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Abstract decidable, non-extensional theory. On the other hand, we
need external arguments to validate the correctness of pro-
We develop a uniform type theory that integrates inten- grams, defeating at least in part the motivations underly-
sionality, extensionality, and proof irrelevance as judgmen- ing the separation of judgments from propositions [11, 12].
tal concepts. Any object may be treated intensionally (sub-Furthermore, the development of extensional concepts in a
ject only to a-conversion), extensionally (subject also to non-extensional type theory is far from straightforward, as
Bn-conversion), or as irrelevant (equal to any other object can be seen from Hofmann’s systematic study [10].
at the same type), depending on where it occurs. Modal re- Related is the issue @iroof irrelevance which plays an
strictions developed in prior work for simple types are gen- important role in the development of mathematical concepts
eralized and employed to guarantee consistency betweerin type theory via subset types or quotient types. For exam-
these views of objects. Potential applications are in logical ple, the type{«:A | B(z)} should contain the elemenid
frameworks, functional programming, and the foundations of type A that satisfy property. If we want type-checking
of first-order modal logics. to be decidable, we require evidence tB&f\/) is satisfied,
Our type theory contrasts with previous approaches that but we should not distinguish between different proofs of
a priori distinguish propositions (whose proofs are all B(M)—they areirrelevant

identified—only their existence is important) from specifi-  In this paper we present a type theory that internalizes
cations (whose implementations are subject to some definithe concepts of intensionality, extensionality, and proof ir-
tional equalities). relevance via distinctions familiar from modal logic. We

strictly follow Martin-Lof's separation of judgments from
propositions and both type-checking and definitional equal-
ity are decidable.

1 Introduction Atthe heart of our modal type theory are three judgments

In the development of type theory, there has been con- M :: A M is anexpressiorof type A,
siderable debate about the degree of extensionality or inten- M:A M isantermoftypeA, and
sionality that should be inherent in its formulation. In an ex- M+ A M is aproof of type A,

tensional theory such as the one underlying Nuprl [4] type-

checking is undecidable. In a non-extensional theengch constructed from the same set of objesfsand typesA.

as later versions of Martindf’s type theory [17], we distin-  Expressions are treatéatensionally they are subject only
guish adefinitional equality(also calledudgmental equal-  to a-conversion. Terms are treatextensionally they

ity) which is not extensional and decidable, frompraposi- are additionally subject t@ andn-conversion. Proofs are
tional equalitywhich is extensional and undecidable. There treated as ifirrelevant any two proofs of the same type
are a number of tradeoffs, both from the philosophical and are identified. All these are part of the definitional equality
pragmatic points of view. In an undecidable, extensional of the type theory, which therefore combines intensional-
theory, programs are significantly more compact than in aity, extensionality, and irrelevance into a single system in a

- ” n ib coherent way.
*This work was partially supported by NSF Gr&ZlfR-9988281. : i o
1Such type theories are often calledensiona) but this is somewhat It is a critical property of our type theory that the dis

misleading since the meaning of objects is still subject to some conversiontinCtionl between expressions, terms, and proofs is not made
rules. at the time the constituent constants are declared, but at the




time those constants are used. Any typean be seenas 2.1 Syntax

the type of an expression, the type of a term (= a specifi-

cation), or the type of a proof (= a proposition). Similarly, The syntax is stratified into objects, families, and kinds
an objectM may be seen as an expression, as a term, or asas for LF.

a proof, depending only on whether some conditions on its Kinds K = type|z:A K
free variables are satisfied. We believe that this flexibility is | Tz:A. K | e+ A, K
an inherent advantage of our approach compared to a priori Famiies A 1= a|AM |Ix:A;. Ay
separating propositions (inhabited by proofs that are always | Ao M| Tz::A;. Ay
irrelevant) from specifications (inhabited by terms that are | Ao M | Hz+A;. A
never irrelevant). This is the approach mostly taken in the Objects M == c|z|AzA. M | My M,
literature (see, for example, [18] or, allowing even for some | Az:A. M | My o M
classical reasoning, [2]). | Az=+A. M | My o M,
Our system is also interesting in its relation to intuition Signatures ¥ = .| %, a:K | 5,4

istic modal logic when we ignore the objects. Our default
judgmentM : A can be interpreted asA"is trug¢’. The Contexts I' == - |D,x:A|T,z2:A|T,z+A
judgmentM :: A can be read asA is valid’. The judg-
mentM = A can be read asA is provablé, hiding the
proof object. These can be seen as modes of truth, and th
work presented here is an extension of prior work on proof
term calculi for the modal logic S4 [20] where validity cor-
responds to @cessary truth.

