is to look for simpler
equational axiomatizations. For exampiigsik [9] has re-
cently proved that it suffices to consider certain instances
of the commutative identities generated, in an appropriate
Itis easily seen that (parameterized) dinaturality implies the sense, by finite groups. However, in many situations, it is
(parameterized) fixed-point property, so 2 of Definition 2.2 more convenient to derive the commutative identities from
is redundant in the axiomatization of Conway operators.  (more easily established) non-equational properties that im-
The reason for singling out dinaturality is that itis a con- ply them. Many examples of such properties are given by
cept that makes sense for unparameterized fixed-point op-Bloom andEsik [3]. In this paper we shall be concerned
erators. It is also a powerful property. In special circum- with one such property(parameterized) uniformity
stances, it alone characterises a unique well-behaved fixed- To define (parameterized) uniformity, we suppose given
point operator [29]. a categonyS with finite products and the same objectgas
Mainly, however, we shall be interested in well behaved together with a functor : & — D that strictly preserves
parameterized fixed-point operators, and the notion of Con-finite products and is the identity on objects. We use the
way operator is appropriate. Conway operators are sosymbol —o for maps inS, and we call morphisms i
named because their axioms correspond to those @fdhe in the image of/ strict. (We really just need the subcategory
way theorieoof Bloom andEsik [3]. They have also arisen  of D consisting of strict maps, but the functorial formulation
independently in work of M. Hasegawa [16] and Hyland, will be helpful in Section 6. Observe that morphisms given
who established a connection with Joyal, Street and Verity's purely by the finite product structure d@hare strict.)

notion of trace [18]. The definition of trace makes sense _— : . ' . . .
. . . Definition 2.7 (Uniformity) A fixed-point operator is said
in any braided monoidal category. Hasegawa and Hyland . : .

: . : to beuniform (with respect to)) if, forany f : A —— A,
showed that, in the special case that the monoidal product N
; . . .ﬂ:BHBandhﬁA—OB, Jho f = goJhimplies
is cartesian, traces are in one-to-one correspondence with', Jho f*
Conway operators. y = ’

There are many alternative axiomatizations for Conway Definition 2.8 (Parameterized uniformity) A parameter-
operators. The axioms for a trace provide one possibility. ized fixed-point operator is said to Iparametrically uni-
Other options are discussed in [3, 16]. The following im- formif, forany f : X x A — A,g: X x B — B
portant property often appears in variant axiomatizations. andh : A —o B, Jho f = go (idx x Jh) implies

4. (Diagonal property.)
Foranyf: X x Ax A — A, (fo(iddx x A))f =
(fH)t: X —— A (whereA: A —— A x Aisthe
diagonal map).

Proposition 2.5 (BekE property) For any Conway opera- gt =Jho fT.

tor, given(f,g) : X x A x B —— A x B, it holds that Observe that parameterized uniformity is just the state-
(f,9)t = (h,(go ({idx,h) x idg))T) : X — A x B, ment that the fixed-point operatén** in each co-Kleisli
whereh = (f o (idxxa,9")1 : X —> A. categoryDyx () is uniform with respect to the composite

In spite of such consequences, there are basic equalitiefunctors — D — Dx (). Hasegawa gives an interesting
that Conway operators do not necessarily satisfy; for exam-reformulation of parameter!zed uniformity directly in terms
ple, it is not true in general that* = (f o f)* for an en- of a trace [1§]. IfS is defined to pe the subcategory of
domorphismf. The commutative identitiesf Bloom and ~ Morphisms given purely by the finite product structure on
Esik [3] ensure that such “missing” equalities do hold. D, then parameterized uniformity is exactly thanctorial

dagger implication for base morphisr§[3].
Definition 2.6 (Iteration operator) An iteration operator N ) )
is a Conway operator that, in addition, satisfies: Proposition 2.9 Any parametrically uniform Conway op-

L - erator is an iteration operator.
5. (Commutative identities.)

Givenf : X x A™ —— A and morphisms

veeoyPpm o A™ —— A™ such that eachy; = . .
@1 'Op‘ ) is a tuple of projections (i.e ear;laj is The converse to proposition 2.9 does not hold in general,

one of them projectionsry, ..., 7, : A™ — A), see [8].
it holds that 1strictly speaking, we consider only instances of the commutative iden-
. . tities of [3] in which their “surjective base morphism’is a diagonalA,,, .
<f o ('dX X Pl); s fo ('dX X pm)>Jr = The general commutative identities of [3] follow from such instances, us-
Ao (folidy x Ay : X — A™ ing properties of Conway operators.

The proof is an easy application of the strictness of all diag-
onalsA,, : A —— A™.




3. Completeness

In this section we introduce Bloom artgsik’s iteration
theorieg[3], using a syntax of multisorted fixed-point terms
(u-terms). We prove a very general completeness theore

(Theorem 1) for the free iteration theory relative to interpre-
tations in categories with iteration operators. The complete-
ness theorem follows from a new syntactic characterisation

of the free iteration theory (Theorem 2).

We assume given a nonempty collection of base types

(or sorts), over whichy, 3, ... range. Types,r,... are
either base types or product types x ... x o, (for
n > 0). We usec™ as an abbreviation for the-fold
powero x ... x o. We assume also a signature given
by a setX of function symbols, each with an associated
typing information of the form{a, . . ., ay,; ) (there is no

We now axiomatize&Conway theoriesin which u corre-
sponds to a Conway operator, adtetation theoriesidenti-
fying the equational properties of an iteration operator.

Definition 3.1 (Conway theory) A theory7 is said to be a
onway theoryf it satisfies two axioms:

1. (Dinaturality.)
Foranyt(z,y™) : o andt’(Z,27) : 7,
T+ pa.tlt'/y] = tlpy. U'[t/x]/y] : o

2. (Diagonal property.)

