
Intensionality, Extensionality, and Proof Irrelevance
in Modal Type Theory

Frank Pfenning∗

Department of Computer Science
Carnegie Mellon University

fp@cs.cmu.edu

Abstract

We develop a uniform type theory that integrates inten-
sionality, extensionality, and proof irrelevance as judgmen-
tal concepts. Any object may be treated intensionally (sub-
ject only toα-conversion), extensionally (subject also to
βη-conversion), or as irrelevant (equal to any other object
at the same type), depending on where it occurs. Modal re-
strictions developed in prior work for simple types are gen-
eralized and employed to guarantee consistency between
these views of objects. Potential applications are in logical
frameworks, functional programming, and the foundations
of first-order modal logics.

Our type theory contrasts with previous approaches that
a priori distinguish propositions (whose proofs are all
identified—only their existence is important) from specifi-
cations (whose implementations are subject to some defini-
tional equalities).

1 Introduction

In the development of type theory, there has been con-
siderable debate about the degree of extensionality or inten-
sionality that should be inherent in its formulation. In an ex-
tensional theory such as the one underlying Nuprl [4] type-
checking is undecidable. In a non-extensional theory1 such
as later versions of Martin-L¨of’s type theory [17], we distin-
guish adefinitional equality(also calledjudgmental equal-
ity) which is not extensional and decidable, from aproposi-
tional equalitywhich is extensional and undecidable. There
are a number of tradeoffs, both from the philosophical and
pragmatic points of view. In an undecidable, extensional
theory, programs are significantly more compact than in a

∗This work was partially supported by NSF GrantCCR-9988281.
1Such type theories are often calledintensional, but this is somewhat

misleading since the meaning of objects is still subject to some conversion
rules.

decidable, non-extensional theory. On the other hand, we
need external arguments to validate the correctness of pro-
grams, defeating at least in part the motivations underly-
ing the separation of judgments from propositions [11, 12].
Furthermore, the development of extensional concepts in a
non-extensional type theory is far from straightforward, as
can be seen from Hofmann’s systematic study [10].

Related is the issue ofproof irrelevance, which plays an
important role in the development of mathematical concepts
in type theory via subset types or quotient types. For exam-
ple, the type{x:A | B(x)} should contain the elementsM
of typeA that satisfy propertyB. If we want type-checking
to be decidable, we require evidence thatB(M) is satisfied,
but we should not distinguish between different proofs of
B(M)—they areirrelevant.

In this paper we present a type theory that internalizes
the concepts of intensionality, extensionality, and proof ir-
relevance via distinctions familiar from modal logic. We
strictly follow Martin-Löf’s separation of judgments from
propositions and both type-checking and definitional equal-
ity are decidable.

At the heart of our modal type theory are three judgments

M :: A M is anexpressionof typeA,
M : A M is antermof typeA, and
M ÷ A M is aproof of typeA,

constructed from the same set of objectsM and typesA.
Expressions are treatedintensionally: they are subject only
to α-conversion. Terms are treatedextensionally: they
are additionally subject toβ andη-conversion. Proofs are
treated as ifirrelevant: any two proofs of the same type
are identified. All these are part of the definitional equality
of the type theory, which therefore combines intensional-
ity, extensionality, and irrelevance into a single system in a
coherent way.

It is a critical property of our type theory that the dis-
tinction between expressions, terms, and proofs is not made
at the time the constituent constants are declared, but at the

time those constants are used. Any typeA can be seen as
the type of an expression, the type of a term (= a specifi-
cation), or the type of a proof (= a proposition). Similarly,
an objectM may be seen as an expression, as a term, or as
a proof, depending only on whether some conditions on its
free variables are satisfied. We believe that this flexibility is
an inherent advantage of our approach compared to a priori
separating propositions (inhabited by proofs that are always
irrelevant) from specifications (inhabited by terms that are
never irrelevant). This is the approach mostly taken in the
literature (see, for example, [18] or, allowing even for some
classical reasoning, [2]).

Our system is also interesting in its relation to intuition-
istic modal logic when we ignore the objects. Our default
judgmentM : A can be interpreted as “A is true”. The
judgmentM :: A can be read as “A is valid”. The judg-
mentM ÷ A can be read as “A is provable”, hiding the
proof object. These can be seen as modes of truth, and the
work presented here is an extension of prior work on proof
term calculi for the modal logic S4 [20] where validity cor-
responds to necessary truth.

In a type theory as a foundation for functional program-
ming, irrelevant objects (that is, proofs) are erased be-
fore execution without affecting the observable outcome.
From this point of view, our type system internally captures
a notion of dead-code elimination (see, for example, [1]
for a survey and position paper on related type-based ap-
proaches). However, we need to extend our type theory with
first-class modal operators in order to use it in the context
of a complete functional language. Two non-dependent the-
ories in this style are given in [20], explaining an intuition-
istic modal logic with necessity (2A) and possibility (3A).
A proper treatment of the fully dependent version of these
theories would seem to require an equational theory with
commuting conversions and is therefore left to future work.
Fortunately, it is possible to develop a consistent and useful
type theory where these judgments are considered primarily
as hypotheses. Instead of internalizing them as modal op-
erators, we internalize the corresponding hypothetical judg-
ment as function types. Such a restriction is not new—it
goes back to similar treatments of linear logic [9] and linear
type theory [3] with similar motivations.

