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Abstract

We formulate a Gentzen-style sequent calculus for partial correct-
ness that subsumes propositional Hoare Logic. The system is a non-
commutative Intuitionistic Linear Logic. We prove soundness and
completeness over relational and trace-based models. As a corollary
we obtain a complete sequent calculus for inclusion and equivalence
of regular expressions.

1 Introduction

In formulating logics for program verification such as Hoare Logic (HL), Dy-
namic Logic (DL), or Kleene Algebra with Tests (KAT), it is tempting to
treat tests and correctness assertions as a uniform syntactic category. This
temptation is best resisted: although both are classes of assertions, they have
quite different characteristics. Tests are local assertions whose truth is de-
termined by the current state of execution. They are normally immediately
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decidable. The assertion x > 0, where x is a program variable, is an example
of such a test. Tests occur in all modern programming languages as part of
conditional expressions and looping constructs. Correctness assertions, on
the other hand, are statements about the global behavior of a program, such
as partial correctness or halting. They are typically much richer in expressive
power than tests and undecidable in general.

DL does not distinguish between these two categories of assertions. The
two are freely mixed, and both are treated classically. For this reason, the
resulting system is unnecessarily complex for its purposes. The rich-test
version of DL, in which one can convert an arbitrary correctness assertion to
a test using the operator 7, is II}-complete. Even with systems that do make
the distinction, such as KAT, care must be taken not to inadvertently treat
global properties as local; doing so can lead to anomalies such as the Dead
Variable Paradox [10].

One major distinguishing factor between tests and correctness assertions that
may not be immediately apparent is that the former are classical in nature,
whereas the latter are intuitionistic. For example, the DL axiom

[p1lgld = I[p;qld

can be regarded as a noncommutative version of the intuitionistic currying
rule

p—>q—b = pAg—b.

Godel first observed the connection between modal logic and intuitionism,
foreshadowing Kripke’s formulation of a state-based semantics for modal and
intuitionistic logic. Kripke models also form the basis of the semantics of DL
(see [7]), although as mentioned, DL does not realize the intuitionistic nature
of partial correctness.

In this paper we give a Gentzen-style sequent calculus S that clearly separates
partial correctness reasoning into its classical and intuitionistic parts. The
system has the flavor of a noncommutative Intuitionistic Linear Logic and is
in some ways related to a system of Girard [5, 6]. It is linear because certain
expressions cannot be indiscriminately duplicated or eliminated. The linear
implication operator takes only programs as left argument, while arbitrary
partial correctness formulas can occur on the right. There is a very limited



way in which the weakening rule for programs can be used—programs can be
inserted only at front of an environment. There is one exception: a program
of the form p* already present in the environment can be duplicated. It
is remarked in [15, p. 25] that “the addition of weakening to linear logic
has less dramatic consequences than the addition of contraction has.” Since
programs cannot occur positively on the right hand side of -, the system has
introduction and elimination rules on the left of |-.

We give relational and trace-based semantics for this logic and show how
it captures partial correctness. We then prove soundness and completeness
over both classes of models. As a corollary we obtain a complete sequent
calculus for inclusion and equivalence of regular expressions.

2 Syntax

The syntax of S comprises several syntactic categories. These will require
some intuitive explanation, which we defer until after the formal definition.
In particular we distinguish between two kinds of propositions, which we call
tests and formulas.

tests bc,d... b:= (atomic tests) | L |[b—c

programs p,q,7,... p = (atomic programs) |b|[plUq|p® q|p*
formulas O, ,... @u=blp—y

environments [ A/ ... Tu=e|D,p|Le

sequents 'Fo

In the above grammar, — is called linear implication, ® is a noncommutative
multiplicative connective called tensor, Ll is a commutative additive connec-
tive called disjunction, and * is a unary operation called iteration. We use
brackets where necessary to ensure unique readability. We abbreviate b — L
by b, L by 1, and p ® ¢ by pg.

A test is either an atomic test, the symbol L representing falsity, or an
expression b — c representing classical implication, where b and c are tests.
We use the symbols b, ¢, d, ... exclusively to stand for tests. The set of all



tests is denoted B. The sequent calculus to be presented in Section 4 will
encode classical propositional logic for tests.