Fort(Z,2%,y%) 0, T & px.tz/y] = px.py.t : o.
These axioms are just the multisorted version of the axiom-

atization given by Corollary 6.2.5 of [3], where dinaturality
and the diagonal property are called t@mmposition iden-

loss of generality in considering only base types here). Wetity and thedouble dagger identityespectively.

loosely refer to botH{a, ..., a,; 8) andn as thearity of

the function symbol. Constants are considered as func-pefinition 3.2 (Iteration theory) We say that a Conway

tion symbols with arity0. We assume a countably infi-
nite set of variable symbols, y,... A variable is a pair,
written 27, consisting of a variable symbol and a type (we
omit the type superscript when convenient).
their types are given by: each variabt€é is a term of
typeo; if t1,...,t, are terms of (base) types,,...,a,
and f is a function symbol of arityay, ..., a,;3) then
ft1,...,t,) is a term of (base) typg; if t1,...,t, are
terms of types, ..., o, then(tq, ... t,) is aterm of type
o1 X ... X op; if tis aterm of types; x ... x o, then
m;it, wherel < i < n, is a term of typer;; if ¢ is a term
of type o thenux?.t is a term of types. As usual, the
variablez is bound byu in px.t. We identify terms up to
a-equivalence, writing = ¢’ for the identity of terms. We
write t(z7*,...,a*) : 7 for a term of typer all of whose
free variables are containedaff*, ..., z*. We call a term
with no free variableslosed We write the substitution of
termsty, ..., t, for n distinct free variables,, . .., z, (of
the correct types) in a termast[ty,. .., t, /T1,. .., %)
Givent(y, z7*,...,x2") : 01 X ... X o, We Use the con-
venient notatioru(x7",...,z2"). t to represent the term
JT ek A /ST A 0 7 12 DR /o

A theory 7, is atyped congruence relation on terms that:
contains the product equations, iB.l 7;{t1 ..., tx) = t;
and7 Ft = (mt,...,mt) (fort: o1 x ... X oy); and is
closed under substitution (i.e. 7 ¢t = ¢’ ands : o then
T+ t[s/x?] = t'[s/x"]). For any theoryZ ¢t =t if and
onlyif 7 + (¢t = t)[{x17", ..., 2,7") /x> where
L1y

theory7 is aniteration theoryif it satisfies the following
axiom schema.

Terms and 3. (Amalgamation.)

For any termsty,...,t,(2,z9,...,29) o and
s(Z,y7) : o, SUPPOSE; [y, ...,y /T1,...,Tn] = 8,
for all i with 1 < i < n, then it follows that7 +
o ) by tn) = (Uy. S, .., uy. S) 1 o™

Amalgamation is very close to the commutative identities
of [3] (as in Definition 2.6). An alternative formulation is
employed in [17], whosalphabetic identification identity
is equivalent to amalgamation.

We write F for the smallest Conway theory (generated
by the given base types and signature), aridr the small-
est iteration theory. As is shown in [3], completely cap-
tures the valid identities in a wide class of models, includ-
ing Cppo. We write Z* for the smallest iteration theory
in which all closed terms (with identical types) are equated.
AlthoughZ* is not a closed-consistent theory, it is nonethe-
less consistent. In fact,* exactly captures the valid identi-
tiesinCppo_ . Our aim in this section is to prove a general
completeness theorem, accounting for all such complete-
ness results faf andZ*.

First, we consider the interpretation gfterms in any
categoryD with finite products and a family of functions
()T : D(X x A, A) — D(X, A) satisfying the naturality
property of Definition 2.2. Annterpretationis determined

., T, are fresh variables. Thus a theory is determined by a function[-] from base types to objects @1, together

by its equations between terms whose only free variableswith a function mapping each function symbgl of arity

are of base type. We say thatis consistentif there are two
termst, t' of the same type such th@ t/ + = t’. We say
that7 is closed-consisterif there are two such terms that
are closed.

(a1,...,ap; 08), toamaff] : [1] X...x[ar] — [5]-
The first function extends (using products) to one from ar-
bitrary types to objects oD, and the second extends to
one mapping any term(z7*,...,z*) : 7 to a morphism



[t] : [o1] % ... x [or] — [r]. Such an interpretation 2. If T is a closed-consistent typically ambiguous Con-
determines a theoryy defined by7j - t(Z) = ¢'(Z) iff way theory theWw C 7.
[t] = [¢']. We have no reason to favour one interpretation ) ) _ )
in D over another, so we shall be more interested in the the- 3- If 7 is a consistent typically ambiguous Conway the-
ory determined by the category itself. This thedPy, is ory then7 C 7~.
defined by7p  t(Z) = t/(Z) iff, for all interpretations]-]
in D, it holds thaf[t] = [¢'].

It is immediate from the definitions that (f)' is a Con-
way operator thep is a Conway theory (i.eF C 7p). It
is also straightforward (although not quite immediate) that
if ()T is an iteration operator thefp is an iteration the-
ory (i.e. Z C 7p). Further, if every hom-seP(1, X) is a
singletort (i.e. if 1 is a zero object irD) thenZ* C 7Tp.

The proof is outlined in the next section.

The theorem characterisg&$ as the greatest element in
the partially ordered set of consistent typically ambiguous
Conway theories (ordered by inclusion). Also, wheris
nonempty,Z is the maximum closed-consistent typically
ambiguous Conway theory. (K is empty thenZ is not
closed-consistent, indeéd= Z*.) For countable:, there
are2™ typically ambiguous Conway theories (this follows
Theorem 1 (Completeness)f (-) onDis aniterationop-  from the analysis of the group identities in [9]).
erator then: Theorem 1 follows easily from Theorem 2. First observe

_ o that for anyD and(-)" (natural inX), the theoryZp is al-
1. If therle gmsts a hom—sﬁ(l,X) containing at at least ways typically ambiguous (because afy* and 6 deter-
two distinct morphisms thehp = 7. mine a mapping between interpretations). AEeis con-
sistent if and only ifD is non-trivial (i.e. not equivalent
to the terminal category); and it is closed-consistent if and
only if ¥ is nonempty and there exists a hom-8¥tl, X)
The only examples not captured by one of the conditions with at least two distinct elements. With these observations,
above are categorig3 equivalent to the terminal category, Theorem 1 is immediate.
in which case7yp is the inconsistent theory.