In the remainder of the paper we present our type theory,
investigate its properties, and sketch some further develop-
ments and potential applications.

2 A Modal Type Theory

Our modal type theory is a conservative extension of
LF [7]. Our approach follows the outline of [8], adapted
here to our more general type theory. The interested reader
may find additional details in [19].

2.1 Syntax

The syntax is stratified into objects, families, and kinds
as for LF.

Kinds K ::= type | Πx:A. K
| Πx::A. K | Πx÷A. K

Families A ::= a | AM | Πx:A1. A2

| A •M | Πx::A1. A2

| A ◦M | Πx÷A1. A2

Objects M ::= c | x | λx:A. M |M1 M2

| λx::A. M |M1 •M2

| λx÷A. M |M1 ◦ M2

Signatures Σ ::= · | Σ, a:K | Σ, c:A
Contexts Γ ::= · | Γ, x:A | Γ, x::A | Γ, x÷A

Here,M1 • M2 is an application whose argument (M2)
is treated as an expression (intensionally), whileM1 ◦ M2

is an application whose argument is treated as a proof (ir-
relevant for equality). We useK for kinds,A,B, C for
type families,M,N, P for objects,Γ for contexts andΣ
for signatures. We also use the symbol “kind” to clas-
sify the valid kinds. We consider terms that differ only in
the names of their bound variables as identical. We write
[N/x]M , [N/x]A and[N/x]K for capture-avoiding substi-
tution. Signatures and contexts may declare each constant
and variable at most once. For example, when we write
Γ, x:A we assume thatx is not already declared inΓ. If
necessary, we tacitly renamex before adding it to the con-
text Γ. Since a signature is generally fixed, and constants
may be used anywhere, we have permitted only two forms
of constant declaration, namelya:K andc:A. Note that this
is not a restriction for our applications, since it is theusenot
the definition of a constant which determines its status with
respect to definitional equality.

2.2 Judgments

The modal type theory is defined by the following prin-
cipal judgments.

` Σ sig Σ is a valid signature
Σ̀ Γ ctx Γ is a valid context

Γ Σ̀ M : A M has typeA
Γ Σ̀ A : K A has typeK
Γ Σ̀ K : kind K is a valid kind

Γ Σ̀ M = N : A M extensionally equalsN
Γ Σ̀ A = B : K A extensionally equalsB
Γ Σ̀ K = L : kind K extensionally equalsL

Γ Σ̀ M ≡ N : A M intensionally equalsN

As explained later, intensional equality for types and
kinds is not needed directly, and proof irrelevance is a de-
rived concept.

2

For the judgment Σ̀ Γ ctx we presuppose thatΣ is a
valid signature. For the remaining judgments of the form
Γ Σ̀ J we presuppose thatΣ is a valid signature and thatΓ
is valid in Σ. For the sake of brevity we omit the signature
Σ from all judgments but the first, since it does not change
throughout a derivation.

If J is a typing or equality judgment, then we write
[M/x]J for the obvious substitution ofM for x in J . For
example, ifJ isN : B, then[M/x]J stands for the judg-
ment[M/x]N : [M/x]B.

We also have several derived judgments that are central
the nature of our type theory. Each of them is defined by
only a single rule. In order to explain these additional judg-
ments we need two critical operations on contexts. The
first,Γ	, hides all term variablesx:A by converting them to
proof variablesx÷A. The second,Γ⊕, resurrects all proof
variablesx÷A by converting them to term variablesx:A.
Other declarations are unaffected in both cases.

(·)	 = · (·)⊕ = ·
(Γ, x:A)	 = Γ	, x÷A (Γ, x:A)⊕ = Γ⊕, x:A

(Γ, x::A)	 = Γ	, x::A (Γ, x::A)⊕ = Γ⊕, x::A
(Γ, x÷A)	 = Γ	, x÷A (Γ, x÷A)⊕ = Γ⊕, x:A

Intensional Expressions. The new judgments

Γ Σ̀ M :: A M is an expression of typeA
Γ Σ̀ A :: K A is an expression type of kindK

Γ Σ̀ M = N :: A M andN are equal expressions
Γ Σ̀ A = B :: K A andB are equal expression types

are defined by the following rules

Γ	 Σ̀ M : A

Γ Σ̀ M :: A

Γ	 Σ̀ A : K

Γ Σ̀ A :: K

Γ	 Σ̀ M ≡ N : A

Γ Σ̀ M = N :: A

Γ	 Σ̀ A = B : K

Γ Σ̀ A = B :: K

The idea is that an expression cannot refer to a term vari-
ablex:B, which would violate intensionality. Thus we mark
these variables as irrelevant,x÷B, which is accomplished
by the()	 operation. Note, however, that intensionalityand
irrelevance interact: proof variables may still occur in an in-
tensional expression, but only inside other proofs! The rules
for equality indicate that only intensionally equal terms are
considered as equal expressions. We do not directly refer
to α-convertibility here because expressions may contain
proofs that must be identified, even as subterms of expres-
sions. Note that expression types are not intensional, but
that there is a restriction regarding their validity: expression
types can not depend on term variables directly.