Here, M, e M, is an application whose argumenit/§)
is treated as an expression (intensionally), while o M,
% an application whose argument is treated as a proof (ir-
relevant for equality). We us& for kinds, A, B, C for
type families, M, N, P for objects,I" for contexts and:

. i for signatures. We also use the symbol “kind” to clas-
Inatype theory as a foundation for functional program- gty the valid kinds. We consider terms that differ only in
ming, irrelevant objects (that is, proofs) are erased be-ihe names of their bound variables as identical. We write

fore execution without affecting the observable outcome. [N/z]M, [N/z]A and[N/z] K for capture-avoiding substi-
From this point of view, our type system internally captures ¢sion. Signatures and contexts may declare each constant
a notion of dead-code elimination (see, for example, [1] ang variable at most once. For example, when we write
for a survey and position paper on related type-based apT ;:A we assume that is not already declared iR. If
proaches). However, we need to extend our type theory Withnecessary, we tacitly renamebefore adding it to the con-
first-class modal operators in order to use it in the contextiayi . Since a signature is generally fixed, and constants
of a complete functional language. Two non-dependentthe-may be used anywhere, we have permitted only two forms
ories in this style are given in [20], explaining an intuition- ot constant declaration, namelyk andc: A. Note that this

istic modal logic with necessity{A) and possibility (>A). is not a restriction for our applications, since it is treenot

A proper treatment of the fully dependent version of these e definition of a constant which determines its status with
theories would seem to require an equational theory with respect to definitional equality.

commuting conversions and is therefore left to future work.

Fortunately, it is possible to develop a consistent and usefuls o Judgments

type theory where these judgments are considered primarily

as hypotheses. Instead of internalizing them as modal op-  The modal type theory is defined by the following prin-
erators, we internalize the corresponding hypothetical judg-cjpal judgments.

ment as function types. Such a restriction is not new—it

goes back to similar treatments of linear logic [9] and linear ~ F X Sig % is a valid signature
type theory [3] with similar motivations. e T etx I'is a valid context
In the remainder of the paper we present ourtype theory, T'k, M : A M has typed
investigate its properties, and sketch some further develop- T'k A: K A has typeK
ments and potential applications. I'k K : kind K is avalid kind
'k M=N:A M extensionally equald’
2 A Modal Type Theory ' A=B:K A extensionally equal®
I'k K=L:kind K extensionally equalg
' M=N:A M intensionally equal$v

Our modal type theory is a conservative extension of
LF [7]. Our approach follows the outline of [8], adapted As explained later, intensional equality for types and
here to our more general type theory. The interested readekinds is not needed directly, and proof irrelevance is a de-
may find additional details in [19]. rived concept.



For the judgmenth;, T' ctx we presuppose thal is a Irrelevant Proofs. The new judgments
valid signature. For the remaining judgments of the form

I' i, J we presuppose that is a valid signature and that 'kM+A M is a proof of typeA

is valid in X. For the sake of brevity we omit the signature 'k A+ K A is a proof type of kindx’

¥ from all judgments but the first, since it does notchange I'x M =N <~ A M andN are equal proofs
throughout a derivation. 'k A=B + K AandB are equal proof types

If J is a typing or equality judgment, then we write . )
[M/).J for the obvious substitution af/ for z in J. For ~ are defined by the following rules
example, ifJ is N : B, then[M/x]J stands for the judg- © ©
ment[M/z]N : [M/z]B. PhM:A kAKX
We also have several derived judgments that are central 'k M=A Tt A+ K
the nature of our type theory. Each of them is defined by ® ®
only a single rule. In order to explain these additional judg- "EM=M:A ["KEN=N:4
ments we need two critical operations on contexts. The Ik M=N=A
first, I'©, hides all term variables: A by converting them to
proof variablesc+~A. The secondl’®, resurrects all proof