A program is either an atomic program, a test, or an expression p U ¢, p ® ¢,
or p*, where p and ¢ are programs. We use the symbols p, ¢, 7, . .. exclusively
to stand for programs. The set of all programs is denoted P. As in PDL
[4], the program operators can be used to construct conventional procedural
programming constructs such as conditional tests and while loops.

A formula is either a test or an expression p — ¢, read “after p, ¢,” where
p is a program and ¢ is a formula. Intuitively, the meaning is similar to the
DL modal construct [p]y. The operator — associates to the right. We use
the symbols ¢, 1, ... to stand for formulas.

Environments are denoted I'; A, ... . An environment is a (possibly empty)
sequence of programs and formulas. The empty environment is denoted «.
Intuitively, an environment describes a previous computation that has led to
the current state.

Sequents are of the form I' - ¢, where I is an environment and ¢ is a formula.
We write F ¢ for € F . Intuitively, the meaning of I' - ¢ is similar to the
DL assertion [I']¢p, where we think of the environment ' =... ;p,... 9, ...
as the rich-test program --- ;p;---;97;--- of DL.

The partial correctness assertion {b} p {c} of HL is encoded by the formula
b — p — c. The Hoare-style rule

{bi}pi{ci}, oy {bn} po{cn}
{0} p{c}
is encoded by the sequent by — p; —¢i,... ,bp, 2> pp > crEFb—p—c It

follows from Theorem 6.1 that all relationally valid rules of this form are
derivable; this is false for HL (see [9, 12]).




3 Semantics

3.1 Guarded Strings

Let B={b,... bt} and P ={p1,... ,pn} be finite sets of atomic tests and
atomic programs, respectively. The sets B and P will be fixed throughout.
The guarded strings over P, B were introduced in [11]; we review the definition
here.

An atom of B is a sequence ¢ - - - £, such that ¢; is either b; or b;. We require
for technical reasons that the ¢; occur in this order. An atom represents a
minimal nonzero element of the free Boolean algebra on B. We denote by
Ag the set of all atoms of B. For an atom « and a test b, we write o < b if
a — b is a classical propositional tautology.

A guarded string is a sequence o = Qi - - - Qp_1qny,, Where n > 0, each
a; € Ag, and g; € P. We define first(o) = ag and last(o) = a,.

If last(o) = first(7), we can form the fusion product or by concatenating
o and 7, omitting the extra copy of last(c) = first(r) in between. For

example, if o = apf and 7 = fqv, then o7 = apfqy. If last(o) # first(7),
then o7 does not exist.

For sets X, Y of guarded strings, define

Xoy ¥ {oT7 |0 e X, 7€YY, or exists}
X' = Ag
Xn+1 < X o X"
Although fusion product is a partial operation on guarded strings, the oper-

ation o is a total operation on sets of guarded strings. If there is no existing
fusion product between an element of X and an element of Y, then XoY = &.



Each program p denotes a set GS(p) of guarded strings as follows:

GS(p) &« {apf| o, B € Ag}, p an atomic program
GS(b) ¥ {acAg|a<b}, ba test
GS(pUq) = GS(p)UGS(g)
GS(p®q) = GS(p)o GS(g)
)

= Yaser

n>0

A guarded string o is itself a program, and GS(0) = {c}.

A set of guarded strings over P, B is regular if it is GS(p) for some program
p- The regular sets of guarded strings form the free Kleene algebra with tests
on generators P, B [11]; in other words, GS(p) = GS(q) iff p = ¢ is a theorem
of KAT.

Lemma 3.1 The reqular sets of quarded strings are closed under the Boolean
operations.

Proof. Closure under @ and union are explicit by means of the constructs L
and L. It was shown in [11] that for any program p, there is an equivalent
program p such that GS(p) = GS(p) = R(p), where R(Dp) is the regular set of
strings over the alphabet P U B U {b | b € B} denoted by p under the usual
interpretation of regular expressions. For example, if w = (p; U -+ U py,)™,
we might take

w = ((b1 L 51) cee (bk L Bk)(pl Ue---u pm))*(bl L 51) te (bk LI Ek)
The set GS(w) = GS(w) = R(w) is the set of all guarded strings.

It remains to show closure under complement; closure under intersection
follows by the De Morgan laws. Let p’ be an expression such that

R(p') = R(@)— R(p).