In general,M :: A is inherently stronger thanM : A,
that is,M :: A impliesM : A but not vice versa. In partic-
ular,x:A 6 Σ̀ x :: A.

Irrelevant Proofs. The new judgments

Γ Σ̀ M ÷ A M is a proof of typeA
Γ Σ̀ A ÷K A is a proof type of kindK
Γ Σ̀ M = N ÷ A M andN are equal proofs
Γ Σ̀ A = B ÷K A andB are equal proof types

are defined by the following rules

Γ⊕ Σ̀ M : A

Γ Σ̀ M ÷ A
Γ⊕ Σ̀ A : K

Γ Σ̀ A ÷ K

Γ⊕ Σ̀ M = M : A Γ⊕ Σ̀ N = N : A

Γ Σ̀ M = N ÷ A

Γ⊕ Σ̀ A = B : K

Γ Σ̀ A = B ÷K

The idea is that a proof may depend on expression vari-
ables, term variables, and proof variables. This effect is
achieved by relabelling hypothesesx÷B to x:B in the()⊕

operation. Note that equality between proofs implements
proof irrelevancein the classical sense. We could replace
the premiseΓ⊕ Σ̀ M = M : A with Γ⊕ Σ̀ M : A (and
similarly for N), but for technical reasons it is simpler if
the equality judgment does not refer to the typing judgment
here.

It is important thatM ÷ A is inherently weaker thanM :
A. In particular,x÷A 6 Σ̀ x : A. In other words, terms can
not depend on proof variables, but other proofs can. Under a
functional interpretation, it is this property which allows the
consistent erasure of all proof objects without affecting the
observable outcome (assuming proofs are not observable).

Note that, unlike the systems in [5, 20], the rules have the
property ofvariable monotonicity: when viewed bottom-
up, every variable is preserved—only its status might
change from the conclusion to the premise of a rule. This is
inspired by a similar idea in [13] and is needed for a clean
interaction between expressions and proofs.

2.3 Typing Rules

Our formulation of the typing rules is similar to the sec-
ond version given in [7] and directly based on [8]. In prepa-
ration for the various algorithms we presuppose and induc-
tively preserve the validity of contexts involved in the judg-
ments, instead of checking these properties at the leaves.
This is a matter of expediency rather than necessity. Fur-
thermore, in order to the shorten the presentation we use
the following notation:

“?” stands for either “:”, “ ::”, or “÷” were all occur-
rences in a rule must be consistent.

3

Objects.

c:A in Σ

Γ ` c : A Γ, x:A,Γ′ ` x : A Γ, x::A,Γ′ ` x : A
no rule forx÷A

Γ ` A1 ? type Γ, x?A1 `M2 : A2

Γ ` λx?A1. M2 : Πx?A1. A2

Γ `M1 : Πx?A2. A1 Γ `M2 ? A2

Γ `M1 ∗M2 : [M2/x]A1

Γ `M : A Γ ` A = B : type

Γ `M : B

Families.

a:K in Σ

Γ ` a : K

Γ ` A : Πx?B. K Γ `M ? B

Γ ` A ∗M : [M/x]K

Γ ` A1 ? type Γ, x?A1 ` A2 : type

Γ ` Πx?A1. A2 : type

Γ ` A : K Γ `K = L : kind

Γ ` A : L

Figure 1. Rules for Validity of Objects and Families

“∗” stands for either juxtaposition (an application of
a function of typeΠx:A. B), “•” (an application of
a function of typeΠx::A. B), or “◦” (an application
of a function of typeΠx÷A. B). Occurrences of “∗”
must be coordinated with occurrences of “?” in a rule
schema in the indicated manner.

Signatures. The rules for validity of signatures are
straightforward and omitted here. From now on we fix a
valid signatureΣ and omit it from the judgments.

Contexts. Validity of contexts must guarantee that we
cannot incorrectly refer to a proof variable in a term or
expression, or a term variable in an expression. This is
achieved by the following rules.

` · ctx

` Γ ctx Γ ` A ? type

` Γ, x?A ctx

Note that the second rule schema actually stands for
three rules, depending on whetherx:A, x::A, or x÷A ap-
pear in the conclusion and premise.

Objects. Here we proceed as in LF, except that we need to
make sure that arguments fit the type and disposition (inten-
sional, extensional, or irrelevant) of the function. The rules
can be found in Figure 1. The rule schema for application
is the most complex and has three instances. One of them,
for example, replaces? by :: and∗ by •.

Families and Kinds. The rules for application and con-
version are copies of the rules from the level of objects.
Valid function types restrict occurrences of the dependent
variable based on whether the corresponding argument is
interpreted as an expression, a term, or a proof. This is nec-
essary to guarantee that the type of an application, which is
obtained by substitution, is valid. The rules at the level of
kinds mirror the ones at the level of families and are elided
here.

Generally, in our theory the judgments on families only
reflect the judgments on the objects embedded in them. This
is typical of type theories such as the one underlying LF.