Ik A=B:K

variablesz+A by converting them to term variablesA. ', A=B =+ K
Other declarations are unaffected in both cases.
()8 =- ()@ =. The idea is that a proof may depend on exprgssion vari-
(T, 2:4)° =T° 224 (T,2:4)® =T9 2:4 able;, term varlablgs, and proof variables. .ThIS effect is
(T,2:4)° =T9, 24 (T, 2:4)® =T9 2:4 achlevgd by relabelling hypgthesesB tox:Bin t.he( )@
(T, 2+A)° =T°, 224 (T,2+A)® =T9 2:4 operation. Note that equality between proofs implements

proof irrelevancein the classical sense. We could replace
the premisd™® i, M = M : AwithT® 5, M : A (and

Intensional Expressions. The new judgments o . S .
P juag similarly for N), but for technical reasons it is simpler if

I'k M:: A M isan expression of typg the equality judgment does not refer to the typing judgment
I'k A:: K Aisan expression type of kinil here.
'k M=N:A MandN are equal expressions Itisimportantthat\/ + A isinherently weaker thai/ :

'k A=B: K AandB are equal expressiontypes A. In particular,z=A i z : A. In other words, terms can
not depend on proof variables, but other proofs can. Under a
functional interpretation, it is this property which allows the
I M:A Ik A:K consistent erasure of all proof objects without affecting the
Ik M:A Ik A:K observable outcome (assuming proofs are not observable).
Note that, unlike the systems in [5, 20], the rules have the
property ofvariable monotonicity when viewed bottom-
up, every variable is preserved—only its status might
'k M=N:A I's A=B: K change from the conclusion to the premise of a rule. This is

The idea is that an expression cannot refer to a term vari-!nSplred by @ similar idea in [13] and is needed for a clean

ablez: B, which would violate intensionality. Thus we mark interaction between expressions and proofs.

these variables as irrelevant:- B, which is accomplished i

by the( )© operation. Note, however, that intensionalityand 2-3  TyPing Rules

irrelevance interact: proof variables may still occur in an in-

tensional expression, but only inside other proofs! Therules  Our formulation of the typing rules is similar to the sec-
for equality indicate that only intensionally equal terms are ond version given in [7] and directly based on [8]. In prepa-
considered as equal expressions. We do not directly referration for the various algorithms we presuppose and induc-
to a-convertibility here lecause expressions may contain tively preserve the validity of contexts involved in the judg-
proofs that must be identified, even as subterms of expresiments, instead of checking these properties at the leaves.
sions. Note that expression types are not intensional, butThis is a matter of expediency rather than necessity. Fur-
that there is a restriction regarding their validity: expression thermore, in order to the shorten the presentation we use

are defined by the following rules

I°k M=N:A I°kRA=B:K

types can not depend on term variables directly. the following notation:

In general,M :: A is inherently stronger than/ : A,
thatis,M :: A impliesM : A but not vice versa. In partic- “x" stands for either !, “::", or “=" were all occur-
ular,z:A b4 z :: A. rences in a rule must be consistent.



Objects.

cAinx

kec:A NeAT'Fz: A Nz:AT'Fz: A no rule forz=4

' Ay xtype T, xxA1 = My : As '+ M : IIzxAs. Ay '+ My x Ay

T'F A zxA;. My : TIxxA;. Ay T'F My« My : [Ma/x]Ay
I'-M:A I'HA=B:type
'-M:B
Families.