'\Ne.prove the theo_rem py obtaining a syntactic charac—4_ Proof of Theorem 2
terisation of the free iteration theory. Suppose that is
any function from base types to types. Suppose also that

6's a function mapping each Iuncnon *symbf)lof arity the completeness of the free iteration theory relative to an

. ay Qo . *
(O‘}k’ .-y apiff) to atermfé(z ", ..., z,") ¢ 57 Then interpretation in regular trees, see, in particular, Sections 5.4
(1)* extends (by substitution) to an endofunction on types. and 6.4-5 of [3] (see also the recent [17]). We outline the

Similarly, ¢ extends to a function on terms, mapping each nain steps, because the associated notion of normal form

2. If1is azero object and there exists ahomBéK,Y)
containing two distinct morphisms thég = 7*.

The first part of the proof follows the standard proof of

t(2(, ..., o) « Tto atermif(ay’, ... ) « 7%, de-  and its properties are needed for Lemma 4.3.
fined inductively on the structure oby: The notion of normal form is defined for terms
20 _ g E(xfflé. S xpk) (rj] (with only fr;fe vliirialgles of base t)r/]pe),
induction on the structure of. For base typeg, the
Fltryeeta)d = fOlt10,. o taf [ 21 20 y ° af. For base types
o 0 B o (40 normal forms are terms; (pe(yy", ..., Yo ). (U1, - .« s Um))
(fl ' )t 0 B Mtle - )t 0 wheref; is 8 such that, for eachwith 1 < i < m, one of
{ 1.’75"9" n) B < »1(t79. -1 tnf) three possibilities holds far;: (i) u; is y; (note it cannot be
(mit) = mi(t0). y; for j # 14); (i) u; is a free variable fromxy, . . ., zy; (iii)
We say thatT is typically ambiguousf 7 -t =t/ : o u; is of the form fi(y, 1) - - -, Up.(a,)) for some function
implies, for all(-)* and@ as above7 |t = t'6 : o*. In  SYmbolf; (with arity a;) and functionp; : {1,...,a;} —
the terminology of [9]7 is typically ambiguous iff it con- ~ {1,---,m}. For product types, x ... x oy, the normal
tains thevector formsof all its equations.F, Z andZ* are forms are termgsy, ..., s,) where eachs; is in normal

all examples of typically ambiguous theories. In each case,form. The restriction to free variables of base type is just a
one proves that = ¢’ impliestf = ' by a straightforward syntactic convenience to avoid considering additional sub-
induction on the derivation af= #'. terms (such as projections on variables of product type).

Theorem 2 Lemma 4.1 For any termt(z{", ..., 23") : o, there exists

. . . , ) atermsin normal form suchthaF -t =s: 0.
1. The only consistent typically ambiguous iteration the-

ories areZ andZ*. We next define two interpretations of normal forms

2Note that the existence of:) implies that D(1, X) is always of base type as (regular) trees. Consider a term
nonempty. w(xi, .., ap*) B x ... x B of the form




Y1y« Ym)- (u1, ..., un,) subject to the restrictions im-

posed in the definition of normal form. For mnemonic ben- Theory, s, s'(x1%1,. ..,

efit, we henceforth usg; (wherel < i < m) to represent
the termm;(u). To each such term; we assign treedy;]

and[y;]*, whose nodes are labelled by elements from the

setSt =S U {LA L 1P U {aft, L et
Formally, such a tree, is a partial function froniN* (fi-
nite sequences of natural numbers)to whose domain of

Lemma 4.3 Suppose is a typically-ambiguous Conway
xp®) : ¢ are normal forms and
TEFs=5.

1. If T is closed-consistent thdr] = [s'].

2. If T is consistent thefis]* = [s']*.

PrROOF For statement 1, suppoge] # [s']. Letr : o

definition is nonempty, closed under prefixes and satisfies:be any closed term. We show tHat- r = uy?.y. ThusT

for anyw € N*, t(wn) is defined if and only ift(w) € ¥,
1 < n < arity(t(w)) and the result type of(wn) is the
n-th argument type of(w). Given such a treg;, and an
elementw € N* such thatt(w) is defined, we write @w
for the subtreev’ — t(ww’). We say that is regularif the
set of all its subtreeqt@uw | t(w) is defined, is finite.

To define[y;], we first define a partial functiop; from
N*to{1,...,m}. Onthe empty sequencedefinep;(e) =
i. On a nonempty sequenae:, p;(wn) is defined iffp; (w)
is defined,upi(w) is fj (ypj(l), R 7ypj((lj)) andl < n <
a;; in which casep;(wn) = p;(n). Finally, we define a
function X : {1,...,m} — X7T by: if u; is y; then\(i) =
1P if u, is a free variabler then\(i) = z; and if u; is
Ji(Wps(1)s -+ - Ypi(ar)) thenA(i) = fi. The desired tregy;]
is defined as the compositidp;] = A o p;.

We define[y;]* from [y;] as follows. Say thatv is
openin [y;] if there existsw’ such thaty;](ww’) €
{ai,..., 2"}, Say thatw is closedin [y;] if [y;](w) is
defined andv is not open. Say that is minimally closedf
it is closed, but no proper prefixis. Thépn]* (w) is defined
if and only if w is either open iffy;] or minimally closed. In
the case thaw is open, defindy;]* (w) = [y;](w). In the
case thatv is minimally closed, definfy;]* (w) = L7,

Given a normal form of base type(z*,...,z*) : 5,
we have that = 7 (u) for someu of the form above. Ac-
cordingly, we have trees] = [y1] and[s]* = [y1]* asso-
ciated tos itself.

Lemma 4.2 For normal formss, s’ (21, ..., xx%) : 5
1 If [s]=[s]thenI I s=y¢"
2. If [s]* =[s']* thenZ* s = ¢'.

The lemma is proved by defining, for every regular ttee
a canonical normal form,. One then proves that, for ev-
ery normal forms, 7 = s = tjg andZ* F s = t[-.