2.4 Definitional Equality

The rules for definitional are written with the presuppo-
sition that a valid signatureΣ is fixed and that all contexts
Γ are valid. The intent is that equality implies validity of
the objects, families, or kinds involved (see Lemma 2). In
contrast to the original formulation of LF in [7], equality
of terms is based on a notion of parallel conversion plus
extensionality, rather thanβη-conversion, but the two def-
initions turn out to be equivalent. In addition we have to
take care of intensionality for expressions and irrelevance
of proofs. This is reflected in the rules for intensional appli-
cationM • N and irrelevant applicationM ◦ N .

Some of the typing premises in the rules are redundant,
but for technical reasons we cannot prove this until valid-
ity has been established. Such premises are enclosed in
{braces}.

4

Simultaneous Congruence.

c:A in Σ

Γ ` c = c : A Γ, x:A,Γ′ ` x = x : A Γ, x::A,Γ′ ` x = x : A

Γ `M1 = N1 : Πx?A2. A1 Γ `M2 = N2 ? A2

Γ `M1 ∗M2 = N1 ∗ N2 : [M2/x]A1

Γ ` A′1 = A1 ? type Γ ` A′′1 = A1 ? type Γ, x?A1 `M2 = N2 : A2

Γ ` λx?A′1. M2 = λx?A′′1 . N2 : Πx?A1. A2

Extensionality.

Γ ` A1 ? type {Γ `M : Πx?A1. A2} {Γ ` N : Πx?A1. A2} Γ, x?A1 `M ∗ x = N ∗ x : A2

Γ `M = N : Πx?A1. A2

Parallel Reduction.

{Γ ` A1 ? type} Γ, x?A1 `M2 = N2 : A2 Γ `M1 = N1 ? A1

Γ ` (λx?A1. M2) ∗M1 = [N1/x]N2 : [M1/x]A2

Type Conversion.

Γ `M = N : A Γ ` A = B : type

Γ `M = N : B

Figure 2. Extensional Equality Between Objects

Objects. The extensional equality rules for objects are
shown in Figure 2, where we have elided rules stating sym-
metry and transitivity. Conversion is modelled by parallel
reduction, a choice motivated by technical concerns. Re-
flexivity is admissible, which is typical for equality based
on parallel reduction.

The crux of intensionality and irrelevance is in the cases
for the corresponding applications,M • N andM ◦ N .
We therefore explicitly consider the second premise in the
rule schema for application in its three specific instances.

If we compareM1 M2 = N1 N2, then the second
premise requiresM2 = N2 : A2, just as in LF.

If we compareM1 • M2 = N1 • N2 then the ar-
guments are treated intensionally and equality will only
succeed ifM2 and N2 are well-typed and intensionally
equal expressions. This is enforced with the judgment
Γ ` M2 = N2 :: A2 defined before, which holds if and
only if Γ	 `M2 ≡ N2 : A2.

If we compareM1 ◦ M2 = N1 ◦ N2 then the arguments
are proofs and are always considered equal. We only need
to check that they are well-typed, which is accomplished
with the judgmentΓ ` M2 = N2 ÷ A2 defined before.
This holds if and only ifΓ⊕ `M2 : A2 andΓ⊕ ` N2 : A2.

Since the main equality judgment compares terms and

not expressions or proofs, the extensionality principle holds
for all three kinds of functions. Modulo the construction of
the right kind of context and some redundant premises re-
quired for technical reasons, these are straightforward. Sim-
ilarly, the rule of parallel reduction is available for all three
kinds of functions.

Families and Kinds. The rules in Figure 2 are repeated
with straightforward adaptations at the levels of families
and kinds and omitted here. Details can be found in the
technical report [19].

Intensional Equality. The intensional equality between
objects,Γ ` M ≡ N : A, is defined as a simultaneous
congruence just as the extensional equality, but we delete
the rules for extensionality and parallel conversion. In the
modified rules, arguments to functions that are to be treated
as proofs, however, are considered irrelevant for equality as
before. Hence irrelevance takes precedence over intension-
ality, which seems most appropriate for the intended appli-
cations as outlined in Section 7. The reader can find the full
set of rules in [19].

5

2.5 Elementary Properties

We establish some elementary properties of the judg-
ments pertaining to the interpretation of contexts. All of
these have standard or straightforward proofs on the struc-
ture of derivations. First we show weakening for all judg-
ments of the type theory. Secondly, reflexivity holds for
valid objects, families, and kinds.

For all lemmas and theorems from here on we tacitly
assume that the contexts in the given derivations are well-
formed. Furthermore, in the statement of a meta-theoretic
property, several occurrences of “?” must still be instanti-
ated consistently as for inference rules.

Lemma 1 (Substitution) If Γ, x?A,Γ′ ` J andΓ ` M ?
A thenΓ, [M/x]Γ′ ` [M/x]J .

Proof: By induction over the structure of the first given
derivation.

Note that this is shorthand for several separate substitu-
tion properties. Now there is a series of technical lemmas
(which we omit), culminating in validity and functionality.

Lemma 2 (Validity)

1. If Γ `M ? A thenΓ ` A ? type.

2. If Γ ` M = N ? A, thenΓ ` M ? A, Γ ` N ? A,
andΓ ` A ? type.

Analogous properties hold at the levels of families and
kinds.

Lemma 3 (Functionality) If Γ ` M = N ? A and
Γ, x?A ` O = P : B then Γ ` [M/x]O = [N/x]P :
[M/x]B and similarly at the level of types and kinds.