a:KinX ' A:TlzxB. K 'tMxB
I'a: K 'FAxM:[M/x]K

' Ay xtype I, zxA; F As : type I'FA: K I'tK =L:kind

T'FIlxxA;. A : type T'HFA:L

Figure 1. Rules for Validity of Objects and Families

“x” stands for either juxtaposition (an application of Families and Kinds. The rules for application and con-
a function of typellz:A. B), “e” (an application of  version are copies of the rules from the level of objects.
a function of typellz::A. B), or “o” (an application  Valid function types restrict occurrences of the dependent

of a function of typdlIz+A. B). Occurrences of#” variable based on whether the corresponding argument is
must be coordinated with occurrences &f In a rule interpreted as an expression, a term, or a proof. This is nec-
schema in the indicated manner. essary to guarantee that the type of an application, which is

obtained by substitution, is valid. The rules at the level of

] o ) kinds mirror the ones at the level of families and are elided
Signatures. The rules for validity of signatures are pere.

straightforward and omitted here. From now on we fix a

valid signature and omit it from the judgments. Generally, in our theory the judgments on families only

reflect the judgments on the objects embedded inthem. This
is typical of type theories such as the one underlying LF.

Contexts. Validity of contexts must guarantee that we

cannot incorrectly refer to a proof variable in a term or

expression, or a term variable in an expression. This is
achieved by the following rules.

2.4 Definitional Equality

The rules for definitional are written with the presuppo-

H I ctx '+ A xtype sition that a valid signatur® is fixed and that all contexts
. otx F T, %A cix T are yalid. Thg 'intent is. that.equality implies validity of
the objects, families, or kinds involved (see Lemma 2). In
contrast to the original formulation of LF in [7], equality
of terms is based on a notion of parallel conversion plus
extensionality, rather thafin-conversion, but the two def-
initions turn out to be equivalent. In addition we have to
take care of intensionality for expressions and irrelevance
Objects. Here we proceed as in LF, except that we need to of proofs. This is reflected in the rules for intensional appli-
make sure that arguments fit the type and disposition (inten-cation}/ e N and irrelevant applicatiof/ o N.
sional, extensional, or irrelevant) of the function. The rules  Some of the typing premises in the rules are redundant,
can be found in Figure 1. The rule schema for application but for technical reasons we cannot prove this until valid-
is the most complex and has three instances. One of themity has been established. Such premises are enclosed in
for example, replacesby :: andx by e. {brace$.

Note that the second rule schema actually stands for
three rules, depending on whether, x::A, or z+A ap-
pear in the conclusion and premise.



Simultaneous Congruence.
c:Ainy
I'ke=c: A NoAl'Fz=x:A Dz:Al'Fz=x:A4
Fl—Mllezﬂm*Ag.Al F"MQZNQ*AQ
'k Ml * M2 = N1 * N2 : [MQ/J?]Al
T A=A «type  THA=A «type T,zx41 b My =Ny : A
'+ )\J?*A/l M2 = )\J?*A/l/. N2 : HJ?*Al. A2

Extensionality.
FI—Al*type {F"MHJ?*AlAQ} {F"NHJ?*AlAQ} F,m*AlkM*.IT:N*JSIAQ
F"MZNZHJ?*Al.AQ

Parallel Reduction.
{FI—Al*type} F,J?*A1|_M2=N25A2 ' M, =N; x A
'+ ()\J?*Al. MQ) * Ml = [Nl/m]Ng : [Ml/m]Ag