This requires various consequences of amalgamation. Sim-

is not closed-consistent.

Let w € N* be a sequence of minimum length such
that [s](w) # [s'](w) (both[s](w) and[s'](w) are there-
fore defined). Without loss of generality, we assume that
[s](w) # L. We shall define a suitablg)* and@ (as in
the definition of typical ambiguity) allowing us to bring the
disagreement betwedgr] and[s] up to the top level.

We write w asny ...nq (Whered > 0), andw; for
its prefixny ...n; (where0 < i < d). For each base
type a, definea* = o4+, whereo is the type of the
closed termr. For each function symbof, of arity
(a1,...,an;3), we definefd(z,7""", ..., 2,7 ") gdt?
by 0 = (uf, ... 7“5+1> where:

Ti+1 (an)
u{ = T

Y’y

ifl1<¢< dand[[s]](wi,l) = f
if i=d+1and[s](w) = f
otherwise.

Then, as in the definition of typical ambiguitydetermines
termssé, s’9(x1"d“, . ,xk"d“) of types?*!. By typical
ambiguity, 7 F s = s'6. Define termg, ..., t; : o%F!
by: ¢;is (uy”.y,...,py°.y) if [s](w) # x;, andt; is

(ry...,r)y if [s](w) = a; (only the last component of
these tuples is important). We writé/z] for the sub-
stitution [t1, ..., tx /1% ..., 2" "']. By the substitu-

tion property of theories7 + s0[t/7] = s'0[t/z]. How-
ever, we prove below thaF + = (sf[t/Z]) = r and
FF i (s'0[t/Z]) = py°.y. Thus indeed +r = uy°.y.

For the proof thatF + m(sf[t/Z]) = r, sup-
pose s is m(u) where u is a term of the form
LYty -y Ym)- (U, ..., um). As earlier, we writey; for
the termm; (u). We write p for the partial functiorp; from
N*to {1,...,m} used in the definition ofs]. By working
fromi = d + 1 down toi = 1, one calculates that, for any
with 1 <4 <d+ 1, it holds that

F + mi(Ypws )0t/ T]) =1

ilar arguments can be found in Sections 5.4 and 6.4-5 of [3]
and also in [17]. The lemma follows. The desired equality is just the special casel.

The argument thus far has established the known com-  The proof thatF + m; (s'0[t/]) = uy°. y is very simi-
pleteness of the iteration theory axioms relative to regular lar, again proving an equality for= d-+1 which propagates
trees. To prove Theorem 2, we show that distinct regular down to the desired case for= 1, using the normal form
trees can never be identified in a typically ambiguous way expansion ofs’. The crucial fact required in the argument
without losing (closed) consistency. The proof adapts theis that[s'](w;—1) = [s](w;—1) if and only if i < d, which
“Bdhm-out” method from the-calculus [1]. follows from the choice ofv.



For statement 2, suppoge]* # [s']*. Letz” be any
variable. We show thal + 27 = py?.y. Thus7 is not
consistent.

Let w € N~*
[s]*(w) € {=7*, ..., 2" }; and (ii) [s']* (w) is undefined
or [s']*(w) # [s]*(w). (Such a sequence can always be
found, by swapping ands’ if necessary.)

As before, writew asn; ...nq (Whered > 0), andw;
for ny...n; (where0 < i < d). For each base type,
definea* = o%*1. For each function symbaof, of arity
(a1,...,an;3), we definef0(z17""", ..., 2,7 ") gdt1
by 6 = (u], ... 7“5+1> where:

W { Tit1(zn;) 0 [s]"(wia) = f

v ny®.y otherwise.

+1

be a sequence such that: (i)

phismfroma : FA —— Atob: FB —— Bis amor-
phismf : A —— B suchthatf ca = bo Ff. Aninitial
F-algebrais an initial object in the category df-algebras
and homomorphisms.

The results below summarise some properties of initial

algebras. Propositions 5.3 and 5.4 appear to be new.

Proposition 5.1 (Lambek) If ¢ : FA —— A is an initial
F-algebra theru is an isomorphism.

Proposition 5.2 (Freyd [13]) If F2 has an initial algebra
then F' has an initial algebraa : FA —— A say, and
a o Fais an initial F%-algebra. Conversely, & has binary
products and¥ has an initial algebra then so dog#’.

Proposition 5.3 For functorsF : ¢ — DandG : D — C
between any two categori€sandD, if a : GFA — A

0 determines termsy, s’e(xl"d ,...,:ck”d“) : o4t By
typical ambiguity,7 I s = s'0. Definet, ..., ty : c@*!
by: t;is (uy®.y,...,py%. y) if [s]*(w) # x;, andt; is

is an initial GF-algebra inC then Fa is an initial F'G-
algebra inD.

(uy.y, ..., py°.y,27) if [s]*(w) = =z;. By substitu- Proposition 5.4 Suppose idempotentsdéhsplit, F' is a re-
tion, 7 + s@[t/Z] = s'0[t/Z]. Then, much as above, tract of G in the category of endofunctors ¢h andG has
F F m(s0[t/z]) = 2 andF + 7, (s'0[t/7])) = puy®.y. an initial algebrab : GB —— B. ThenF also has an
Thus7 F z29 = puy?.y as required. O initial algebraa : FA —— A whereA is a retract of B.