The expression p’ exists since the regular sets of strings over PUB U {b | b €
B} are closed under the Boolean operations. Then R(p') is a set of guarded
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strings since R(@) is, and

3.2 Trace Models

Traces are similar to guarded strings but more general. They are defined in
terms of Kripke frames. A Kripke frame over P,B is a structure (K, mg),
where

QExK mg : B — 2K,

mg : P —
Elements of K are called states. A trace in K is a sequence of the form
809181 " * * Sn_1qnSn, Where n > 0, s; € K, ¢; € P, and (s;,8;11) € mg(Gir1)
for 0 < ¢ < n — 1. The first and last states of o are denoted first(c) and
last(o), respectively. If last(o) = first(7), we can fuse o and 7 to get
the trace o, omitting the extra copy of last(c) = first(7) in between. If
last(o) # first(7) then o7 does not exist. A trace soq151 -« * - Sn—_1Gn Sy 1S linear
if the s; are distinct. The model K is a linear trace model if all traces are
linear. By unwinding if necessary, we will always be able to assume without
loss of generality that the model is linear.

If X and Y are sets of traces, define

Xoy ¥ {oT7 |0 e X, 7€YY, or exists}

X' € K
X" € Xoxn,

def

Tests, programs, formulas, and environments are interpreted as sets of traces



according to the following inductive definition:
Cplx & {spt | (s,t) € mg(p)}, p an atomic program

Dlx & mg(b), b an atomic test

CLIx e
Ip U qllk o Cpllx U T¢llk
Mp®qlx € Dplxo el
p*Ix < | Doy
n>0
Op — plk def {s | V1 first(7) = s and 7 € [[pllx = last(r) € LIk}
def
[[8]]1( = K

IT,Allx € [OITxo C[AT.
It follows that
hlx = K — Dblx
[1Ix = K.

Every trace ¢ has an associated guarded string gs(o) defined by

def
gS(SOQISI te Sn—IQnSn) = pg104q - Cp_14p0y,

where «; is the unique atom of B such that s; € [a;lg. Thus gs(o) is the
unique guarded string over P, B such that o € [gs(o)lk.

The sequent I" - ¢ is valid in the trace model K if for all traces o € [Tk,
last(0) € Lyplk; equivalently, if [T T C last™ (L¢Ilx), or if ITTx C
I, pIk.

The relationship between trace semantics and guarded strings is given by the
following lemma.

Lemma 3.2 In any trace model K, for any program p and trace 7, T €
Oplk iff gs(7) € GS(p). In other words, Ipllx = gs~'(GS(p)). The map
X +— gs7Y(X) is a KAT homomorphism from the algebra of reqular sets of
gquarded strings to the algebra of reqular sets of traces over K.

Proof. Induction on the structure of p. n



3.3 Relational Models

Kripke frames (K, mg) also give rise to relational models. In a relational
model, tests, programs, formulas, and environments are interpreted as binary
relations on K. Tests and formulas denote subsets of the identity relation.

[plxk e mg(p), p an atomic program
bl ¥ {(s,5) | s€mg(b)}, ban atomic test
[L1x L5
[p U qlk o [plx U [¢lk
[p ® ¢lx o [plk o [qlk
Pl = | plp
n>0
p— ol {(s,5) |Vt (s,8) € [plg = (t,1) € [¥lx}
lx & {(s,5)|s€ K}

[[,Alx € [Tlgo [Alg.
Here o denotes ordinary composition of binary relations. It follows that

lx = {(s,8) | (s,s) & [blk}
[11x = {(s,s)|se€ K}.

Writing s F ¢ for (s, s) € [plk, the defining clause for p — ¢ becomes
sEp— @ & Vt(s,t) € plk = tEp,

thus the meaning of p — ¢ is essentially the same as the meaning of the box
formula [ple of DL.

The sequent T' - ¢ is valid in the relational model on (K, mg) if for all s, €

K, if (s,t) € [Tk, then (t,t) € [¢lk; equivalently, if the DL formula [T']¢ is

true in all states under the rich-test semantics [4], where the environment I' =
3Py, 2, ... is interpreted as the rich-test program --- ;p;--- ;97;---.