Type Conversion.
I'-M=N:A I'HA=B:type
'-M=N:B

Figure 2. Extensional Equality Between Objects

Objects. The extensional equality rules for objects are notexpressions or proofs, the extensionality principle holds
shown in Figure 2, where we have elided rules stating sym-for all three kinds of functions. Modulo the construction of
metry and transitivity. Conversion is modelled by parallel the right kind of context and some redundant premises re-
reduction, a choice motivated by technical concerns. Re-quired for technical reasons, these are straightforward. Sim-
flexivity is admissible, which is typical for equality based ilarly, the rule of parallel reduction is available for all three
on parallel reduction. kinds of functions.
The crux of intensionality and irrelevance is in the cases
for the corresponding applicationd/ ¢ N andM o N.
We therefore explicitly consider the second premise in the Families and Kinds. The rules in Figure 2 are repeated
rule schema for application in its three specific instances. wijth straightforward adaptations at the levels of families
If we compareM; M, = N; N, then the second and kinds and omitted here. Details can be found in the
premise required/, = N, : Ay, justasin LF. technical report [19].
If we compareM; e M, = N; e N, then the ar-
guments are treated intensionally and equality will only
succeed ifM; and N, are well-typed and intensionally |ntensjonal Equality. The intensional equality between
equal expressions. This is enforced with the jUdgme”tobjects,F M = N : A, is defined as a simultaneous
['F M; = N :: Ay defined before, which holds if and  congruence just as the extensional equality, but we delete
only if ' = My = Ny = As. the rules for extensionality and parallel conversion. In the
If we compareM; o Mz = N; o No thenthe arguments  modified rules, arguments to functions that are to be treated
are proofs and are always considered equal. We only needhs proofs, however, are considered irrelevant for equality as
to check that they are well-typed, which is accomplished before. Hence irrelevance takes precedence over intension-
with the judgment’ = M, = N, + A, defined before.  gality, which seems most appropriate for the intended appli-
This holds if and only if"® F M; : Ay andT'® - N5 : A,. cations as outlined in Section 7. The reader can find the full
Since the main equality judgment compares terms andset of rules in [19].



2.5 Elementary Properties (&) When the corresponding arguments are exten-
sional (terms), recursively compare for exten-

We establish some elementary properties of the judg- sional equality.
ments pertaining to the interpretation of contexts. All of (b) When the corresponding arguments are in-
these have standard or straightforward proofs on the struc- tensional (expressions), compare for syntactic
ture of derivations. First we show weakening for all judg- equality modulo a-conversion, ignoring only
ments of the type theory. Secondly, reflexivity holds for embedded proof terms.

valid objects, families, and kinds.

For all lemmas and theorems from here on we tacitly
assume that the contexts in the given derivations are well-
formed. Furthermore, in the statement of a meta-theoreticSince this algorithm is type-directed in case (1) we need to
property, several occurrences of ‘must still be instanti-  carry types. Unfortunately, this makes it difficult to prove
ated consistently as for inference rules. correctness of the algorithm in the presence of dependent

types, because transitivity is not an obvious property. For-
Lemma 1 (Substitution) If I', 2xA, I - J andI" = M « tunately, we do not need to know the precise type of the
Athenl, [M/z|T" - [M/z]J. objects we are comparing.

We therefore define a calculus of simple approximate
types and an erasure functionr that eliminates dependen-
cies for the purpose of this algorithm. Note that there are
three forms of non-dependent function type which we write
ast = 1 and similarly for kinds.

We writea to stands for simple base types and we have
two special type constants, typand kind", for the equal-

(c) When the corresponding arguments are irrelevant
(proofs), we always treat them as equal.

Proof: By induction over the structure of the first given
derivation. O

Note that this is shorthand for several separate substitu
tion properties. Now there is a series of technical lemmas
(which we omit), culminating in validity and functionality.

Lemma 2 (Validity) ity judgments at the level of types and kinds.
1. IfTF M « AthenT' - A  type SimpleKinds « ::=type™ |7 S k|7 3 k|75 K
Simple Types T i=a |7 > w |71 =T |71 30
. =Nx*xAthenTHM+x AT FNxA .
2w - M x A, then o s Simple ContextsA ::= - | A jzir | Ay zor | Ay x+7

andI" - A * type
We user, 6, § for simple types andh for contexts declar-

Analogous properties hold at the levels of families and ing simple types for variables. We also use “kiridn a

kinds. similar role to “kind” in the LF type theory.
Lemma 3 (Functionality) If T - M = N x A and We write A~ for the simple type that results from eras-
T,zxA - O = P : B thenT + [M/2]0 = [N/z]P : ing dependencies i4, and similarlyK —. We translate each

constant type family; to a base type— and extend this to
all type families. We extend it further to contexts by apply-

Another consequence of validity is a collection of stan- ing it to each declaration.

[M/z]B and similarly at the level of types and kinds.

dard inversion properties. In the interest of space, we elide (@~ = a
these properties here. We can further show, from validity, o
that the premises enclosed {n..} are indeed redundant (Ax M)~ = A
P , ! (Mexdy. A))~ = A7 5 A

that is, follow from the other premises.