We now complete the proof of Theorem 2. We have  An F-coalgebrais a morphismu’ : A —— FA, and
already seen thaf andZ* are typically ambiguous Con- afinal F-coalgebra is a terminal object in the evident cate-
way theories. Consistency can be shown easily by giving agory of F-coalgebras and homomorphisms biree alge-
non-trivial semantics. To show thZtcontains any closed-  bra for F is a morphismu : FA —— A such that is an
consistent typically-ambiguous Conway theory, Etbe initial F-algebra and ! is a final F-coalgebrad is an iso-
any such theory. We must show thHatl- ¢ = ¢’ implies morphism by Lambek’s result above). All the propositions
IFt=1t.AsT is determined by its equations between above have evident analogues applying to final coalgebras
terms whose only free variables are of base type, it sufficesand bifree algebras.
to show the implication for such terntst’. Suppose then One word of warning, in addition to algebras and coal-
that7 ¢ = t' : 0. By Lemma 4.1, there exist normal gebras for endofunctors (as discussed above), we shall also
formss, s’ such thatF - ¢t = sandF - ¢ = s', so also make considerable use of algebras for monads and coalge-
7T F s = . One shows, by induction an, thatZ F s = & bras for comonads. To avoid ambiguity, we shall always
henceZ -t = t'. If o is a base type then this follows from  refer to such (co)algebras as (co)monad (co)algebras.
Lemmas 4.3 and 4.2. For product types, the induction step
is easy. The maximality ¢f* amongst consistent typically-

ambiguous Conway theories is established similarly. 6. Fixed points from bifree algebras

In this section we show how parametrically uniform
Conway operators arise in axiomatic domain theory. We
work in a very general setting in which the categ@ryof

In the remainder of the paper, we show that parametri- “domains” arises as the co-Kleisli category of a comonad
cally uniform Conway operators arise from universal prop- on the categong of “strict maps”.
erties in axiomatic approaches to semantics. A principal Suppose then tha is a category with finite products,
tool we use is the notion dfifree algebra embodying the  and(L,¢,4) is a comonad os. We write D for the co-
fundamental universal property introduced by Freyd in his Kleisli category of the comonad, : S — D for the functor
work on algebraic compactness [13], which combines the which is the right-adjoint part of the pair of adjoint func-
properties of initial algebras and final coalgebras. In this tors determined by (and determining) the comonad, and
section, we briefly review the relevant concepts. K : D — S for the left-adjoint part. Thed is the identity

Given an endofunctoF' on a category’, an F-algebra on objects and, as it is a right adjoif, has finite products
is a morphismu : FA —— A. An F-algebra homomor-  and.J preserves them. Thus we are in a situation to apply

5. Initial and bifree algebras



the concepts introduced in Section 2. As there, we use theco (f x g) : A x B — A x B, wherec is the symmetry

symbol —o for morphisms inS. We shall find condi-
tions onS and L such thatD has a parametrically uniform
Conway operator, indeed a unique one.

We begin with a fundamental proposition relating bifree
algebras and fixed-point operators.

Proposition 6.1 If L : S — S has a bifree algebra then
D has a unique uniform fixed-point operator. If has a
bifree algebra then this fixed-point operator is dinatural.

Although a similar result is proved in [13], here, in stat-
ing the proposition with respect to an arbitrary comonad on
S, we are placing the result in what we believe to be its

map for product. Then* = (goq)* = {(go f)*, (fog)*),
where the last equality is obtained by uniformity. It follows
thatg o ((go f)*, (fog)*) = {(go f)",(f °g)7), which
implies the desired equality.

In the remainder of the section, we obtain conditions that
imply thatD has a parametrically uniform Conway opera-
tor. The main strategy is to instantiate Proposition 6.1 by
varying the comonad. This will allow us to derive all the
properties of Conway operators by assuming the existence
of enough bifree algebras. The first example of such an ap-
plication is to obtain a parameterized fixed-point operator.

Proposition 6.5 If every endofunctoE (X x (—)) onS has

natural general setting. The possibilities this provides are a bifree algebra therD has a unique parametrically uni-

thoroughly exploited in the proofs of Proposition 6.5 and
Theorem 3 below. That said, the proof of Proposition 6.1,
outlined below, is essentially due to Freyd [13].

Lets: L® —o & be the bifree algebra fdr onS. The
L-algebras : L® —o & corresponds to an endomorphism
s: ® —— ®inD. The next two lemmas give the critical
properties ofs in D.

Lemma 6.2 For any f : A —— A there exists a unique
uf : & —o A suchthatf o Jur = Juy o s.

Lemma 6.3 There exists a unique map : 1 —— & such
thats o oo = oc.

The proof thatD has a unique uniform fixed-point operator
follows swiftly from Lemmas 6.2 and 6.3. The argument is
carried out directly irD. Define(-)* : D(A4, A) — D(1, A)

by f* = Juy o 0o . Then(-)* is a fixed-point operator by:
foff=foJuooo=Juposooo=Ju ooo= f*.
For uniformity, suppose we have g with Jho f = go Jh,

as in Definition 2.7 The (hous) o s = Jho fo Ju =
goJ(houys), sohous = u, (by the uniqueness af;). Thus
indeedJh o f* = Jho Juy o oo = Juy 0o 0o = g*. For
uniqueness, suppose*’ is any fixed-point operator. Then
s* = oo by the uniqueness part of Lemma 6.3. If, further,
(-)*" is uniform then, becausgo Ju; = Juys o s, we have
f*/ = Juy os* = Jug o oo = f*.

It remains to prove the dinaturality claim of Proposition
6.1. Suppose that? has a bifree algebra. (By Proposition
5.2, this itself implies thal. has a bifree algebra.) Again,
the argument follows Freyd [13].

Lemma6.4 Forany f : A—— A in D, it holds that
fr=(fof)"

The lemma is first proved for : & —— &, using the fact
thats o Ls : L?® —o ® is a bifreeL2-algebra, as given
by Proposition 5.2. It follows for arbitrary by uniformity.

form parameterized fixed-point operator.

The proof is by instantiating Proposition 6.1 using the end-
ofunctorsL(X x (—)) as comonads. The comonad struc-
ture is most easily seen by considering the composite func-
tor § —— D —— Dx (), Which has a left adjoint,
thereby exhibitingDx () as the co-Kleisli category of
the composite comonad a$. Indeed, by the remarks af-
ter Definitions 2.2 and 2.8, the parameterized fixed-point
property, parameterized uniformity, and uniqueness all fol-
low directly from Proposition 6.1 when interpreted in the
appropriate co-Kleisli categories. It only remains to verify
the naturality of the induce@)' operator in its parameter.