Another consequence of validity is a collection of stan-
dard inversion properties. In the interest of space, we elide
these properties here. We can further show, from validity,
that the premises enclosed in{. . .} are indeed redundant,
that is, follow from the other premises.

3 An Algorithm for Deciding Equality

The algorithm for deciding definitional equality can be
summarized as follows:

1. When comparing objects at function type, apply exten-
sionality.

2. When comparing objects at base type, reduce both
sides to weak head-normal form and then compare
heads directly. If they are equal, we compare each cor-
responding pair of argumentsaccording to their status.

(a) When the corresponding arguments are exten-
sional (terms), recursively compare for exten-
sional equality.

(b) When the corresponding arguments are in-
tensional (expressions), compare for syntactic
equality moduloα-conversion, ignoring only
embedded proof terms.

(c) When the corresponding arguments are irrelevant
(proofs), we always treat them as equal.

Since this algorithm is type-directed in case (1) we need to
carry types. Unfortunately, this makes it difficult to prove
correctness of the algorithm in the presence of dependent
types, because transitivity is not an obvious property. For-
tunately, we do not need to know the precise type of the
objects we are comparing.

We therefore define a calculus of simple approximate
types and an erasure function()− that eliminates dependen-
cies for the purpose of this algorithm. Note that there are
three forms of non-dependent function type which we write
asτ1

?→ τ2 and similarly for kinds.
We writeα to stands for simple base types and we have

two special type constants, type− and kind−, for the equal-
ity judgments at the level of types and kinds.

Simple Kinds κ ::= type− | τ :→ κ | τ ::→ κ | τ ÷→ κ

Simple Types τ ::= α | τ1
:→ τ2 | τ1

::→ τ2 | τ1
÷→ τ2

Simple Contexts∆ ::= · | ∆, x:τ | ∆, x::τ | ∆, x÷τ

We useτ, θ, δ for simple types and∆ for contexts declar-
ing simple types for variables. We also use “kind−” in a
similar role to “kind” in the LF type theory.

We writeA− for the simple type that results from eras-
ing dependencies inA, and similarlyK−. We translate each
constant type familya to a base typea− and extend this to
all type families. We extend it further to contexts by apply-
ing it to each declaration.

(a)− = a−

(A ∗M)− = A−

(Πx?A1. A2)− = A−1
?→ A−2

We now present the algorithm in the form of four judg-
ments. These can be interpreted as an algorithm in the man-
ner of logic programming.

M
whr−→M ′ (M weak head reduces toM ′) Algorithmi-
cally, we assumeM is given and computeM ′ (if M
is head reducible) or fail.

∆ `M ⇐⇒ N : τ (M is equal toN at simple typeτ) Al-
gorithmically, we assume∆, M , N , andτ are given
and we simply succeed or fail. We only apply this
judgment if M and N have the same typeA and
τ = A−.

6

∆ `M ←→ N : τ (M is structurally equal toN) Algo-
rithmically, we assume that∆, M andN are given
and we computeτ or fail. If successful,τ will be the
approximate type ofM andN .

∆ `M 〈≡〉 N (M is intensionally equal toN) Algorith-
mically, we assume that∆, M , andN are given and
we either succeed or fail.

Note that the structural and type-directed equality are mutu-
ally recursive, while weak head reduction does not depend
on the other three judgments.

Weak Head Reduction.

(λx?A1. M2) ∗M1
whr−→ [M1/x]M2

M1
whr−→M ′1

M1 ∗M2
whr−→M ′1 ∗M2

Type-Directed Object Equality.

M
whr−→M ′ ∆ `M ′ ⇐⇒ N : α

∆ `M ⇐⇒ N : α

N
whr−→ N ′ ∆ `M ⇐⇒ N ′ : α

∆ `M ⇐⇒ N : α

∆ `M ←→ N : α

∆ `M ⇐⇒ N : α

∆, x?τ1 `M ∗ x⇐⇒ N ∗ x : τ2

∆ `M ⇐⇒ N : τ1
?→ τ2

Structural Object Equality.

c:A in Σ

∆ ` c←→ c : A−
x:τ or x::τ in ∆

∆ ` x←→ x : τ

∆ `M1 ←→ N1 : τ2
:→ τ1 ∆ `M2 ⇐⇒ N2 : τ2

∆ `M1M2 ←→ N1N2 : τ1

∆ `M1 ←→ N1 : τ2
::→ τ1 ∆ `M2 〈≡〉 N2

∆ `M1 •M2 ←→ N1 • N2 : τ1

∆ `M1 ←→ N1 : τ2
÷→ τ1

∆ `M1 ◦M2 ←→ N1 ◦ N2 : τ1

Structural Intensional Object Equality.

c:A in Σ

∆ ` c 〈≡〉 c
x:τ or x::τ in ∆

∆ ` x 〈≡〉 x

∆ ` A⇐⇒ B : type− ∆, x?A− `M 〈≡〉 N

∆ ` λx?A. M 〈≡〉 λx?B. N
∆ `M1 〈≡〉 N1 ∆ `M2 〈≡〉 N2

∆ `M1 M2 〈≡〉 N1 N2

∆ `M1 〈≡〉 N1 ∆ `M2 〈≡〉 N2

∆ `M1 •M2 〈≡〉 N1 • N2

∆ `M1 〈≡〉 N1

∆ `M1 ◦M2 〈≡〉 N1 ◦ N2

The crux of the definitions above are the rules for struc-
tural equality for applications. We omit the corresponding
rules at the level of families. Briefly, kind-directed equality
simple decomposesΠ-types, while structural type equality
reprises the rules for structural object equality above.