. L . We now present the algorithm in the form of four judg-
3 An Algorithm for Deciding Equality ments. These can be interpreted as an algorithmin the man-
ner of logic programming.
The algorithm for deciding definitional equality can be

summarized as follows: M ™™ M’ (M weak head reduces td1’) Algorithmi-
cally, we assumé/ is given and computé/’ (if M
1. When comparing objects at function type, apply exten- is head reducible) or fail.

sionality. . :
A+ M <= N:1 (M isequal toN at simple type) Al-

2. When comparing objects at base type, reduce both gorithmically, we assumé@\, M, N, andr are given
sides to weak head-normal form and then compare and we simply succeed or fail. We only apply this
heads directly. If they are equal, we compare each cor- judgment if M and N have the same typeé and
responding pair of argumenascording to their status. T=A".



A+ M <+— N:7 (M is structurally equal toN) Algo-
rithmically, we assume thah, M and N are given
and we compute or fail. If successful; will be the
approximate type oM andN.

AF M & N (M is intensionally equal taV) Algorith-
mically, we assume thak, M, and N are given and
we either succeed or fail.

Note that the structural and type-directed equality are mutu-

ally recursive, while weak head reduction does not depend
on the other three judgments.

Weak Head Reduction.

()\JS*Al. MQ) * Ml W—hl; [Ml/m]Mg
My vy

My« My ™5 M « M,

Type-Directed Object Equality.

MY AFM < N:a
AFM<+<= N:«

N™ N AFMe=N:a
AFM<<= N:«
AFM<+— N:«
AFM<+<—= N:«

Axxri FMsxz< Nx*xxz:7

AFM<N:m 57

Structural Object Equality.

cAinXx zTorzaTin A

AFc+—c: A™ Atz <+—x:T

Al—MlHNllTQ—»Tl Al—M2<:>N25T2
AbF My My+— Ny No:7y

AFM +— Ny i1 51 AF M, & Ny
A M, e My<— NyeNy:Ty

Al—MlHNllTQ—iTl
A M oMy<— NyoNy:my

Structural Intensional Object Equality.
cAinY T orzaT in A
AFcBc Atz 5z
A+ A< B :type AjzxA"FM & N
AF XzxA. M & AzxB. N
AFM & M AF My, & Ny
A+ My My & Ny N,
AFM & M AF My, & Ny
AF M o My (=) Ny o Ny
AFM & N
AF M oM, & NyoN,

The crux of the definitions above are the rules for struc-
tural equality for applications. We omit the corresponding
rules at the level of families. Briefly, kind-directed equality
simple decomposed-types, while structural type equality
reprises the rules for structural object equality above.

The algorithmic equality judgments satisfy some
straightforward structural properties, including weakening.
Furthermore, the algorithm is essentially deterministic in
the sense that when comparing terms at base type we have to
weakly head-normalize both sides and compare the results
structurally. This is because terms that are weakly head re-
ducible will never be considered structurally equal. This
property, as well as the symmetry and transitivity of the al-
gorithm are completely straightforward.

4 Completeness of the Equality Algorithm

In this section we summarize the completeness theorem
for the type-directed equality algorithm. That is, if two
terms are definitionally equal, the algorithm will succeed.
The central idea is to proceed by an argument via logical
relations defined inductively on the approximate type of an
object, where the approximate type arises from erasing all
dependencies.

The completeness direction of the correctness proof for
type-directed equality states:

fFI'FM=N:Athenl" - M <= N: A"

One would like to prove this by induction on the structure of
the derivation for the given equality. However, such a proof
attempt fails at the case for application. Instead we define a
logical relationA H M = N < [r] that provides a stronger
induction hypothesis so that both

1. fTFM=N:AthenT" M =N €[A],and

2.fT"FM=Nc¢c[A]thenT™ - M < N ¢
A_l



can be proved. 1. f ' M : AandT' - N : A then it is decidable
The development can be found in [19], following [8] whethel' - M = N : A.

quite closely, so we omit it here in the interest of brevity. 5 Given a validl. M. and A it is decidable whether

Theorem 4 (Completeness of the Equality Algorithm) I'EM:A

IfT'-M=N:AthenI'" - M <= N : A~. Further-  Corresponding properties hold at the level of families and
more, an analogous property holds at the level of families. kinds and for other equality judgments.