3.4 Relationship between Trace-Based and Relational
Models

It can be shown by induction on syntax that the map
r: X +— {(first(o),last(o)) |0 € X}

from sets of traces on K to binary relations on K maps [[pllx to [plx and
Tl to [plk, using the fact that r commutes with the operators U and o
on sets of traces and binary relations. It follows that validity over relational
models is the same as validity over trace models.

4 A Deductive System

The rules of System S are given in Figure 1. All rules are of the form

'k

The sequents above the line are the premises and the sequent below the line
is the conclusion.

We will use the notation I' - ¢ ambiguously as both an object and a meta-
assertion. As an object it denotes a sequent, i.e. a sequence of symbols over
the appropriate vocabulary. As a meta-assertion it says that the sequent
I' - ¢ is provable in S. In particular, I" ¥ ¢ means that the sequent I' F ¢
is not provable in S. The proper interpretation should always be clear from
context.

A rule is admissible if for any substitution instance for which the premises are
provable, the conclusion is also provable. The proof of the conclusion may
depend on the structure of the expressions substituted for the metasymbols
appearing in the rule or on the proofs of the premises. To show admissibility,
it suffices to derive the conclusion in S augmented with the premises as extra
axioms, considering the metasymbols appearing in the rule as atomic symbols
in the object language. Any such derivation will then be uniformly valid over
all substitution instances.
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Axiom: bk c¢ where b — cis a classical propositional tautology

Arrow Rules:

N r AR
(R =) ,pE @ (L —) D, ©
FEp—o L,p—1,p, Ak

Introduction Rules:

(1) [,p,q, Al (1) Ip, Ao T,q,AF ¢
ILp®q Al IpUg, Al
I_
T (I1) T, LAFg

Elimination Rules:

Ip®q,Ak o
(E®) L,p,q, Al
IpUg, Ak IpUg, Ak
Ely) 2= = ¥ E21) == 7
( ) L,p, Al ( ) g, Al ¢
T.p* At L,p* A+
(El *) Jp 7 <10 (E2 *) 7p ) (10
ILAF o I'p, At g
Weakening Rules:
AR | I ) L,p*, Ak
W ’ W* ’ ’
W) tyare WP orre W) Fm AR,
Cut Rule:
I NN
(cut) P » 1, @

I'AkFoe

Figure 1: Rules of System S
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4.1 Basic Properties

Lemma 4.1 The rule

[1L,AF o
E1l I
(E1) [AF

18 admissible.

Proof. From (I L) and (R —) we get I' = 1. The desired conclusion follows
from (cut). m

Lemma 4.2 The rule and sequent

poFY
p—oEp—=9y

(i)
(i) pF o

are admissible.

Proof. The following diagram gives a proof of (i).

ek
P,k
p—~>o,pky
p—r>eEp—y

(Wp)
(L—)
(R—)

The identity sequent (ii) follows by induction on the structure of ¢ using (i).
The basis b | b is an instance of the axiom. n

Lemma 4.3 The rules

Ik |
(E —) Lrp—e

WL
Iipko ( ) [ipk L

are admissible.
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Proof. For (E —), we have ¢ - ¢ by Lemma 4.2(ii). The following figure
gives the remainder of the derivation.

ok
Pk
D (W), (W)
Ip,pko
I'Ep—=>¢ Tip—=e,pkop
Iipko

(Wp)

(L—)
(cut)

To derive (W L), the sequent I'; L p+ L is an instance of (I L). Applying
(cut) to this and the premise I' F L yields the desired conclusion. n

Lemma 4.4 The rules
Lp—=q—=¢v, Ak
U,pg = ¢, Ak

are admissible.

I,pg =, Ak ¢
Lp—=qg— v, Ak

(uncurry)

(curry)

Proof. By (cut), it suffices to show p¢g > Fp—>q¢—vYandp —qg— ¢+
pq — . For the first, starting with pg — ¢ + pg — ¢, apply (E —) and
(E®) to get pg — ¥, p,q - 1, then apply (R —) twice. For the second,
starting with ¢ - 1, apply (W p) twice to get p, ¢, 9 F 1, then apply (L —)
twice to get p — ¢ — ¥, p,q F 1. The result then follows from (I ®) and
(R—).n

Lemma 4.5 FEvery ¢ is provably equivalent to some p — L in the sense that
pFp—=Landp— LI .