The algorithmic equality judgments satisfy some
straightforward structural properties, including weakening.
Furthermore, the algorithm is essentially deterministic in
the sense that when comparing terms at base type we have to
weakly head-normalize both sides and compare the results
structurally. This is because terms that are weakly head re-
ducible will never be considered structurally equal. This
property, as well as the symmetry and transitivity of the al-
gorithm are completely straightforward.

4 Completeness of the Equality Algorithm

In this section we summarize the completeness theorem
for the type-directed equality algorithm. That is, if two
terms are definitionally equal, the algorithm will succeed.
The central idea is to proceed by an argument via logical
relations defined inductively on the approximate type of an
object, where the approximate type arises from erasing all
dependencies.

The completeness direction of the correctness proof for
type-directed equality states:

If Γ `M = N : A thenΓ− `M ⇐⇒ N : A−.

One would like to prove this by induction on the structure of
the derivation for the given equality. However, such a proof
attempt fails at the case for application. Instead we define a
logical relation∆ `M = N ∈ [[τ]] that provides a stronger
induction hypothesis so that both

1. if Γ `M = N : A thenΓ− `M = N ∈ [[A−]], and

2. if Γ− ` M = N ∈ [[A−]] thenΓ− ` M ⇐⇒ N ∈
A−,

7

can be proved.
The development can be found in [19], following [8]

quite closely, so we omit it here in the interest of brevity.

Theorem 4 (Completeness of the Equality Algorithm)
If Γ ` M = N : A thenΓ− ` M ⇐⇒ N : A−. Further-
more, an analogous property holds at the level of families.

5 Soundness of the Equality Algorithm

In general, the algorithm for type-directed equality is not
sound. However, when applied to valid objects of the same
type, it is sound and relates only equal terms. This direction
requires a number of syntactic lemmas from Section 2.5, but
is otherwise mostly straightforward.

Lemma 5 (Subject Reduction) If M
whr−→M ′ and

Γ `M : A thenΓ `M ′ : A andΓ `M = M ′ : A.

Proof: By induction on the definition of weak head reduc-
tion, making use of inversion and substitution properties.

For the soundness of the equality algorithm we need sub-
ject reduction and validity (Lemma 2).

Theorem 6 (Soundness of the Equality Algorithm)

1. If Γ ` M : A andΓ ` N : A andΓ− ` M ⇐⇒ N :
A−, thenΓ `M = N : A.

2. If Γ ` M : A andΓ ` N : B andΓ− ` M ←→ N :
τ , thenΓ ` M = N : A, Γ ` A = B : type and
A− = B− = τ .

3. If Γ `M : A andΓ ` N : B andΓ− `M 〈≡〉 N then
Γ ` A = B : typeandΓ `M ≡ N : A.

Analogous properties hold for types and kinds.

Proof: By induction on the structure of the given deriva-
tions for algorithmic equality, using validity and inversion
on the typing derivations.

6 Decidability

We can now show that the judgments for the equality al-
gorithm constitute a decision procedure on valid terms of
the same type. This result is then lifted to yield decidability
of all judgments in the type theory. This part of the develop-
ment is relatively standard. An exposition of the necessary
auxiliary judgments and lemmas can be found in [19]. We
only show the final result.

Theorem 7 (Decidability)

1. If Γ ` M : A and Γ ` N : A then it is decidable
whetherΓ `M = N : A.

2. Given a validΓ, M , andA, it is decidable whether
Γ `M : A.

Corresponding properties hold at the level of families and
kinds and for other equality judgments.

We also have that our type theory is conservative over
LF. This is important for logical framework applications,
since previously established adequacy theorems for encod-
ings will continue to hold in the modal framework.

7 Further Developments and Potential Appli-
cations

In this section we consider various possible further de-
velopments and potential applications of our ideas.

7.1 Logical Frameworks

The addition of intensional expressions and irrelevant
proofs to the logical framework may leads to more direct
and more compact encodings in a number of examples.

First, the intensional nature of expressions constitutes a
weak form of reflection: arbitrary LF terms are accessible
in LF without regard toβη-conversion. At present we do
not have any concrete applications for this added expressive
power—the primary application of intensional expressions
we have in mind is in the richer setting of functional pro-
gramming explained in Section 7.2 below.