A comonad morphismr : (Ly,e1,81) = (La,e2,02),
between two comonads a$, is a natural transformation
v : L; = L, that preserves the counit and comultiplica-
tion in the evident way (see [23.6] for the dual notion
of monad morphism). Any such comonad morphism in-
duces a functoH : Dy — D; between the associated co-
Kleisli categories (it is the identity on objects, and a mor-
phism fromA to B in Do, given byf : LoA ——o Bin S,
gets mapped to the morphism framto B in D; given by
fova:L1A—o BinS).

Lemma 6.6 Suppose : (L1,e1,01) = (L2,£2,d2) Is a
comonad morphism, where bafh and L, have bifree al-
gebras inS. LetD; and D, be the associated co-Kleisli
categories, lefd : D, — D; be thev-induced functor, and
let (-)** and (-)*2 be the unique uniform fixed-point opera-
torsinD; andD,. Then, foranyf : A —— Ain Dy, it
holds thatH (f*2) = (H f)**.

The proof, which uses the construction of the uniform fixed-
point operators given after Lemmas 6.2 and 6.3, is routine.
To derive the naturality of-)" from lemma 6.6, consider
anyg : X — Y in D (the co-Kleisli category of.) as in
Definition 2.2. Then(g x (—)) : X x (=) = Y x (—)
is a comonad morphism between comonads@nand

Dinaturality is an easy consequence of the lemma. GivenK (g x J(—)) : L(X x (=)) = L(Y x (-)) is a cor-

f:A—— Bandg: B—— A, consider the map =

responding comonad morphism, between comonadS,on



that induces the functdd, : Dy (_y — Dx (- between We end this section by observing that it is a simple ap-
its co-Kleisli categories. Thus, by the discussion after Defi- plication of Proposition 5.3 to show that the requirement
nition 2.2, Lemma 6.6 does indeed imply naturality. of the existence of sufficiently many bifree algebrasiis

In order to obtain that the unique parametrically uni- equivalent to requiring the existence of bifree algebrad3.in
form (-)' is also a Conway operator, we require yet more We write7 : D — D for the induced monad (given by the
bifree algebras. We say th&thassufficiently many bifree  compositeJ K) onD.
algebrasif all endofunctorsL(X x L(X x (—))) and

L(X x (=) x (~)) onS have bifree algebras. Proposition 6.7 S has sufficiently many bifree algebras if

and only if all endofunctors of the forfi( X x T'(X x (—)))

Theorem 3 If S has sufficiently many bifree algebras then @1d7(X x (=) x (=)) onD have bifree algebras.

D has a unique parametrically uniform parameterized In spite of the above reformulation, we believe that it is
fixed-point operator, and it is a Conway operator. usually more appropriate to consider the bifree algebras as
living in S. A common application of the results in this
To prove the theorem, suppose titathas sufficiently  section will involve using a categoiy that isalgebraically
many bifree algebras. By Proposition 5.2, all endofunctors compac{13, 14], in which case the existence of sufficiently
L(X x (=)) on S have bifree algebras. So by Proposi- many bifree algebras if is guaranteed. The canonical ex-
tion 6.5,D has a unique parametrically uniform parameter- ample of this situation is whef is Cppo |, which is al-
ized fixed-point operator. Moreover, parameterized dinatu- gebraically compact with respect @ppo-enriched endo-
rality follows from ordinary dinaturality given by Proposi-  functors [10]. The results in this section thus apply to the
tion 6.1, when the comonad is instantiated o x (—)). co-Kleisli category of any comonad &@ppo, whose un-
It remains to prove the diagonal property. To this end, gerlying functor isCppo-enriched, not just to the lifting
observe that on any categafywith finite products, the end-  comonad. A degenerate case is the identity comonad, show-
ofunctor(—) x (—) can be endowed with the structure of jng that it is also possible foP itself to be algebraically

a comonad; in fact this can be done in two inequivalent compact (although this implies thais a zero object irD).
ways. In both cases the counitig : A x A —— A.

The two possible comultiplications ate;, 7o, 72, 1) and
(1,79, ma,m2) : AX A — A x Ax Ax A. (Inthe first
case the coalgebras of the comonad are involutiods in
the second case the coalgebras are idempotents.) Strangelgh
the proof below works equally well with either choice of

comultiplication.

Consider the comonad—) x (—) on the category
Dx x(—), and writeD,, for its co-Kleisli category. The
chain of right adjointsS — D — Dx(—) — Dg, shows
that D, arises as the co-Kleisli category of a comonad
with underlying functorL(X x (=) x (—)) onS. Because
L(X x (=) x (=)) has a bifree algebra, Proposition 6.1 rel-
ativizes to give thaD,, has a unique uniform fixed-point
operator. In terms ob this says that there exists a unique
family (1) : D(X x A x A, A) — D(X, A) satisfying:

7. Fixed points and lifting monads

In Section 6, we took a category of “strict” maps as basic,
d derived the relevant properties of fixed points in a cat-
egory of “domains” determined as the co-Kleisli category
of a comonad or$. In many examples, however, the cat-
egoryS is itself obtained as the category of algebras for a
“lifting” monad on a category of “predomains”. In this sec-
tion, we investigate such situations in general. Surprisingly,
the strong properties of a lifting monad allow all assump-
tions about the existence of bifree algebras to be dropped.
Instead, the mere existence of uniform non-parameterized
fixed-points suffices to determine a unique parametrically
uniform Conway operator.

Let C be a category with finite products and a strong
1. Foranyf: X x Ax A — A, monad(7T,n, u,t) (see e.g. [22, 23]). We writ& for the

folidx, ff,fH =X — A Kleisli category of the monad, and we wrife: C — K

for the associated (left-adjoint) functor. We assume that
2. Foranyf : XxAxA — A,g: XxBxB —» B C hasKleisli exponentialsi.e. that, for everyX in C the

andh : A——o B, hof=go(idx x JhxJh)  functorI(X x (—)) : C — K has a right adjoint (see e.g.

impliesg? = Jh o f%. [22, 28]). These assumptions give the structure required to
model Moggi’'scomputational-calculus[22].