Proof. The formula ¢; — -+ — ¢, — b is equivalent to ¢; - - - ¢,b — L. The
proof of this fact is quite easy using Lemma 4.4 and is left to the reader. n

4.2 Relation to Kleene Algebra

We show in this section that S induces a left-handed Kleene algebra structure
on programs. Recall that a Kleene algebra (KA) is an idempotent semiring
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such that p*q is the least solution to ¢+ pz < z and ¢p™ is the least solution
to ¢ + xp < x. Equivalently, a Kleene algebra is an idempotent semiring
satisfying

1+pp* = 1+4p*p = p (1)
pr<z — pfr<ux (2)
ap <z — ap* <. (3)

Boffa [1, 2], based on results of Krob [13], shows that for the equational
theory of the regular sets, the right-hand rule (3) is unnecessary. We will call
an idempotent semiring satisfying (1) and (2) a left-handed Kleene algebra.
Boffa’s result says that for regular expressions p and ¢, R(p) = R(q) iff p = ¢
is a logical consequence of the axioms of left-handed Kleene algebra, where
R is the usual interpretation of regular expressions as sets of strings.

More specifically, Krob [13] shows that the classical equations of Conway [3],
along with a certain infinite but independently characterized set of axioms,
logically entail all identities of the regular sets over P. The classical equations
of Conway are the axioms of idempotent semirings, the equations (1), and
the equations

()* = 1+p(ap)*q p* = ()*1+p)" !, n>0.

Boffa [1, 2] actually shows that these equations plus the rule
pPP=p = p=1+p (4)

—which the reader will note is neither left- nor right-handed—imply all the
axioms of Krob, therefore the classical equations of Conway plus Boffa’s rule
(4) are complete for the equational theory of the regular sets over P. The

classical equations and Boffa’s rule are all easily shown to be theorems of
left-handed KA.

Our first task is to extend these results to Kleene algebra with tests and
guarded strings.

Lemma 4.6 Left-handed KAT is complete for the equational theory of the
reqular sets of guarded strings over P and B. In other words, for every pair
of programs p,q in the language of KAT, GS(p) = GS(q) if and only if the
equation p = q 1s a logical consequence of the axioms of left-handed KAT.

14



Proof. We adapt an argument of [11], in which the same result was proved
for KAT with both the left- and right-hand rule. It was shown there that for
any program p, there is an equivalent program p such that

(i) p=pis a theorem of KAT, and

(ii) GS(p) = R(p), where R(D) is the regular set of strings over the alphabet
PUBU{b|be B} denoted by p under the usual interpretation of
regular expressions.

In other words, any p can be transformed by the axioms of KAT to another
program p such that the set of guarded strings denoted by p is the same as
the set of strings denoted by p.

Now to show completeness of KAT over guarded strings, [11] argued as fol-
lows. Suppose GS(p) = GS(q). Then

R(p) = G5(p) = GS(p) = GS(q) = GS(q) = R(D)

Since KA is complete for the equational theory of the regular sets, p = g'is a
theorem of KA. Combining this with (i) for p and ¢ implies that p = ¢ is a
theorem of KAT.

To adapt this to the present situation, we observe that p = ¢ is a theorem of
left-handed KA by the results of Boffa and Krob. Thus in order to complete
the proof, we need only ascertain that the right-hand rule (3) is not needed
in the proof of p = p. This does not follow from Boffa’s and Krob’s results,
since the argument is in KAT, not KA. However, a perusal of [11] reveals
that the proof of p = p uses neither the left- or the right-hand rule, but can
be carried out using only the classical equations of Conway and the axioms
of Boolean algebra. m

We now describe the left-handed KAT structure induced by S. Define p C ¢
if g — ¢ F p— ¢ is admissible; that is, if ¢ = ¢ = p — ¢ is provable for
all ¢. Define p = q if p C ¢ and ¢ C p. The relation C is a preorder,
therefore = is an equivalence relation and C is a partial order on =-classes.
Reflexivity is Lemma 4.2(ii) and transitivity follows from a single application
of (cut). Moreover, the rules (E1 L), (E2 U), and (IU) imply that p L ¢ is
the C-least upper bound of p and ¢ modulo =.
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Lemma 4.7 Let P/= denote the set of =-equivalence classes. The op-
erations LI, ®, and * are well-defined on P/=, and the quotient structure
(P/=, U, ®, *, L, 1) is a left-handed KA.