We also have that our type theory is conservative over
LF. This is important for logical framework applications,
since previously established adequacy theorems for encod-

In general, the algorithm for type-directed equality is not jngs will continue to hold in the modal framework.
sound. However, when applied to valid objects of the same

type, itis sound and relates only equal terms. This direction
requires a number of syntactic lemmas from Section 2.5, but
is otherwise mostly straightforward.

5 Soundness of the Equality Algorithm

7 Further Developments and Potential Appli-
cations

Lemma 5 (Subject Reduction) If M wht 3 and In this section we consider various possible further de-
T M:AthenT - M’ : Aandl - M = M’ : A velopments and potential applications of our ideas.
Proof: By induction on the definition of weak head reduc- /-1 Logical Frameworks
tion, making use of inversion and substitution properfiés. . . . ) i

The addition of intensional expressions and irrelevant

For the soundness of the equality algorithm we need sub-Proofs to the logical framework may leads to more direct

ject reduction and validity (Lemma 2). and more compact encodings in a number of examples.
First, the intensional nature of expressions constitutes a
Theorem 6 (Soundness of the Equality Algorithm) weak form of reflection: arbitrary LF terms are accessible
in LF without regard tg3n-conversion. At present we do
1. f'EM:Aandl'- N:Aandl'™ - M < N : not have any concrete applications for this added expressive
A, then' - M =N : A. power—the primary application of intensional expressions

we have in mind is in the richer setting of functional pro-
gramming explained in Section 7.2 below.

Second, the irrelevant nature of proofs can be used to
encode similar situations in object theories, which is quite

3. fT - M:AandT - N: BandT— + M & N then frequent. For example, in an encoding of linear functions in

2. TFM:AandT’F N:Bandl'" W M +— N :
T, thenT H M = N : A T'+ A= B : typeand
A" =B =rT.

I'HA=B:typeandl - M = N : A. LF we often have to deal with pairs consisting of the actual
function and the proof certifying its linearity. The nature of
Analogous properties hold for types and kinds. this proof is, however, irrelevant, as long as it exists. An

encoding of this kind might look as shown below. Here we
Proof: By induction on the structure of the given deriva- ysed — B for IIz:A. B wherez does not occur 3.
tions for algorithmic equality, using validity and inversion

. L term : type
on the typing derivations. O raw
yping lam : (rawterm — rawterm) — rawterm
6 Decidabilit app : rawterm — rawterm — rawterm
ecidaplll
y linear : rawterm — type

We can now show that the judgments for the equality al-
gorithm constitute a decision procedure on valid terms of
the same type. This result is then lifted to yield decidability ~ The definitional equality at typknterm now ignores the
of all judgments in the type theory. This part of the develop- proofs that the expressiorfs are indeed linear. A simi-
ment is relatively standard. An exposition of thecessary  lar situation arises in the encoding of object languages with
auxiliary judgments and lemmas can be found in [19]. We subtyping, where often all proofs of subtype relationships

linterm : IIE:rawterm. IIL-=linear E. type

only show the final result. should be considered equal. The logic programming inter-
pretation of such encodings can go from infeasible to practi-
Theorem 7 (Decidability) cal if all choice points are discarded after the first proof has