We wish to consider a notion of fixed-point & suit-
able for adding a recursion operator to the computatianal
calculus. Because of the existence of Kleisli exponentials,
it suffices to consider a non-parameterized notion.

The diagonal property is proved by showing that the two
operations, mapping : X x A x A —— Ato (fH)t
and(f o (idx x A))f : X —— A respectively (defined
using the parametrically uniform parameterized fixed-point
operator orD), both satisfy the characterising properties of
(-)* above. Therefore the two operations are equal, henceDefinition 7.1 (Uniform T-fixed-pt. op.) A uniform T-
(fol(idy x A)T = (fHi. fixed-point operators a a family of functions



()*:C(TA,TA) — C(1,TA) such that: Proposition 7.4 Under the conditions of Theorem 4, if all
idempotents irC split andC has a uniform7’-fixed-point

1. Foranyf:TA — TA, fof*=f" operator thenS has sufficiently many bifree algebras.
2. Foranyf : TA——TA,g : TA—— TA and The proof is outlined in Section 8.
h:TA — TB,ifhou=poThandgoh = ho f To derive Theorem 4 from Proposition 7.4, one first
theng* = ho f*. shows that all the structure ab (parameterized natural
- o ) ) ) : number object, equational lifting monad, Kleisli exponen-
One familiar setting in which a (unique) uniforfii-fixed- tials) extends to itKaroubi envelopgSplit(C), (see [19,

point operator exists is whef has afixpoint objectin the p. 100, Exercise 2]). Moreover, & has a uniforml-
sense of Crole and Pitts [5], see [24, 28]. In this paper, We fixed-point operator then so doéslit(C). By definition,
take the weaker notion of uniforri-fixed-point operator g jdempotents split isplit(C). Thus, by Proposition 7.4,
as primitive. Howgver, we sha!l see circumstances below in Split(S) has sufficiently many bifree algebraSp(it(S) is
which the two notions are equivalent. indeed the category of algebras for the mona&piit(C)).

In this section, our aim is to show hof-fixed-point Hence, by Theorem 3Split(D) has a unique parametri-
operators give rise to fixed-point operators as consideredcajly uniform parameterized fixed-point operator, and it is
earlier in the paper. To this end, we wrigefor the cate- 3 Conway operator. However, it is easily shown that para-
gory of algebras of the mona (the Eilenberg-Moore cat-  metrically uniform parameterized fixed-point operators and
egory) andL for the comonad o induced by the adjunc-  conway operators o and onSplit(D) are in one-to-one
tion with C. Let D be the co-Kleisli category of., and  ¢orrespondence. Theorem 4 follows by Proposition 7.2.
let J : S — D be the induced functor (as in Section 6). One other consequence of Proposition 7.4 is that, by
ConcretelyD can be described as the category whose ob-proposition 5.3, the existence of a bifréealgebra onS
jects are Eilenberg-Moore algebras fr with hom-sets: 5 equivalent to the existence of a bifréealgebra onC.
D(TA —“+ A, TB —*~ B)=C(A, B). Freyd observed that any bifré@-algebra is dixpoint ob-

ject[5]. We have already mentioned that any fixpoint ob-
Proposition 7.2 There is a one-to-one correspondence be- ject determines a uniforrif-fixed-point operator. Thus, in
tween uniforn?’-fixed-point operators o and parametri-  the circumstances of Proposition 7.4, the existence’Bf a
cally uniform parameterized fixed-point operatorson fixed-point operator is equivalent to that of a fixpoint object.

Our aim is to show that, under suitable conditions, there is a -

unique uniform7-fixed-point operator, and that the unique 8- Proof of Proposition 7.4

parametrically uniform parameterized fixed-point operator

determined is a Conway operator. We have a categorg, with finite products, parameter-
One condition is that have aparameterized natural  ized natural numbers object, equational lifting monad and

numbers object O NN (see [19, p. 71, Ex- Kleisli exponentigls, in which every idempotent splits: One

ercise 4] — this is the appropriate notion of natural num- consequence of idempotents splitting is that, for evéin

bers object for non-cartesian-closed categories). The othef s the functorf'(Y" x (=) : ¢ — & (wheref" : € — S
assumption is one on the monad. is the standard “free algebra” functor) has a right adjoint

(-)Y : & — C. Essentially this means that for any object
Definition 7.3 (Equational liting monad [4]) A strong X of C that lies in the image of the forgetfdl : S — C
monad (7,7, 1, t) is said to be anequational lifting (we henceforth call such objecitgebra carrying, and ev-

monadif it is commutative and also satisfies the equation €ry objectY” of C, the exponentiak ™ exists inC (the ob-
toA=T(nidx): TX — T(TX x X). ject XY is constructed as a retract of the Kleisli exponential

TXY). It also implies tha® is cartesian closed.
In [4], it is shown that equational lifting monads exactly
capture the equational properties of partial map classifiers. Lemma 8.1 For every algebra-carryingX, the endofunc-
torsX x (—):C —CandX x (—) x (=) : C — C have
Theorem 4 Suppos& has a parameterized natural num- final coalgebras.
bers object and’ is an equational lifting monad. Theh
has at most one uniform-fixed-point operator. Moreover, Lemma 8.2 For every objectY of S, the endofunctors
if such an operator exists then the associated unique param-X X (=) : & — SandX x (-) x (—) : § — & have final
eterized fixed-point operator dR is a Conway operator. coalgebras.

The bulk of the work in the proof of Theorem 4 goes into Lemma 8.3 L is a retract of(L1) x (—) in the category of
proving the proposition below. endofunctors oi.