Proof. We must argue that all the following properties hold:

pU(gur)=(pUgUr plar) = (pg)r
pUg=qUp Ip=pl=p
pUl=0p Ip=pl=1
pUp=p 1Upp*=p
p(gUr) =pgUpr 1Up'p=p"
(pUq)r=prugr p¢Cq—p gLy (5)

These are just the laws of left-handed KA written with the symbols of S.

Here is an explicit derivation of the distributive law p(¢ U r) C pq U pr:

pqUpr — @k pgUpr— o

pqUpr— @,pgUprk o

pqgUpr— o,pgt @) pqgUpr — o,prto

pqgUpr — ¢,p,qk g pgUpr — o,p,rkE g
pqUpr— o,p,qgUrko

pgUpr —pbkplgUr) =g

(E—)

(E1U), (B2 L)

(E®)

(Iy)

(I®), (R —)

All the other axioms of idempotent semirings follow in an equally straight-
forward manner. It follows that the operators LI and ® are monotone with
respect to C, therefore are well-defined on =-classes.

The inequality p*p™ C p* follows from (W *) by:
Pr=pbpt o
Pt = pt g
p* = ¢, p*p" o
p* = ok pp* =

(E—)

(W*)
I®), (R—)

The inequalities 1 C p* and p C p* follow from (E1 *) and (E2 *), respec-
tively, in a similar fashion. Arguing equationally, we have

1Upp* C p*up*p* C p*up* C p*
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and similarly, 1 LI p*p C p*. We also have p* C p*™* and p* C p*1 C p*p*.

For the remaining inequalities involving *, we will need the left-hand rule
(5). This is established by the following derivation:

q—>obpg—
q—=>o,pFg—p
= e p Fqg—
g—okpfg—yp

(E =), (E®), (R =)
(Tr*)

(E =), (I®), (R—)

Since p*p* C p*, by (5) we have p**p* C p*, therefore

B R e
It remains to show p* C 1 U pp™ and p* C 1 U p*p. By inequalities already
established, we have p(1 U pp™) C 1 U pp* and p(1 U p*p) = 1 U p*p. The
results then follow from (5).

It follows by equational reasoning that * is also monotone with respect to C,
therefore well-defined on =-classes: if p C ¢, then pg™ C q¢* C ¢*¢* C ¢*.
By (5), p* Ep*1Cp*¢* Cg*. u

Lemma 4.8 If b — c¢ is a classical tautology, then b T c. Thus the tests
form a Boolean algebra modulo =.

Proof. We have ¢ — ¢,b = ¢ by the axiom b F ¢ and the weakening rule
(W 4), and we have ¢ — ¢, c F ¢ by (E —). The desired conclusion ¢ — ¢
b — ¢ then follows from (cut) and (R —).

Combining Lemmas 4.7 and 4.8 and the fact that the regular sets of guarded
strings form the free KAT on generators P and B, we have

Lemma 4.9 The structure (P/=, B/=, U, ®, *, =, L, 1) is a left-handed
KAT and is isomorphic to the algebra of reqular sets of guarded strings over
P and B. Thus for any programs p and q, p C q iff GS(p) C GS(q) and
p=q iff GS(p) = GS(q).
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5 Soundness

Theorem 5.1 IfI' - ¢ is provable, then it is valid in all trace and relational
models.

Proof. We need only show soundness over trace models. This is easily es-
tablished by induction on proofs in S with one case for each proof rule. We
argue the cases (cut) and (L —) explicitly.

For (cut), we need to show that I, Allx C [OT,A,plx under the as-
sumptions [I'Tlx C [II,¢¥1x and 0T, 9, Allx C [ 9Y, A, pllx. Using

monotonicity of o,

Il Allx = [ITgo TAllx C [OI',¢1ko [AIK
= [[FJ/J,AI]K g [[Fadja A’QD:I]K = IIF]]K o [[¢I|K o IIA,SOIIK
C [Ilgo M1Ixo TA,pllx = MI'lxo IA,¢llx = @I, A, ¢llk.