been found. Such an optimization is justified by our modal to reason about staged programs. Besides a natural symme-
type theory without any loss of soundness or completenesstry between intensionality and irrelevance as extreme forms
Moreover, the Twelf system [21] can verify automati- of decidable equality, this has been our main motivation for
cally that type families (such d&wear or one implementing  developing a type theory that simultaneously supports these
object-language subtyping) are in fact decidable using modeconcepts. As an example, consider the specification of a
and termination analysis [22]. If we agree thatirrelevant ob- staged power function (presuming a typ& and a propo-
jects need not be shown in the user interface, then the proofsitional equality=):
of type linear E that occur in linear terms actually do not
need to be represented at all, leading to a potentially signif- J- ln:nat. O(Ib:nat. Sm:nat. m = b") : type
icant space savings that may be critical in applications such
as proof-carrying code [14] and certifying decision proce-
dures [23]. Another situation in which an implementation
may mark objects as irrelevant is if they are uniquely de-
termined, either for syntactic [15] or semantic [16] reasons.
While our modal analysis does not cover all of these op- | [Tp:nat. O(ITbinat. Sminat. A(m = b)) : type
timizations, it generalizes some of the core ideas from a

This not well-formed because the term variablés not
available in the expression underneath theonstructor.
This problem is neatly solved with th& modality as fol-
lows:

fragment of LF to the full type theory. This further specifies that the correctness proof for the
staged power function may be erased before execution since
7.2 Functional Programming itis computationally irrelevant.

Our given type theory is fully adequate as a logical 7.3 First-Order Intuitionistic Modal Logic
framework, but clearly not expressive enough to develop . i
verified functional programs as in various implementations ~ |f we consider the first-order fragment of our type the-
of type theory such as Nuprl [4] or Coq [6]. Besides stan- OrY: the thrge forms oﬂ-la}bst'ractlon correspond tp three
dard constructs such as inductive typesetypes that are formg of u.n|versa.I quant|f|(?at|0n. In terms of a Kripke se-
orthogonal to our considerations, we need to internalize ex-mantics with varying domain§la: A. B quantifies over the
pressions and proofs as modal operators, rather than jusglements of the current dqmam only. This means, for ex-
arguments to functions. The blueprint for such an integra- @MPple, thatllz:A. DP(z) is only well-formed if P has
tion for expressions has been given in prior work [5, 20], the kind Ilz=-A. type, because otherwise the truth Bfz)
correct notion of definitional equality in the presence of de- May need to be investigated in worlds in whigchdoes
pendencies was the main missing ingredient. The presenc&©t exist. Yet it is still possible that occurs, even if?
of both expressions and proofs allows a new twist. We show@n only talk about elements of the current world, as in
the formation and introduction rules for the corresponding [1#:A. P(z) — OAP(z) (whichis true, incidentally). The

modal operators, expanding the derived judgments: quantifierllz::A. B quantifies over elements existing in all
domains and thus, in general, fewer than: A. B. Finally,
I'°F A:type T°FM: A IIx+A. B quantifies over all elements of the current world

and also elements that existed in some past world. Thus our
approach has the potential to shed new light on old debates
I'®F A:type I'®-M: A by allowing various interpretations of quantification to co-
exist peacefully in a single modal logic.

I'HOA:type T'FboxM:0A4

I'-AA:type PtriM: AA

The elimination rules (especially for the modality) are 8 Conclusion
unfortunately quite complex. To give the idea: we can now .
represent, for example, the subset type as a proof-irrelevant We have presented a dependent type theory that inte-

version of the the strong sum. grates intensionality, extensionality, and proof irrelevance
as judgmental notions, based on considerations from modal
{z:A| B} = Xz:A.AB logic. We proved that equality and type-checking are de-

cidable on the fragment presented here and sketched some
The triangle operator appears to serve the same purpose gsossible applications.
the squash type in [10], except here it derived directly from  The most pressing item of future work is the inclusion
the judgmental level rather than from identity types. of first-class modal operators important for applications in
If our operational interpretation of type theory is based functional programming. The most difficult question here
on staged computation [5], then themodality is recessary  is the right notion of the “default” equality on terms. In



this paper, the term equality was fubtxtensionglfor func-

tional programming applications, this will not be tenable
and must be replaced by a decidahldgmental equality

that is sound with respect to the operational semantics. wel12]

conjecture that this can be done without upsetting the “ex-
treme” equalities of expressions and proofs for which there [
appears to be little leeway. Furthermore, some type theo-
retic constructs such as universes may require generaliza-
tions of our proof techniques.

[14]
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