Second, the irrelevant nature of proofs can be used to
encode similar situations in object theories, which is quite
frequent. For example, in an encoding of linear functions in
LF we often have to deal with pairs consisting of the actual
function and the proof certifying its linearity. The nature of
this proof is, however, irrelevant, as long as it exists. An
encoding of this kind might look as shown below. Here we
useA→ B for Πx:A. B wherex does not occur inB.

rawterm : type
lam : (rawterm → rawterm)→ rawterm
app : rawterm → rawterm → rawterm

linear : rawterm → type
. . .

linterm : ΠE:rawterm. ΠL÷linear E. type

The definitional equality at typelinterm now ignores the
proofs that the expressionsE are indeed linear. A simi-
lar situation arises in the encoding of object languages with
subtyping, where often all proofs of subtype relationships
should be considered equal. The logic programming inter-
pretation of such encodings can go from infeasible to practi-
cal if all choice points are discarded after the first proof has

8

been found. Such an optimization is justified by our modal
type theory without any loss of soundness or completeness.

Moreover, the Twelf system [21] can verify automati-
cally that type families (such aslinear or one implementing
object-language subtyping)are in fact decidable using mode
and termination analysis [22]. If we agree that irrelevant ob-
jects need not be shown in the user interface, then the proofs
of type linear E that occur in linear terms actually do not
need to be represented at all, leading to a potentially signif-
icant space savings that may be critical in applications such
as proof-carrying code [14] and certifying decision proce-
dures [23]. Another situation in which an implementation
may mark objects as irrelevant is if they are uniquely de-
termined, either for syntactic [15] or semantic [16] reasons.
While our modal analysis does not cover all of these op-
timizations, it generalizes some of the core ideas from a
fragment of LF to the full type theory.

7.2 Functional Programming

Our given type theory is fully adequate as a logical
framework, but clearly not expressive enough to develop
verified functional programs as in various implementations
of type theory such as Nuprl [4] or Coq [6]. Besides stan-
dard constructs such as inductive types orΣ-types that are
orthogonal to our considerations, we need to internalize ex-
pressions and proofs as modal operators, rather than just
arguments to functions. The blueprint for such an integra-
tion for expressions has been given in prior work [5, 20], the
correct notion of definitional equality in the presence of de-
pendencies was the main missing ingredient. The presence
of both expressions and proofs allows a new twist. We show
the formation and introduction rules for the corresponding
modal operators, expanding the derived judgments:

Γ	 ` A : type

Γ ` 2A : type

Γ	 `M : A

Γ ` boxM : 2A

Γ⊕ ` A : type

Γ ` 4A : type

Γ⊕ `M : A

Γ ` triM : 4A

The elimination rules (especially for the4 modality) are
unfortunately quite complex. To give the idea: we can now
represent, for example, the subset type as a proof-irrelevant
version of the the strong sum.

{x:A | B} = Σx:A. 4B

The triangle operator appears to serve the same purpose as
the squash type in [10], except here it derived directly from
the judgmental level rather than from identity types.

If our operational interpretation of type theory is based
on staged computation [5], then the4modality is necessary

to reason about staged programs. Besides a natural symme-
try between intensionality and irrelevance as extreme forms
of decidable equality, this has been our main motivation for
developing a type theory that simultaneously supports these
concepts. As an example, consider the specification of a
staged power function (presuming a typenat and a propo-
sitional equality.=):

6 ` Πn:nat . 2(Πb:nat . Σm:nat . m
.
= bn) : type

This not well-formed because the term variablen is not
available in the expression underneath the2 constructor.
This problem is neatly solved with the4 modality as fol-
lows:

` Πn:nat . 2(Πb:nat . Σm:nat . 4(m
.
= bn)) : type

This further specifies that the correctness proof for the
staged power function may be erased before execution since
it is computationally irrelevant.

7.3 First-Order Intuitionistic Modal Logic

If we consider the first-order fragment of our type the-
ory, the three forms ofΠ-abstraction correspond to three
forms of universal quantification. In terms of a Kripke se-
mantics with varying domains,Πx:A. B quantifies over the
elements of the current domain only. This means, for ex-
ample, thatΠx:A. 2P (x) is only well-formed ifP has
kind Πx÷A. type, because otherwise the truth ofP (x)
may need to be investigated in worlds in whichx does
not exist. Yet it is still possible thatx occurs, even ifP
can only talk about elements of the current world, as in
Πx:A. P (x)→ 24P (x) (which is true, incidentally). The
quantifierΠx::A. B quantifies over elements existing in all
domains and thus, in general, fewer thanΠx:A. B. Finally,
Πx÷A. B quantifies over all elements of the current world
and also elements that existed in some past world. Thus our
approach has the potential to shed new light on old debates
by allowing various interpretations of quantification to co-
exist peacefully in a single modal logic.

8 Conclusion

We have presented a dependent type theory that inte-
grates intensionality, extensionality, and proof irrelevance
as judgmental notions, based on considerations from modal
logic. We proved that equality and type-checking are de-
cidable on the fragment presented here and sketched some
possible applications.

The most pressing item of future work is the inclusion
of first-class modal operators important for applications in
functional programming. The most difficult question here
is the right notion of the “default” equality on terms. In

9

this paper, the term equality was fullyextensional; for func-
tional programming applications, this will not be tenable
and must be replaced by a decidable judgmental equality
that is sound with respect to the operational semantics. We
conjecture that this can be done without upsetting the “ex-
treme” equalities of expressions and proofs for which there
appears to be little leeway. Furthermore, some type theo-
retic constructs such as universes may require generaliza-
tions of our proof techniques.

Acknowledgments. We would like to thank the anony-
mous referees for various helpful comments and sugges-
tions.