Lemma 8.4 All endofunctorsL(X x L(X x (-))) and
L(X x (=) x (=)) have final coalgebras i8.

by Proposition 5.3 HKHK has a final coalgebra if.
By Proposition 8.5.2H K HK is D-enriched. Hence, by
Proposition 8.5.3/C has a bifreeH K H K-algebra. Thus,
Briefly, the final coalgebras of Lemma 8.1 both have carrier 544in by Proposition 5.35 has a bifreei H K H-algebra,
XN which is used to encode infinite sequences and full bi- j e there is a bifree algebra fér( X x L(X x (—))). The
nary trees. Lemma 8.2 follows by proving that the forgetful argument forL(X x (=) x (—)) is similar. This completes
from the category of coalgebras féf x (—) onStothe  the proof of Proposition 7.4.
category of coalgebras fof x (—) onC is monadic and so
creates the terminal object (similarly fof x (=) x (—)).
For Lemma 8.3, the retraction is given by the pair of mor-
phisms(T!a) : TA —— (T1) x A and (Tms) ot :
(T1)x A —» TAiInC (wheret' : T1x A — T(1x A) Theorem 4 has applications to an axiomatic approach
is the “costrength”ofl"). The verification that this pair has t0 denotational semantics. The conditions @rare ex-
the required properties is the only place in which the equa-2actly suited to modelling a call-by-value versi@CF,, of
tional lifting monad equation (Definition 7.3) is used. Fi- PCF with product types (as considered in e.g. [33]). The
nally, Lemma 8.4 follows from Lemmas 8.2, 8.3 and Propo- monad and Kleisli exponentials interpret Moggi's compu-
sition 5.4. tational A-calculus [22], which is the core @ CF,,. The
Now that final Coa|gebras for the desired functors have natural numbers object is used to interpret the arithmetic
been constructed i, it remains to show that they are operations. Intuitively, the assumption of an equational lift-
bifree. We achieve this by some more manceuvring betweering monad expresses that nontermination is the only com-
categories, using Proposition 5.3 to transfer universal prop-putational effect inPCF,. We suggest that a uniforffi-
erties from one place to another. In fact, we shall exploit fixed-point operator is the natural structure for interpreting

9. Discussion

properties of the Kleisli categor.

As T is a commutative strong monaff, is a symmet-
ric monoidal category and : C — K is monoidal (where
cartesian product is taken as the monoidal produc€pn
We write ® for the monoidal product ofC, and L’ for the
underlying functor of the comonad dé@induced byT".

Proposition 8.5
1. K can be construed asR-enriched category.
2. ® and L’ can be construed a@B-functors onk..

3. For anyD-enriched endofunctof’ on /C, an isomor-
phisma : FA —— A in K is an initial F-algebra if
and only ifa—! is a final F-coalgebra.

The proof is given in [28]. In outline, 1 is proved using
Kleisli exponentials, and 2 is then routine. For 3, the idea is
to use the uniform fixed-point operatorinto establish that
the property of being an initigh'-algebras is equivalent to a
self dual property (calledpecial F-invariance, and hence
equivalent to the property of being a finatcoalgebra; see
Theorem 5.2 of [28].

To finish the proof of Proposition 7.4, consider, for ex-
ample, the functofL(X x L(X x (=))) : S — S. We write
K : K — S for the “comparison” functor from Kleisli cat-
egory to Eilenberg-Moore category. We write: S — S
for the composite:

sX s Y, o Lk

ThenL(X x L(X x (-))) = KHKH : § — S. By
Lemma 8.4,KHK H has a final coalgebra i§. Thus,

recursion. By Theorem 4, there is at most one such oper-
ator, and so the interpretation of recursion is uniquely de-
termined. Moreover, the interpretation of recursion satisfies
all desirable equational properties.

An interesting aspect of the proposed notion of model
is that all ingredients in the model correspond to syntac-
tic features of the language. Thus the free category with the
identified structure corresponds to a term model constructed
out of PCF, programs quotiented by the equivalence in-
duced by the categorical structure. Then the interpretation
of PCF, terms in an arbitrary model is given by the unique
structure preserving functor from the free model. Thus the
denotational semantics BYCF,, is recast in the framework
of Lawvere’s functorial semantics.

The categorical structure of the models determines a
rudimentary equational logic for proving operational equal-
ities betweerP CF,, programs. On the one hand, this logic
supports a “denotational” form of reasoning, using cate-
gorical universal properties. On the other, by interpreting
the equalities in the free model, any argument has a direct
“operational” reading as following a chain of equalities be-
tweenPCF, programs. Thus one might argue that the no-
tion of model provides a denotational framework for direct
operational reasoning. One wonders how powerful the in-
duced proof principles are.

Another question of power is how far our approach of
deriving equational properties of recursion from categorical
universal properties can be extended to derive properties of
higher-order recursion. A natural syntax for higher-order
recursion is given by the simply-typedcalculus extended
with a typed fixed-point combinator. It can be shown that
the desired equational theory between such terms is that in-



duced by a suitable notion gfexpanded typed & m trees,
that this theory is co-r.e. and satisfies a characterisation as a
maximally-consistent typically ambiguous theory (cf. [31]

and our Theorem 2). A major open question is whether the (14]
theory is decidable. The restricted case of equalities be-
tween so-calledecursion schemadsas recently been settled

[13] P. Freyd. Algebraically complete categories. Qate-
gory Theory, Proceedings Como 19%pringer LNM 1488,
1991.

P. Freyd. Remarks on algebraically compact categories. In
Applications of Categories in Computer Sciengages 95—
106. LMS Lecture Notes 177, Cambridge University Press,

. .. . . . 1992.
in the positive by the long awaited proof of the decidability [15] C. Gunter. Semantics of Programming LanguageIT
of language equivalence for DPDAs [27]. It would be re- Press, 1992.

markable if the proof rules in Stirling’s tableau approach to [16]
decidability [32] could be derived from category-theoretic
universal properties.

Another interesting (and less ambitious!) direction for
research is to investigate the equational theory induced by
Hasegawa’s notion ofiniform trace[16], which gener-
alises parametrically uniform Conway operators to symmet-
ric monoidal categories. In particular, Hasegawa considers
tracedcartesian-centemonoidal categories as models of
cyclic sharing graphsPerhaps there is a completeness the-
orem for uniform traces with respect to an equational theory [20]
induced by suitable unfoldings of such graphs.
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