For (L —), we need to show that if [T, p, ¢, Allx C last™'(LpIk), then
0T, p — ¢, p, Allx C last™'(L¢Ik). It suffices to show that [p — 9Tk o
[pllx C [Mpllx o Iylk. But

7€ [[p — Y1k o Mplk
& first(7) € [Ip — Y1k and 7 € Dpllk
= 7 € [[pllk and last(7) € MyTx
= TE [[p]]KO [[w]]K-

The other cases are equally straightforward. m

6 Completeness

Theorem 6.1 If ' ¥ @, then there exist a linear trace model K and a trace
o € ITI'llk such that last(o) € Dpllk.
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Proof. By Lemma 4.5, we can assume without loss of generality that ¢ is of
the form p — L. The proof proceeds by induction on the length of I'. For the
basis of the induction, suppose I' is empty, so that ¥ p — 1. Then p # L.
By Lemma 4.9, GS(p) # @. Construct a Kripke frame K consisting of a
single linear trace o such that gs(o) € GS(p). By Lemma 3.2, 0 € [plk.
Then first(o) € [ellx and first(o) ¢ Ip — L1k.

For the induction step in which the environment ends with a program, say
I,p¥ ¢, we have I' ¥ p — ¢ by (E —). Applying the induction hypothesis,
there exist a linear trace model K and traces o and 7 such that o € [I'Tlg,
last(o) = first(7), 7 € [pllk, and last(7) ¢ Dellx. Then o7 € [T, plix
and last(o7) ¢ Lellk-.

Finally, we argue the induction step in which the environment ends with a
formula, say I',9 ¥ ¢. By Lemma 4.5, we can rewrite this as I';q — L V¥
p — L. Let w be an expression representing the set of all guarded strings (see
Lemma 3.1). Let r and s be programs such that GS(r) = GS(p) N GS(qw)
and GS(s) = GS(p) — GS(qw). These programs exist by Lemma 3.1, and
GS(p) = GS(r U s). By Lemma 4.9, we can replace p by r LI s to get
l¢g—1L¥Frus—1. By (R—), I'L¢g— L,rUs ¥ L, and by (IL),
either I',g — L,r ¥ L or I',g — L,s ¥ L. But it cannot be the former,
since I',q — 1,q,wF L, therefore I';qg — | - qw — L, and by Lemma 4.9,
r C quw, therefore by (cut), I',qg — LFr — L.

Thus it must be the case that I''g —» 1,s ¥ 1,s0I',¢q— L ¥ s— 1. By
weakening we have I' ¥ s — L. Then by the induction hypothesis, there
exist a linear trace model K and traces ¢ € [[I'llx and 7 € [sIllx such
that last(o) = first(7). Construct a trace model M consisting only of the
linear trace o7. By Lemma 3.2, 7 ¢ [qwIl,, therefore no prefix of 7 is in
MgTs. Then last(o) € Mg — LTy, therefore o € OIT,q — LTy. More-
over, last(o) ¢ [[p — LIy, since last(o) = first(7) and 7 € Iplly. 0

7 Future Work

Several interesting questions present themselves for further investigation.
1. The completeness proof relies on the results of Boffa [1, 2], which are
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based in turn on the results of Krob [13]. Krob’s proof is fairly involved,
comprising an entire journal issue. One would like to have a proof of
completeness based on first principles.

2. The relative expressive and deductive power of S compared with similar
systems such as KAT, PDL, and PHL is not completely understood. S
is at least as expressive as PHL and the equational theory of KAT,
and apparently more so, since it is not clear how to express general
sequents @1, P1, Y2,y Pn—1,Pn F ¥ in PHL or KAT. On the other
hand, it is not clear how to express general Horn formulas of KA such
as pr =zq = p*r =2¢* in S.

3. Application of the linear implication operator — is limited to programs
on the left-hand side and formulas on the right-hand side. It would be
interesting to see whether more general forms correspond to anything
useful and whether the system can be extended to handle them. The
operator — is a form of residuation (see [14, 8]), and this connection
bears further investigation.

4. How hard is it to decide whether a given sequent is valid? It is in FX-
PTIME but at least PSPACE-hard. We conjecture that the problem
is PSPACE-complete.

5. We would like to extend the system to handle liveness properties and
total correctness in a way that is consistent with its intuitionistic foun-
dations.

6. We would like to undertake a deeper investigation into the structure of
proofs with an eye toward establishing normal form and cut elimination
theorems.
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