References

[1] S. Berardi, M. Coppo, F. Damiani, and P. Giannini. Type-
based useless-code elimination for functional programs. In
W. Taha, editor,Proceedings of the International Workshop
on Semantics, Applications, and Implementation of Pro-
gram Generation (SAIG 2000), pages 172–189, Montreal,
Canada, Sept. 2000. Springer-Verlag LNCS 1924.

[2] U. Berger, W. Buchholz, and H. Schwichtenberg. Refined
program extraction from classical proofs.Annals of Pure
and Applied Logic, 2001. To appear.

[3] I. Cervesato and F. Pfenning. A linear logical framework.
Information and Computation, 1998. To appear in a special
issue with invited papers from LICS’96, E. Clarke, editor.

[4] R. L. Constable et al.Implementing Mathematics with the
Nuprl Proof Development System. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1986.

[5] R. Davies and F. Pfenning. A modal analysis of staged com-
putation.Journal of the ACM, 2000. To appear. Preliminary
version available as Technical Report CMU-CS-99-153, Au-
gust 1999.

[6] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy,
C. Parent, C. Paulin-Mohring, and B. Werner. The Coq
proof assistant user’s guide. Rapport Techniques 154, IN-
RIA, Rocquencourt, France, 1993. Version 5.8.

[7] R. Harper, F. Honsell, and G. Plotkin. A framework for
defining logics. Journal of the Association for Computing
Machinery, 40(1):143–184, Jan. 1993.

[8] R. Harper and F. Pfenning. On equivalence and canonical
forms in the LF type theory. Technical Report CMU-CS-
00-148, Department of Computer Science, Carnegie Mellon
University, July 2000.

[9] J. Hodas and D. Miller. Logic programming in a fragment
of intuitionistic linear logic.Information and Computation,
110(2):327–365, 1994. A preliminary version appeared in
the Proceedings of the Sixth Annual IEEE Symposium on
Logic in Computer Science, pages 32–42, Amsterdam, The
Netherlands, July 1991.

[10] M. Hofmann. Extensional Concepts in Intensional Type
Theory. PhD thesis, Department of Computer Science, Uni-
versity of Edinburgh, July 1995. Available as Technical Re-
port CST-117-95.

[11] P. Martin-Löf. Analytic and synthetic judgements in type
theory. In P. Parrini, editor,Kant and Contemporary Episte-
mology, pages 87–99. Kluwer Academic Publishers, 1994.

[12] P. Martin-Löf. On the meanings of the logical constants
and the justifications of the logical laws.Nordic Journal
of Philosophical Logic, 1(1):11–60, 1996.

[13] A. Momigliano. Elimination of Negation in a Logi-
cal Framework. PhD thesis, Department of Philosophy,
Carnegie Mellon University, Aug. 2000. Available as Tech-
nical Report CMU-CS-00-175.

[14] G. C. Necula. Proof-carrying code. In N. D. Jones, editor,
Conference Record of the 24th Symposium on Principles of
Programming Languages (POPL’97), pages 106–119, Paris,
France, Jan. 1997. ACM Press.

[15] G. C. Necula and P. Lee. Efficient representation and vali-
dation of logical proofs. InProceedings of the 13th Annual
Symposium on Logic in Computer Science (LICS’98), pages
93–104, Indianapolis, Indiana, June 1998. IEEE Computer
Society Press.

[16] G. C. Necula and S. Rahul. Oracle-based checking of
untrusted software. In H. R. Nielson, editor,Conference
Record of the 28th Annual Symposium on Principles of Pro-
gramming Languages (POPL’01), pages 142–154, London,
England, Jan. 2001. ACM Press.

[17] B. Nordström, K. Petersson, and J. Smith.Programming in
Martin-Löf’s Type Theory: An Introduction. Oxford Univer-
sity Press, 1990.

[18] C. Paulin-Mohring.Extraction de Programmes dans le Cal-
cul des Constructions. PhD thesis, Universit´e Paris VII, Jan.
1989.

[19] F. Pfenning. Intensionality, extensionality, and proof irrel-
evance in modal type theory. Technical Report CMU-CS-
01-116, Department of Computer Science, Carnegie Mellon
University, Apr. 2001.

[20] F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic.Mathematical Structures in Computer Science,
11, 2001. To appear. Notes to an invited talk at theWorkshop
on Intuitionistic Modal Logics and Applications(IMLA’99),
Trento, Italy, July 1999.

[21] F. Pfenning and C. Sch¨urmann. System description: Twelf
— a meta-logical framework for deductive systems. In
H. Ganzinger, editor,Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages
202–206, Trento, Italy, July 1999. Springer-Verlag LNAI
1632.

[22] E. Rohwedder and F. Pfenning. Mode and termination
checking for higher-order logic programs. In H. R. Niel-
son, editor,Proceedings of the European Symposiumon Pro-
gramming, pages 296–310, Link¨oping, Sweden, Apr. 1996.
Springer-Verlag LNCS 1058.

[23] A. Stump and D. L. Dill. Generating proofs from a decision
procedure. In A. Pnueli and P. Traverso, editors,Proceed-
ings of the FLoC Workshop on Run-Time Result Verification,
Trento, Italy, July 1999.

10

